首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We studied cadmium effect on the respiratory pathways ratio in the organs of barley (Hordeum distichum L., cv. Novichok) plants grown in water culture at two temperature regimes. Mineral nutrients were supplied daily in exponentially increasing amounts in order to provide for steady-state growth. CdSO4 (30, 60, or 100 μmol/l) was added to nutrient solution at a single time in the beginning of the exponential growth period (19 days after germination). In further 6 days, the relative growth rate and biomass accumulation declined stronger with the increase in the cadmium concentration in plants grown at 13/8°C (day/night) than at 21/17°C (day/night). Cadmium suppressed root respiration (down to 60% of control) stronger than leaf respiration, and the roots manifested a higher sensitivity to the inhibitor of alternative oxidase, salicylhydroxamic acid. The respiratory pathways ratio in the roots occurred against the background of activated lipid peroxidation (POL). The highest POL activity and the highest proportion of alternative respiration pathway (AP) (up to 46% of total respiration) were observed in the roots in the presence of the highest cadmium concentration (100 μM) under lower temperature (13/8°C). Thus, high cadmium concentrations affected strongly the total rate of respiration and respiratory pathways ratio. Growth temperature modulated Cd effects on respiration. AP activation is one of the mechanisms for maintenance of root cell homeostasis under cadmium-induced stress.  相似文献   

2.
We investigated the extent to which leaf and root respiration (R) differ in their response to short‐ and long‐term changes in temperature in several contrasting plant species (herbs, grasses, shrubs and trees) that differ in inherent relative growth rate (RGR, increase in mass per unit starting mass and time). Two experiments were conducted using hydroponically grown plants. In the long‐term (LT) acclimation experiment, 16 species were grown at constant 18, 23 and 28 °C. In the short‐term (ST) acclimation experiment, 9 of those species were grown at 25/20 °C (day/night) and then shifted to a 15/10 °C for 7 days. Short‐term Q10 values (proportional change in R per 10 °C) and the degree of acclimation to longer‐term changes in temperature were compared. The effect of growth temperature on root and leaf soluble sugar and nitrogen concentrations was examined. Light‐saturated photosynthesis (Asat) was also measured in the LT acclimation experiment. Our results show that Q10 values and the degree of acclimation are highly variable amongst species and that roots exhibit lower Q10 values than leaves over the 15–25 °C measurement temperature range. Differences in RGR or concentrations of soluble sugars/nitrogen could not account for the inter‐specific differences in the Q10 or degree of acclimation. There were no systematic differences in the ability of roots and leaves to acclimate when plants developed under contrasting temperatures (LT acclimation). However, acclimation was greater in both leaves and roots that developed at the growth temperature (LT acclimation) than in pre‐existing leaves and roots shifted from one temperature to another (ST acclimation). The balance between leaf R and Asat was maintained in plants grown at different temperatures, regardless of their inherent relative growth rate. We conclude that there is tight coupling between the respiratory acclimation and the temperature under which leaves and roots developed and that acclimation plays an important role in determining the relationship between respiration and photosynthesis.  相似文献   

