首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
植物激素与不定根的形成   总被引:15,自引:0,他引:15  
江玲  管晓春 《生物学通报》2000,35(11):17-19
高水平的生长素可诱导不定根原基发生,高水平的脱落酸似乎有同样的作用,但效应不如生长素强;赤霉素似乎可增强生长素对不定根原基的诱导作用,却抑制脱落酸的诱导作用;细胞分裂素抑制不定根的发生;且上述激素处理都具有时效性;而乙烯似乎与不定根的发生无直接关系;SA和JA在不定根形成中可能只影响内源生长素和细胞分裂素的合成和代谢。  相似文献   

3.
Roots that form from non-root tissues (adventitious roots) are crucial for cutting propagation in the forestry and horticulture industries. Strigolactone has been demonstrated to be an important regulator of these roots in both Arabidopsis and pea using strigolactone deficient mutants and exogenous hormone applications. Strigolactones are produced from a carotenoid precursor which can be blocked using the widely available but broad terpenoid biosynthesis blocker, fluridone. We demonstrate here that fluridone can be used to promote adventitious rooting in the model species Pisum sativum (pea). In addition, in the garden species Plumbago auriculata and Jasminium polyanthum fluridone was equally as successful at promoting roots as a commercial rooting compound containing NAA and IBA. Our findings demonstrate that inhibition of strigolactone signaling has the potential to be used to improve adventitious rooting in commercially relevant species.  相似文献   

4.
 In walnut (Juglans regia L.), an otherwise difficult-to-root species, explants of cotyledons have been shown to generate complete roots in the absence of exogenous growth regulators. In the present study, this process of root formation was shown to follow a pattern of adventitious, rather than primary or lateral, ontogeny: (i) the arrangement of vascular bundles in the region of root formation was of the petiole type; (ii) a typical root primordium was formed at the side of the procambium within a meristematic ring of actively dividing cells located around each vascular bundle; (iii) the developing root apical meristem was connected in a lateral way with the vascular bundle of the petiole. This adventitious root formation occurred in three main stages of cell division, primordium formation and organization of apical meristem. These stages were characterized by expression of LATERAL ROOT PRIMORDIUM-1 and CHALCONE SYNTHASE genes, which were found to be sequentially expressed during the formation of the primordium. Activation of genes related to root cell differentiation started at the early stage of primordium formation prior to organization of the root apical meristem. The systematic development of adventitious root primordia at a precise site gave indications on the positional and biochemical cues that are necessary for adventitious root formation. Received: 30 July 1999 / Accepted: 16 February 2000  相似文献   

5.
Adventitious root formation is a process in which roots are induced, from determined or differentiated cells that have not been specified to develop a root, at positions where they do not normally occur during development. In forest tree species, a decline in the capacity to form adventitious roots from similar cell types in stem cuttings is associated with tree age and maturity. This decline limits the success of vegetative propagation of selected adult trees. The joint action of local signals and a dynamic cascade of regulatory changes in gene expression, resulting in stereotypical cell division patterns, regulate cell fate changes that enable a somatic differentiated cell to reactivate meristem programs toward the induction of an adventitious root meristem.  相似文献   

6.
Adventitious root formation by debladed petiole cuttings of English ivy (Hedera helix L.) proceeds via a direct rooting pattern for the easy-to-root juvenile phase, while the difficult-to-root mature phase roots through an indirect rooting pattern. Juvenile petiole cuttings treated with α-naphthaleneacetic acid (NAA, 100 μM) plus the polyamine biosynthesis inhibitor, difluoromethylarginine (DFMA, 1 mM), formed an increased number of roots per cutting initiated by the indirect rooting pattern. The increased root formation and change in rooting pattern were reversed by the addition of putrescine (1 mM). Delaying auxin application to petiole cuttings for 15 days also induced juvenile petioles to root by the indirect pattern. This could be reversed by rewounding the base of the cutting prior to auxin application after day 15. The data support the use of the terms “competent root-forming cells” and “induced competent root-forming cells” to describe the target cells for the initial events of root formation for the direct and indirect rooting patterns, respectively.  相似文献   

7.
Adventitious root formation by debladed petiole cuttings of English ivy (Hedera helix L.) proceeds via a direct rooting pattern for the easy-to-root juvenile phase, while the difficult-to-root mature phase roots through an indirect rooting pattern. Juvenile petiole cuttings treated with -naphthaleneacetic acid (NAA, 100 M) plus the polyamine biosynthesis inhibitor, difluoromethylarginine (DFMA, 1 mM), formed an increased number of roots per cutting initiated by the indirect rooting pattern. The increased root formation and change in rooting pattern were reversed by the addition of putrescine (1 mM). Delaying auxin application to petiole cuttings for 15 days also induced juvenile petioles to root by the indirect pattern. This could be reversed by rewounding the base of the cutting prior to auxin application after day 15. The data support the use of the terms competent root-forming cells and induced competent root-forming cells to describe the target cells for the initial events of root formation for the direct and indirect rooting patterns, respectively.Kentucky Experiment Station publication 90-10-122.  相似文献   

