首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phototropin, a blue-light receptor protein of plants, triggers phototropic responses, chloroplast relocation, and opening of stomata to maximize the efficiency of photosynthesis. Phototropin is composed of two light-oxygen-voltage sensing domains (LOV1 and LOV2) that absorb blue light and a serine/theroine kinase domain responsible for light-dependent autophosphorylation leading to cellular signaling cascades. Although the light-activated LOV2 domain is primarily responsible for subsequent activation of the kinase domain, it is unclear how conformational changes in the former transmit to the latter. To understand this molecular mechanism in Arabidopsis phototropin 2, we performed small-angle X-ray scattering analysis on a fragment composed of the LOV2 and kinase domains, which contained an Asp720Asn mutation that led to an absence of ATP binding activity. The scattering data were collected up to a resolution of 25 ?. The apparent molecular weight of the fragment estimated from scattering intensities demonstrated that the fragment existed in a monomeric form in solution. The fragment exhibited photoreversible changes in the scattering profiles, and the radii of gyration under dark and blue-light irradiation conditions were 32.4 and 34.8 ?, respectively. In the dark, the molecular shape restored from the scattering profile appeared as an elongated shape of 110 ? in length and 45 ? in width. The homology modeled LOV2 and kinase domains could be fitted to the molecular shape and appeared to make slight contact. However, under blue-light irradiation, a more extended molecular shape was observed. The changes in the molecular shape and radius of gyration were interpreted as a light-dependent positional shift of the LOV2 domain of approximately 13 ? from the kinase domain. Because the region connecting the LOV2 and kinase domains was categorized as a naturally unfolded polypeptide, we propose that the light-activated LOV2 domain triggers conformational changes in the linker region to separate the LOV2 and kinase domains.  相似文献   

2.
The photochemical reactions of Arabidopsis phototropin 2 light- oxygen-voltage domain 2 (LOV2) with the linker region (LOV2-linker), without the linker (LOV2), and LOV1 were studied using the time-resolved transient grating (TG) and transient lens (TrL) methods. Although the absorption spectra did not change after the formation of the adduct species, a small volume expansion process with a time constant of 9 ms was observed for LOV2. For the LOV2-linker, at 293 K, a volume contraction process with a time constant of 140 mus was observed in addition to a volume expansion process with 9 ms and the diffusion coefficient change with 2 ms. The reaction intermediate species were characterized on the basis of their thermodynamic properties, such as changes in enthalpy, thermal expansion, and heat capacity. For the first intermediate (S(390)), the values of these properties were similar to those of the ground state for both LOV2 and LOV2-linker. A relatively large thermal expansion volume (0.09 cm(3)mol(-1)K(-1)) and a positive heat capacity change (4.7 kJ mol(-1)K(-1)) were detected for the intermediates of LOV2-linker. These characteristic features were interpreted in terms of structural fluctuation and exposure of hydrophobic residues in the linker domain, respectively. The enthalpy change of S(390) of the LOV1 domain was significantly greater than changes for the LOV2 or LOV2-linker samples. Data from this study support a major conformational change of the linker region in the photochemical reaction of phototropin.  相似文献   

3.
Flavin-binding, Kelch repeat, F-box (FKF1) protein is a photoreceptor to regulate flowering of Arabidopsis. The protein has a light, oxygen and voltage (LOV)-sensing domain binding a flavin mononucleotide. The photo-activation of the domain is an indispensable step to initiate the cellular signaling for flowering. In the present study, a LOV-containing polypeptide of FKF1 was prepared by an overexpression system, and the quaternary structure of it was studied by size exclusion chromatography and small-angle X-ray scattering. The apparent molecular weight from chromatography suggested a globular trimeric or an anisotropic-shaped dimeric association of the polypeptide in solution. The scattering experiment demonstrated a dimeric association of the polypeptides with an elongated molecular shape displaying the radius of gyration of 27 A and the maximum dimension of 94 A. The molecular shape simulated from scattering profiles suggests an antiparallel association of the LOV domains in the dimer. Though the absorption spectrum of blue-light irradiated polypeptide was stable in the photoactivated state for a long period, the scattering profiles showed very small changes between the dark and light conditions. Based on the homologies in the amino-acid sequences and the scattering profiles, these results are discussed in connection with the structures and function of LOV domains of phototropin.  相似文献   

4.
Transient grating signals after photoexcitation of Arabidopsis phototropin 1 light-oxygen-voltage 2 (phot1LOV2) domain without the linker were found to be very sensitive to temperature. In particular, the diffusion signal drastically increased with rising temperature. The signal was consistently explained by the superposition of the photo-induced dissociation and association reactions. This observation indicated the presence of an equilibrium between the monomer and dimer forms of the phot1LOV2 domain in the dark. The equilibrium was confirmed by a gel chromatographic technique. The equilibrium constants at various temperatures were calculated from the fraction of the dimer, and the stabilization enthalpy and entropy were determined. Interestingly, the transient grating signal of phot1LOV2 with the linker (phot1LOV2-linker), which exists as the monomer form, was also temperature dependent; the diffusion signal intensity decreased with increasing temperature. Because the diffusion signal reflects a conformation change of the linker upon photoexcitation, this temperature dependence indicated that there were two forms of the phot1LOV2-linker. One form exhibited a conformational change upon photoexcitation whereas the other form showed no change. These two forms are not distinguishable spectroscopically. The fraction of these species depended on the temperature. Considering the monomer-dimer equilibrium of the phot1LOV2 domain, we suggest that the nonreactive form possesses the linker region that is dissociated from the LOV2 domain. Because the dissociation of the linker region from the LOV2 domain is a key step for the conformation change of the phot1LOV2-linker to induce biological activity, we proposed that the phototropins could have a role as a temperature sensor.  相似文献   