3.
The effect of temperature regime on growth and other morphological characteristics of barley plants (Hordeum distichum L., cv. Andrei) as dependent on the level of mineral nutrition was investigated in a controlled experiment. Plants were raised hydroponically at a high (0.22 g/(g day)) and low (0.05 g/(g day)) relative rates of the addition of mineral nutrients (R A). Mineral nutrients were daily added to the nutrient solutions in exponentially increased amounts to provide steady-state plant growth. At the optimum temperature regime (21/17°C, day/night), the plant relative growth rate (RGR) was proportional to the preset R A during the entire exponential period. Low R A led to a decrease in the nitrogen content in plants, plant weight, and respiratory activity, as well as to the increase in the relative root weight. Biomass accumulation at lowered temperature regime (13/8°C) and a high R A was 1.8-fold lower than at optimum temperature regime. Although under these conditions, the ratio of respiration to gross photosynthesis reduced threefold due to the decrease in the respiration rate, RGR of plants was equal to 0.11 ± 0.02 g/(g day), which was twice lower than the preset R A. These pointed to the decrease in plant ability to maintain a certain ratio of photosynthesis to respiration within a day. At a deficiency of mineral nutrition and low temperature, RGR reached the preset R A. Plants adapted to lowered temperature by a shift of the temperature optimum of their metabolism (heat production) to lower values. As a whole, a low variability of such growth parameters as RGR, C/N, and root to shoot weight ratio at different R A and lowered temperatures testified to the lessening of growth limitation by the mineral nutrition.__________Translated from Fiziologiya Rastenii, Vol. 52, No. 3, 2005, pp. 384–391.Original Russian Text Copyright © 2005 by Garmash.  相似文献   

4.
Lolium perenne L. cv. 23 (perennial ryegrass) plants were grown in flowing solution culture and acclimatized over 49 d to low root temperature (5°C) prior to treatment at root temperatures of 3, 5, 7 and 9°C for 41 d with common air temperature of 20/15°C day/night and solution pH 5·0. The effects of root temperature on growth, uptake and assimilation of N were compared with N supplied as either NH4 or NO3 at 10 mmol m?3. At any given temperature, the relative growth rate (RGR) of roots exceeded that of shoots, thus the root fraction (Rf) increased with time. These effects were found in plants grown with the two N sources. Plants grown at 3 and 5°C had very high dry matter contents as reflected by the fresh weight: freeze-dried weight ratio. This ratio increased sharply, especially in roots at 7 and 9°C. Expressed on a fresh weight basis, there was no major effect of root temperature on the [N] of plants receiving NHJ but at any given temperature, the [N] in plants grown with NHJ was significantly greater than in those grown with NO3. The specific absorption rate (SAR) of NH+4 was greater at all temperatures than SAR-NO3. In plants grown with NH+, 3–5% of the total N was recovered as NH+4, whereas in those grown with NO?3 the unassimilated NO?3 rose sharply between 7 and 9°C to become 14 and 28% of the total N in shoots and roots, respectively. The greater assimilation of NH+4 lead to concentrations of insoluble reduced N (= protein) which were 125 and 20% greater, in roots and shoots, respectively, than in NO?3-grown plants. Plants grown with NH+4 had very much greater glutamine and asparagine concentrations in both roots and shoots, although other amino acids were more similar in Concentration to those in NO?3 grown plants. It is concluded that slow growth at low root temperature is not caused by restriction of the absorption or assimilation of either NH+4 or NO?3. The additional residual N (protein) in NH+4 grown plants may serve as a labile store of N which could support growth when external N supply becomes deficient.  相似文献   

5.
We examined the effect of growth temperature on the underlying components of growth in a range of inherently fast‐ and slow‐growing plant species. Plants were grown hydroponically at constant 18, 23 and 28 °C. Growth analysis was conducted on 16 contrasting plant species, with whole plant gas exchange being performed on six of the 16 species. Inter‐specific variations in specific leaf area (SLA) were important in determining variations in relative growth rate (RGR) amongst the species at 23 and 28 °C but were not related to variations in RGR at 18 °C. When grown at 18 °C, net assimilation rate (NAR) became more important than SLA for explaining variations in RGR. Variations in whole shoot photosynthesis and carbon concentration could not explain the importance of NAR in determining RGR at the lower temperatures. Rather, variations in the degree to which whole plant respiration per unit leaf area acclimated to the different growth temperatures were responsible. Plants grown at 28 °C used a greater proportion of their daily fixed carbon in respiration than did the 18 and 23 °C‐grown plants. It is concluded that the relative importance of the underlying components of growth are influenced by growth temperature, and the degree of acclimation of respiration is of central importance to the greater role played by NAR in determining variations in RGR at declining growth temperatures.  相似文献   