8.
Indole-3-butyric acid (IBA, 10−4 M ), spermine (7 × 10−5 M ) and vitamin D2 (6.3 × 10−5 M ), all of which enhance rooting in mung bean cuttings ( Phaseolus aureus Roxb. cv. Berkin), influence RNA metabolism. Total and poly (A)+-RNA synthesis within the hypocotyl is inhibited by each of these chemicals within 24 h. These changes precede induced cell division and are therefore associated with the so-called inductive period of regeneration during which some cells in the hypocotyl undergo dedifferentiation. However, following subsequent transfer of cuttings to borate, which is an essential prerequisite for development of root primordia in these cuttings, RNA synthesis is enhanced by pretreatments with IBA, spermine or vitamin D2. Furthermore, IBA inhibits synthesis and turnover of protein within the hypocotyl.  相似文献   

9.
We have examined the toxicity of ethanol in tissue culture of the apple rootstock ‘Jork 9’. During proliferation through axillary branching, 0.2% (v/v) ethanol slightly stimulated proliferation whereas significant inhibition occurred at concentrations of 0.4 % or higher. In adventitious root formation, significant inhibition occurred at concentrations of 0.1 % or higher. The effect of ethanol was stage-dependent: during the induction period (i.e. from 24 to 72 h after the start of the rooting treatment), there was little or no inhibition. During autoclaving, ethanol evaporated to ca. 50 %. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
Molecular mechanism of adventitious root formation in rice   总被引:1,自引:0,他引:1  
Adventitious roots account for the majority of the rice root system and play an irreplaceable role in rice growth and development. Rice adventitious roots are formed by division of the innermost ground meristem cells in the central cylinder, and some lateral roots are observable in the adventitious root system. Multiple hormones have been implicated in the regulation of root development. Auxin is involved in the initiation of adventitious roots, whereas cytokinin inhibits adventitious root initiation, but promotes adventitious root elongation. Other phytohormones such as nitric oxide, ethylene, brassinosteroid, jasmonic acid and gibberellin may be also involved in regulating adventitious root initiation and development. Additionally, more than 600 root development related quantitative trait loci (QTLs) have been located by QTL analysis of root traits.  相似文献   

11.
When stem cuttings were put in water the dormancy of the bud was broken. No inhibitory substances could be found in the leaves and no effect of exogenous growth substances could be detected. Dormancy of buds in the present case seems to be the result of the mechanical resistance imposed by the leaf sheath upon the bud. Gibberellic acid was very effective in promoting root formation in the woody stem cutting ofPanicum maximum and the present results point to a direct effect on root initiation by gibberellic acid.  相似文献   

12.
The effects of some terpenoids (isopatchoulenone-rich fraction ofCyperus scariosus oil, C16-guaianolide and thymol), anauxin (IBA) and a combination of terpenoids and IBA were investigated onrooting, sprouting and accompanying biochemical changes in grapevine cuttingsvar. perlette. Treatment of cuttings for 24 h before planting insand pots caused stimulatory effects in terms of number of primary roots,lengthof longest primary root and shoot length, with a concomitant increase in totaldry weight of roots and shoots over control at 60 days after planting stage.Theactivities of peroxidase, polyphenol oxidase and the content of total phenolsdeclined in comparison with the control, hence sparing IAA resulted in enhancedcontents for the induction of adventitious roots. Different terpenoidtreatmentsalso significantly enhanced the chl a, chl b and total chl content in leaves.The levels of total soluble sugars, reducing sugars and proteins also alteredwith these terpenoids. C.S. oil and C16-guaianolide exhibited a better responsein combination with 100 g ml–1 IBA, whichsuggests its synergistic effect.  相似文献   

13.
The changes in antioxidant enzyme activity during the induction of adventitious roots in mung bean seedlings treated with Indole-3-butyric acid (IBA), hydrogen peroxide (H2O2), ascorbic acid (ASA) and diphenylene iodonium (DPI) were investigated. As compared with the controls, treatments of seedlings with 10 μM IBA significantly decreased POD activity by 55% and 49.6% at 3 h and 12 h of incubation, respectively, and significantly increased by 49.8% at 36 h of incubation; treatments of seedlings with 10 mM H2O2 significantly decreased POD activity by 42%, 60%, 39% and 38% at 3 h, 12 h, 24 h and 48 h of incubation, respectively, the changes in POD activity were coincident with those in IBA-treated seedlings during the 0–12 h incubation period; treatments of seedlings with 2 mM ASA significantly decreased APX activities by 27% only at 3 h of incubation, the varying trend of POD activity was similar to incubation with water; 10 μM DPI treatments significantly decreased POD activity by 42%, 40%, 54% and 28% at 3 h, 6 h, 12 h and 48 h of treatment, respectively. CAT activities remained at relatively stable levels and no major changes occurred from 0 h to 48 h during the incubation phase of adventitious rooting. The results may imply that CAT, an H2O2-metabolizing enzyme, is inactivated by H2O2 during the formation of adventitious roots. As compared with the controls, IBA treatments significantly decreased APX activities by 48%, 53% and 66% at 3 h, 9 h and 12 h of treatment, respectively; H2O2 treatments significantly decreased APX activities by 59%, 51% and 57% at 3 h, 12 h and 36 h of incubation, respectively; ASA treatments significantly decreased APX activities by 37% only at 3 h of incubation; DPI treatments significantly decreased APX activities by 54%, 53% and 63% at 3 h, 6 h and 12 h of incubation, respectively, and significantly increased APX activity by 106% at 24 h. These results indicated that the influence of IBA, H2O2, ASA and DPI on the changes in APX activity were the same as on the changes in POD activity. Furthermore, similar trends in the changes of APX activity and POD activity were observed during the induction and initiation rooting phase. This finding implies that APX and POD serve the same functions, possibly related to the level of H2O2, during the formation of adventitious roots. The early decrease of POD and APX activities in the initiation phase of IBA- and H2O2-treated seedlings may be one mechanism underlying the IBA- and H2O2-mediated facilitation of adventitious rooting.  相似文献   