6.
Some plants have the ability to maintain similar respiratory rates (measured at the growth temperature) when grown at different temperatures. This phenomenon is referred to as respiratory homeostasis. Using wheat and rice cultivars with different degrees of respiratory homeostasis (H), we previously demonstrated that high-H cultivars maintained shoot and root growth at low temperature [Kurimoto et al. (2004) Plant Cell Environ., 27: 853]. Here, we assess the relationship between respiratory homeostasis and the efficiency of respiratory ATP production, by measuring the levels of alternative oxidase (AOX) and uncoupling protein (UCP), which have the potential to decrease respiratory ATP production per unit of oxygen consumed. We also measured SHAM- and CN-resistant respiration of intact roots, and the capacity of the cytochrome pathway (CP) and AOX in isolated mitochondria. Irrespective of H, SHAM-resistant respiration of intact roots and CP capacity of isolated root mitochondria were larger when plants were grown at low temperature, and the maximal activity and relative amounts of cytochrome c oxidase showed a similar trend. In contrast, CN-resistant respiration of intact roots and relative amounts of AOX protein in mitochondria isolated from those roots, were lower in high-H plants grown at low temperature. In the roots of low-H cultivars, relative amounts of AOX protein were higher at low growth temperature. Relative amounts of UCP protein showed similar trends to AOX. We conclude that maintenance of growth rate in high-H plants grown at low temperature is associated with both respiratory homeostasis and a high efficiency of respiratory ATP production.  相似文献   

7.
This study investigates the effect of short‐ and long‐term changesin temperature on the regulation of root respiratory O2 uptakeby substrate supply, adenylate restriction and/or the capacityof the respiratory system. The species investigated were the lowland Plantagolanceolata L. and alpine Plantago euryphylla Briggs, Carolin& Pulley, which are inherently fast‐ and slow‐growing, respectively. Theplants were grown hydroponically in a controlled environment (constant23 °C). The effect of long‐term exposure to lowtemperature on regulation of respiration was also assessed in P.lanceolata using plants transferred to 15/10 °C(day/night) for 7 d. Exogenous glucose and uncoupler (CCCP)were used to assess the extent to which respiration rates were limitedby substrate supply and adenylates. The results suggest that adenylatesand/or substrate supply exert the greatest control overrespiration at moderate temperatures (e.g. 15–30 °C)in both species. At low temperatures (5–15 °C),CCCP and glucose had little effect on respiration, suggesting thatrespiration was limited by enzyme capacity alone. The Q10 (proportionalincrease of respiration per 10 °C) of respirationwas increased following the addition of CCCP and/or exogenousglucose. The degree of stimulation by CCCP was considerably lowerin P. euryphylla than P. lanceolata. This suggeststhat respiration rates operate much closer to the maximum capacity in P.euryphylla than P. lanceolata. When P. lanceolata wastransferred to 15 °C for 7 d, respirationacclimated to the lower growth temperature (as demonstrated by an increasein respiration rates measured at 25 °C). In addition,the Q10 was higher, and the stimulatory effectof exogenous glucose and CCCP lower, in the cold‐acclimated rootsin comparison with their warm‐grown counterparts. Acclimation of P.lanceolata to different day/night‐time temperatureregimes was also investigated. The low night‐time temperature wasfound to be the most important factor influencing acclimation. The Q10 valueswere also higher in plants exposed to the lowest night‐time temperature.The results demonstrate that short‐ and long‐term changes in temperaturealter the importance of substrate supply, adenylates and capacityof respiratory enzymes in regulating respiratory flux.  相似文献   

8.
Muhlenbergia sobolifera (Muhl.) Trin., a C4 grass, occurs in understory habitats in the northeastern United States. Plants of M. sobolifera were grown at 23 and 30°C at 150 and 700 μmol photons m−2 s−1. The photosynthetic CO2 compensation point, maximum CO2 assimilation, dark respiration and the absorbed quantum use efficiency (QUE) were measured at 23 and 30°C at 2 and 20% O2. Photosynthetic CO2 compensation points ranged from 4 to 14mm3 dm−3 CO2 and showed limited O2 sensitivity. The mean photosynthetic CO2 compensation point of plants grown at 30°C (4·5 mm3 dm−3) was 57% lower and 80% less inhibited by O2 than that of plants grown at 23°C. Photosynthesis was similarly affected by growth temperature, with 70% more O2 inhibition in plants grown at 23°C; suppression over all treatments ranging from 2 to 11%. Unlike typical C4 species, plants of M. sobolifera from both temperature regimes exhibited higher CO2 assimilation rates when grown at low light. Growth temperature and light also affected QUE; plants grown at low light and 23°C had the highest value (0·068 mol CO2/mol quanta). Measurement temperature and growth light regime significantly affected dark respiration; however, O2 did not affect QUE or dark respiration under any growth or measurement conditions. The results indicate that M. sobolifera is adapted to low PPFD, and that complete suppression of photorespiration is dependent upon high growth temperature.  相似文献   

9.
The responses of respiration and photosynthesis to temperature fluctuations in marine macroalgae have the potential to significantly affect coastal carbon fluxes and sequestration. In this study, the marine red macroalga Gracilaria lemaneiformis was cultured at three different temperatures (12, 19, and 26°C) and at high‐ and low‐nitrogen (N) availability, to investigate the acclimation potential of respiration and photosynthesis to temperature change. Measurements of respiratory and photosynthetic rates were made at five temperatures (7°C–33°C). An instantaneous change in temperature resulted in a change in the rates of respiration and photosynthesis, and the temperature sensitivities (i.e., the Q10 value) for both the metabolic processes were lower in 26°C‐grown algae than 12°C‐ or 19°C‐grown algae. Both respiration and photosynthesis acclimated to long‐term changes in temperature, irrespective of the N availability under which the algae were grown; respiration displayed strong acclimation, whereas photosynthesis only exhibited a partial acclimation response to changing growth temperatures. The ratio of respiration to gross photosynthesis was higher in 12°C‐grown algae, but displayed little difference between the algae grown at 19°C and 26°C. We propose that it is unlikely that respiration in G. lemaneiformis would increase significantly with global warming, although photosynthesis would increase at moderately elevated temperatures.  相似文献   

10.
Two pea (Pisum sativum L.) cultivars and a kidney bean (Phaseolus vulgaris L.) cultivars were grown in water cultures at different diurnal temperatures (15, 20, 24, 27, 30°C) or at 10°C night temperature combined with various day temperatures (20, 24, 27, 33 or 35°C) in the root medium. The inoculated plants were, more sensitive to the extreme temperatures than the plants supplied with combined nitrogen (KNO3). The middle-European pea cv. Violetta was adapted to somewhat higher root temperatures than the northern one cv. Torsdag II, the latter showing better growth at lower temperatures, when the plants were inoculated with the same Finnish Rhizobinm strain (HA1). Especially at optimum day temperatures the nitrogen fixation and consequently the dry weights of the inoculated plants were greatly increased when the night temperature was lowered. The optimum temperature for the growth of free-living Rhizobium strains (HA1 and H43) for peus was found to be 25°C and that of a strain (P103) for beans somewhat higher. Effective nitrogen fixation by nodulated legumes without a supply of combined nitrogen is achieved only when the optimum temperature range for root function is very close to the optimum for the rhizobia.  相似文献   