14.
15.
Cultured shoots ofRosa ‘Improved Blaze’ were used to determine the effects of sucrose and inorganic nitrogen on adventitious root formation. Shoots grown in media containing high sucrose concentrations (146.07–262.93 mM) produced more and longer roots than those grown in media containing 0–87.64 mM sucrose. This response to sucrose was related to the metabolism of sucrose rather than its osmotic properties since the use of mannitol and 3-O-methyl-α-D-glucopyranoside as osmotic substitutes did not reproduce the effect on rooting. The number and length of roots increased when the shoots were grown in media with the nitrogen concentration of the Murashige-Skoog (MS) salt formulation reduced from 60 to 7.5 mM. Neither nitrate (NO 3 ) nor ammonium (NH 4 + ) alone at any of the concentrations tested had the effect on rooting that both had together in the ratio of the MS salt formulation. When the sucrose and nitrogen concentrations were both varied, the greatest rate of root initiation occurred on shoots grown in media with a high sucrose to nitrogen concentration ratio.  相似文献   

16.
Cytokinin (CK) inhibits adventitious root (AR) formation in stem cuttings. Little is known, however, about the mechanism underlying the inhibitory effect. In this study, 2 mg l?1 of exogenous 6‐benzyl adenine (6‐BA) was administered to 3 and 7‐day‐old apple rootstocks ‘M.26’ cuttings (3 and 7 days 6‐BA) by transferring them from a rooting medium containing indole‐3‐butanoic acid to the medium containing 6‐BA. Anatomical and morphological observations revealed that the exogenous application of 6‐BA inhibited primordia formation in the 3 days 6‐BA but not the 7 days 6‐BA group. The concentration of auxin (IAA), the ratios of IAA/CK and IAA/abscisic acid were lower in 3 days 6‐BA than in 7 days 6‐BA. Expression analysis of genes known to be associated with AR formation was also analyzed. In the 3 days 6‐BA group, high level of CK inhibited the synthesis and transport of auxin, as a result, low endogenous auxin level suppressed the auxin signaling pathway genes, as were other AR development and cell cycle related genes; all of which had an inhibitory impact on AR primordium formation. On the contrary, low CK level in the 7 days 6‐BA, reduced the inhibitory impact on auxin levels, leading to an upregulated expression of genes known to promote AR primordia formation. Collectively, our data indicated that 3–7 days is the time period in which AR primordia formation occurs in cuttings of ‘M.26’ and that the inhibition of AR development by CK is due to the suppression of AR primordia development over 3–7 days period after culturing in rooting medium.  相似文献   

17.
Chemical induction of adventitious root formation in Taxus baccata cuttings   总被引:1,自引:0,他引:1  
The effect of some auxins (IBA and NAA), phenolic compounds (phloroglucinol, gentisic acid and coumarin), a combination of auxins and phenolics, and a systemic fungicide (Bavistin) have been examined for stimulatory effects on adventitious root formation in stem cuttings (current season's growth) of Taxus baccata L. In general lower concentration (0.25 mM) of both IBA and NAA was more effective in inducing rooting of cuttings taken from both male and female trees. The combined treatment of IBA+NAA (0.25 mM each) showed some success in cuttings from male trees only (55%, compared to 15% rooting in cuttings from female trees). Generally, the callus formation was quite high (70%) in all auxin treatments (alone or in combination). Among the phenolics, 40% rooting success was achieved with phloroglucinol only, while coumarin and gentisic acid were ineffective. The combined treatment of auxins and phenolics also failed to promote rooting. On the other hand, Bavistin was extremely effective for callusing (90%) as well as rooting (80%). The effectiveness of various compounds tested for rooting of young stem cuttings declined in the order: 0.25 mM IBA>0.05% Bavistin>0.25 mM NAA>1.25 mM IBA>15 mM phloroglucinol>IBA+NAA (0.25 mM each). In addition to the auxins, IBA and NAA that are widely used for commercial propagation, the auxin-like properties of the fungicide Bavistin could be exploited for adventitious rooting in T. baccata, and in other plant species.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号