11.
We used instantaneous temperature responses of CO2‐respiration to explore temperature acclimation dynamics for Eucalyptus grandis grown with differing nitrogen supply. A reduction in ambient temperature from 23 to 19 °C reduced light‐saturated photosynthesis by 25% but increased respiratory capacity by 30%. Changes in respiratory capacity were not reversed after temperatures were subsequently increased to 27 °C. Temperature sensitivity of respiration measured at prevalent ambient temperature varied little between temperature treatments but was significantly reduced from ~105 kJ mol?1 when supply of N was weak, to ~70 kJ mol?1 when it was strong. Temperature sensitivity of respiration measured across a broader temperature range (20–40 °C) could be fully described by 2 exponent parameters of an Arrhenius‐type model (i.e., activation energy of respiration at low reference temperature and a parameter describing the temperature dependence of activation energy). These 2 parameters were strongly correlated, statistically explaining 74% of observed variation. Residual variation was linked to treatment‐induced changes in respiration at low reference temperature or respiratory capacity. Leaf contents of starch and soluble sugars suggest that respiratory capacity varies with source‐sink imbalances in carbohydrate utilization, which in combination with shifts in carbon‐flux mode, serve to maintain homeostasis of respiratory temperature sensitivity at prevalent growth temperature.  相似文献   

12.
Abstract Saxifraga cernua, a perennial herb distributed throughout the arctic and subarctic regions, shows high levels of dark respiration. The amount of respiration exhibited by leaves and whole plants at any temperature is influenced by the pretreatment temperature. Plants grown at 10°C typically show higher dark respiration rates than plants grown at 20°C. The levels of alternative-pathway respiration (or cyanide-insensitive respiration) in leaves of S. cernua grown at high and low temperatures were assessed by treating leaf discs with 0.25 mol m?3 salicylhydroxamic acid during measurements of oxygen consumption. Alternative pathway respiration accounted for up to 75% of the total respiration. Tissues from 20°C-grown plants yielded a Q10 of 3.37 for normal respiration, and of 0.97 for alternative-pathway respiration. Tissues from 10°C-grown plants yielded a Q10 of 2.55 for normal respiration, and of 0.79 for alternative-pathway respiration. The alternative pathway does not appear to be as temperature sensitive as the normal cytochrome pathway. A simple energy model was used to predict the temperature gain expected from these high rates of alternative-pathway respiration. The model shows that less than 0.02°C can be gained by leaves experiencing these high respiration rates.  相似文献   

13.
Rye (Secale cereale cv. Rheidol) and wheat (Triticum aestivumcv. Mardler) were grown at shoot/root temperatures of 20/20°C (warm grown, WG plants), 8/8 °C (cold grown, CG plants)and 20/8 °C (differential grown, DG plants). Plants fromcontrasting growth temperature regimes were standardized andcompared using a developmental timescale based on accumulatedthermal time (°C d) at the shoot meristem. Accumulationof dry matter, nitrogen and potassium were exponential overthe time period studied (150–550 °C d). In rye, therates of plant dry matter and f. wt accumulation were linearlyrelated to the temperature of the shoot meristem. However, inwheat, although the rates of plant dry matter and f. wt accumulationwere temperature dependent, the linear relationship with shootmeristem temperature was weaker than in rye. The shoot/rootratio of rye was stable irrespective of growth temperature treatment,but the shoot/root ratio of wheat varied with growth temperaturetreatment. The shoot/root ratio of DG wheat was 50% greaterthan WG wheat. In both cereals, nutrient concentrations anddry matter content tended to be greater in organs exposed directlyto low temperatures. The mean specific absorption rates of nutrientswere calculated for the whole period studied for each species/temperaturecombination and were positively correlated with both plant shoot/rootratio and relative growth rate. The data suggest that nutrientuptake rates were influenced primarily by plant demand, withno indication of specific nutrient limitations at low temperatures. Nutrient accumulation, relative growth rate (RGR), rye, Secale cereale cv. Rheidol, temperature, thermal time, Triticum aestivum cv. Mardler, wheat  相似文献   

14.
den Hertog  J.  Stulen  I.  Lambers  H. 《Plant Ecology》1993,104(1):369-378
The response ofPlantago major ssp,pleiosperma plants, grown on nutrient solution in a climate chamber, to a doubling of the ambient atmospheric CO2 concentration was investigated. Total dry matter production was increased by 30% after 3 weeks of exposure, due to a transient stimulation of the relative growth rate (RGR) during the first 10 days. Thereafter RGR returned to the level of control plants. Photosynthesis, expressed per unit leaf area, was stimulated during the first two weeks of the experiment, thereafter it dropped and nearly reached the level of the control plants. Root respiration was not affected by increased atmospheric CO2 levels, whereas shoot, dark respiration was stimulated throughout the experimental period. Dry matter allocation over leaves stems and roots was not affected by the CO2 level. SLA was reduced by 10%, which can partly be explained by an increased dry matter content of the leaves. Both in the early and later stages of the experiment, shoot respiration accounted for a larger part of the carbon budget in plants grown at elevated atmospheric CO2. Shifts in the total carbon budget were mainly due to the effects on shoot respiration. Leaf growth accounted for nearly 50% of the C budget at all stages of the experiment and in both treatments.Abbreviations LAR leaf area ratio - LWR leaf weight ratio - RGR relative growth rate - R/S root to shoot ratio - RWR root weight ratio - SLA specific leaf area - SWR stem weight ratio  相似文献   

15.
The role of acclimation of dark respiration to temperature and CO2 concentration and its relationship to growth are critical in determining plant response to predicted global change. We explored temperature acclimation of respiration in seedlings of tree species of the North American boreal forest. Populus tremuloides, Betula papyrifera, Larix laricina, Pinus banksiana, and Picea mariana plants were grown from seed in controlled-environments at current and elevated concentrations of CO2 (370 and 580 μmol mol–1) in combination with three temperature treatments of 18/12, 24/18, and 30/24 °C (light/dark period). Specific respiration rates of roots and shoots acclimated to temperature, damping increases in rates across growth-temperature environments compared to short-term temperature responses. Compared at a standard temperature, root and shoot respiration rates were, on average, 40% lower in plants grown at the highest compared to lowest growth temperature. Broad-leaved species had a lower degree of temperature acclimation of respiration than did the conifers. Among species and treatment combinations, rates of respiration were linearly related to size and relative growth rate, and relationships were comparable among growth environments. Specific respiration rates and whole-plant respiratory CO2 efflux as a proportion of daily net CO2 uptake increased at higher growth temperatures, but were minimally affected by CO2 concentration. Whole-plant specific respiration rates were two to three times higher in broad-leaved than coniferous species. However, compared to faster-growing broad-leaved species, slower-growing conifers lost a larger proportion of net daily CO2 uptake as respiratory CO2 efflux, especially in roots. Interspecific variation in acclimation responses of dark respiration to temperature is more important than acclimation of respiration to CO2 enrichment in modifying tree seedling growth responses to projected increases in CO2 concentration and temperature.  相似文献   

16.
Abstract Changes in the net uptake rate of K+ and in the average tissue concentration of K+ were measured over 14 d in response to changes in root temperature with oilseed rape (Brassica napus L. cv. Bien venu) and barley (Hordeum vulgare L. cv. Atem). Plants were grown in flowing nutrient solutions containing 2.5 mmol m?3 K+ and were acclimatized over 49 d (rape) or 28 d (barley) to low root temperature (5°C) prior to steady–state treatments at root temperatures between 3 °C and 25 °C, with common air temperature. Uptake of K+ was monitored continuously over 14 d and nitrogen was supplied as NH4++ NO?3 or NH+4 or NO?3. Unit absorption rates of K+ increased with time and with root temperature up to Day 4 or 5 following the change in root temperature. Thereafter they usually approached steady-state, with Q10? 2.0 between 7 °C and 17°C, although rates became similar between 7 °C and 13°C. Uptake of K+ by rape plants was invariably greater under NO?3 nutrition compared with NH+4. The percentage K+ in the plant dry matter increased with temperature from 2% at 3 °C to 4% at 25 °C in rape, but there was less effect of temperature on the average concentrations of K+ in the plant fresh weight or plant water content. Concentrations of K+ in the leaf water fraction of rape plants decreased with increasing root temperature, but in barley they increased with increasing root temperature. Concentrations of K+ in the root water fraction were relatively stable with respect to root temperature. The results are discussed in terms of compensatory changes in K+ uptake following a change in root temperature and the relationships between growth, shoot: root ratio and K+ composition of the plant.  相似文献   

17.
Two herbaceous perennials, alfalfa (Medicago sativa L. cv. Arc) and orchard grass (Dactylus glomerata L. cv. Potomac), were grown at ambient (367 μmol mol−1) and elevated (729 μmol mol−1) CO2 concentrations at constant temperatures of 15, 20, 25 and 30°C in order to examine direct and indirect changes in nighttime CO2 efflux rate (respiration) of single leaves. Direct (biochemical) effects of CO2 on nighttime respiration were determined for each growth condition by brief (<30 min) exposure to each CO2 concentration. If no direct inhibition of respiration was observed, then long-term reductions in CO2 efflux between CO2 treatments were presumed to be due to indirect inhibition, probably related to long-term changes in leaf composition. By this criterion, indirect effects of CO2 on leaf respiration were observed at 15 and 20°C for M. sativa on a weight basis, but not on a leaf area or protein basis. Direct effects however, were observed at 15, 20 and 25°C in D. glomerata; therefore the observed reductions in respiration for leaves grown and measured at elevated relative to ambient CO2 concentrations could not be distinguished as indirect inhibition. No inhibition of respiration at elevated CO2 was observed at the highest growth temperature (30°C) in either species. CO2 efflux increased with measurement and growth temperature for M. sativa at both CO2 concentrations; however, CO2 efflux in D. glomerata showed complete acclimation to growth temperature. Stimulation of leaf area and weight by elevated CO2 levels declined with growth temperature in both species. Data from the present study suggest that both direct and indirect inhibition of respiration are possible with future increases in atmospheric CO2, and that the degree of each type of respiratory inhibition is a function of growth temperature.  相似文献   

18.
Thermal acclimation of photosynthesis and respiration can enable plants to maintain near constant rates of net CO2 exchange, despite experiencing sustained changes in daily average temperature. In this study, we investigated whether the degree of acclimation of photosynthesis and respiration of mature leaves differs among three congeneric Plantago species from contrasting habitats [two fast‐growing lowland species (Plantago major and P. lanceolata), and one slow‐growing alpine species (P. euryphylla)]. In addition to investigating some mechanisms underpinning variability in photosynthetic acclimation, we also determined whether leaf respiration in the light acclimates to the same extent as leaf respiration in darkness, and whether acclimation reestablishes the balance between leaf respiration and photosynthesis. Three growth temperatures were provided: constant 13, 20, or 27°C. Measurements were made at five temperatures (6–34°C). Little acclimation of photosynthesis and leaf respiration to growth temperature was exhibited by P. euryphylla. Moreover, leaf masses per area (LMA) were similar in 13°C‐grown and 20°C‐grown plants of the alpine species. In contrast, growth at 13°C increased LMA in the two lowland species; this was associated with increased photosynthetic capacity and rates of leaf respiration (both in darkness and in the light). Alleviation of triose phosphate limitation and increased capacity of electron transport capacity relative to carboxylation were also observed. Such changes demonstrate that the lowland species cold‐acclimated. Light reduced the short‐term temperature dependence (i.e. Q10) of leaf respiration in all three species, irrespective of growth temperature. Collectively, our results highlight the tight coupling that exists between thermal acclimation of photosynthetic and leaf respiratory metabolism (both in darkness and in the light) in Plantago. If widespread among contrasting species, such coupling may enable modellers to assume levels of acclimation in one parameter (e.g. leaf respiration) where details are only known for the other (e.g. photosynthesis).  相似文献   

19.
We investigated the relationship between daily and seasonal temperature variation and dark respiratory CO2 release by leaves of snow gum (Eucalyptus pauciflora Sieb. ex Spreng) that were grown in their natural habitat or under controlled‐environment conditions. The open grassland field site in SE Australia was characterized by large seasonal and diurnal changes in air temperature. On each measurement day, leaf respiration rates in darkness were measured in situ at 2–3 h intervals over a 24 h period, with measurements being conducted at the ambient leaf temperature. The rate of respiration at a set measuring temperature (i.e. apparent ‘respiratory capacity’) was greater in seedlings grown under low average daily temperatures (i.e. acclimation occurred), both in the field and under controlled‐environment conditions. The sensitivity of leaf respiration to diurnal changes in temperature (i.e. the Q10 of leaf respiration) exhibited little seasonal variation over much of the year. However, Q10 values were significantly greater on cold winter days (i.e. when daily average and minimum air temperatures were below 6° and –1 °C, respectively). These differences in Q10 values were not due to bias arizing from the contrasting daily temperature amplitudes in winter and summer, as the Q10 of leaf respiration was constant over a wide temperature range in short‐term experiments. Due to the higher Q10 values in winter, there was less difference between winter and summer leaf respiration rates measured at 5 °C than at 25 °C. The net result of these changes was that there was relatively little difference in total daily leaf respiratory CO2 release per unit leaf dry mass in winter and summer. Under controlled‐environment conditions, acclimation of respiration to growth temperature occurred in as little as 1–3 d. Acclimation was associated with a change in the concentration of soluble sugars under controlled conditions, but not in the field. Our data suggest that acclimation in the field may be associated with the onset of cold‐induced photo‐inhibition. We conclude that cold‐acclimation of dark respiration in snow gum leaves is characterized by changes in both the temperature sensitivity and apparent ‘capacity’ of the respiratory apparatus, and that such changes will have an important impact on the carbon economy of snow gum plants.  相似文献   

20.
Physiological responses of Opuntia ficus-indica to growth temperature   总被引:2,自引:0,他引:2  
The influences of various day/night air temperatures on net CO2 uptake and nocturnal acid accumulation were determined for Opuntia ficus-indica, complementing previous studies on the water relations and responses to photosynthetically active radiation (PAR) for this widely cultivated cactus. As for other Crassulacean acid metabolism (CAM) plants, net nocturnal CO2 uptake had a relatively low optimal temperature, ranging from 11°C for plants grown at day/night air temperatures of 10°C/0°C to 23°C at 45°C/35°C. Stomatal opening, which occurred essentially only at night and was measured by changes in water vapor conductance, progressively decreased as the measurement temperature was raised. The CO2 residual conductance, which describes chlorenchyma properties, had a temperature optimum a few degrees higher than the optimum for net CO2 uptake at all growth temperatures. Nocturnal CO2 uptake and acid accumulation summed over the whole night were maximal for growth temperatures near 25°C/15°C, CO2 uptake decreasing more rapidly than acid accumulation as the growth temperature was raised. At day/night air temperatures that led to substantial nocturnal acid accumulation (25°C/15°C.). 90% saturation of acid accumulation required a higher total daily PAR than at non-optimal growth temperatures (10°C/0°C and 35°C/25°C). Also, the optimal temperature of net CO2 uptake shifted downward when the plants were under drought conditions at all three growth temperatures tested, possibly reflecting an increased fractional importance of respiration at the higher temperatures during drought. Thus, water status, ambient PAR, and growth temperatures must all be considered when predicting the temperature response of gas exchange for O. ficus-indica and presumably for other CAM plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号