5.
Phototropins, originally detected by their blue light-dependent autophosphorylation, are plant photoreceptors involved in several blue light responses such as phototropism, chloroplast relocation, leaf expansion, rapid inhibition of hypocotyl growth, and stomatal opening. Three domains have been identified in phototropin sequences, two chromophore binding domains (LOV1 and LOV2) and a kinase domain. We describe here two additional domains, the N-terminus upstream of LOV1 and the hinge region between LOV1 and LOV2, as the regions for autophosphorylation; the phosphorylation sites were identified by site-directed mutagenesis as S27, S30, S274, S300, S317, S325, S332, and S349 of the PHOT1a sequence of Avena sativa. Investigation of the autophosphorylation in vivo revealed that serines close to the LOV1 domain are phosphorylated at lower fluence of blue light than the serines close to the LOV2 domain. Recovery of phosphorylation in vivo during a dark period after saturating irradiation is caused by dephosphorylation rather than by degradation of the phosphorylated form and new synthesis of nonphosphorylated phototropin. The results were obtained by a combination of autophosphorylation of phototropin with phosphorylation of recombinant domains by protein kinase A, which turned out to have the same site specificity as the phototropin kinase, followed by proteolysis and separation of phosphopeptides. With the knowledge of the phosphorylation sites, the physiological and biochemical consequences of autophosphorylation can now be approached by site-directed mutagenesis of phototropins.  相似文献   

6.
Okajima K  Matsuoka D  Tokutomi S 《FEBS letters》2011,585(21):3391-3395
Phototropin is a blue light receptor in plants and is thought to be a light-regulated protein kinase. Previously, we defined the role of the photoreceptive domains, LOV1 and 2, in the light activation of the kinase in Arabidopsis phototropin2 (phot2). In this study, photoregulation of the kinase in phototropin1 (phot1) was studied using LOV2-linker-kinase polypeptide. We designed a new substrate consisting of the N-terminal part of the phot1 with autophosphorylation sites. The LOV2-linker-kinase had the same spectroscopic properties as those of the LOV2 core and phosphorylated the substrate in a light-dependent manner. Amino acid substitution experiments proved that the phosphorylation comes from the activation of the kinase via photoreaction of LOV2.  相似文献   

7.
In the plant blue-light sensor phototropin, illumination of the chromophoric LOV domains causes activation of the serine/threonine kinase domain. Flavin mononucleotide (FMN) is a chromophore molecule in the two LOV domains (LOV1 and LOV2), but only LOV2 is responsible for kinase activation. Previous studies reported an important role of an additional helix connected to the C-terminal of LOV2 (Jα helix) for the function of phototropin; however, it remains unclear how the Jα helix affects light-induced structural changes in LOV2. In this study we compared light-induced protein structural changes of the LOV2 domain of Arabidopsis phot1 in the absence (LOV2-core) and presence (LOV2-Jα) of the Jα helix by Fourier-transform infrared spectroscopy. Prominent peaks were observed only in the amide-I region (1650 (−)/1625 (+) cm−1) of LOV2-Jα at physiological temperatures (≥260 K), corresponding to structural perturbation of the α-helix. The peaks were diminished by point mutation of functionally important amino acids such as Phe-556 between FMN and the β-sheet, Gln-575 being hydrogen-bonded with FMN, and Ile-608 on the Jα helix. We thus conclude that a light signal is relayed from FMN through these amino acids and eventually changes the interaction between LOV2-core and the Jα helix in Arabidopsis phot1.  相似文献   

8.
Iwata T  Nozaki D  Tokutomi S  Kandori H 《Biochemistry》2005,44(20):7427-7434
Phototropin (phot) is a blue-light photoreceptor for phototropic responses, relocation of chloroplasts, and stomata opening in plants. Phototropin has two chromophore-binding domains named LOV1 and LOV2 in its N-terminal half, each of which binds a flavin mononucleotide (FMN) noncovalently. The C-terminal half is a Ser/Thr kinase. A transgenic study of Arabidopsis suggested that only LOV2 domain is necessary for the kinase activity, whereas X-ray crystallographic structures of LOV1 and LOV2 domains are almost identical. These facts imply that the detailed structures and/or structural changes are different between LOV1 and LOV2 domains. In this study, we compared light-induced structural changes of the LOV1 and LOV2 domains of a phototropin, Adiantum phytochrome3 (phy3), by means of UV-visible and Fourier transform infrared (FTIR) spectroscopy. Photochemical properties of an adduct formation between FMN and a cysteine are essentially similar between phy3-LOV1 and phy3-LOV2. On the other hand, the S-H group of the reactive cysteine forms a hydrogen bond in phy3-LOV1, which is strengthened at low temperatures. This is possibly correlated with the fact that no adduct formation takes place for phy3-LOV1 at 77 K as revealed by the UV-visible absorption spectra. The most prominent difference was seen in the amide-I vibration that monitors the secondary structure of peptide backbone. Protein structural changes in phy3-LOV2 involve the regions of loops, alpha-helices, and beta-sheets, which differ significantly among various temperatures. Extended protein structural changes are probably correlated with the signal transduction activity of LOV2. In contrast, protein structural changes were very small in phy3-LOV1, and they were almost temperature independent. The photocycle of phy3-LOV1 takes 3.1 h, being more than 100 times longer than that of phy3-LOV2. These facts suggest that Adiantum phy3-LOV1 does not work for light sensing, being consistent with the previous transgenic study of Arabidopsis. It is likely that plants utilize a unique protein architecture (LOV domain) for different functions by regulating their protein structural changes.  相似文献   

9.
Phototropins (phot1 and phot2) are plant blue-light receptors that mediate phototropism, chloroplast movement, stomatal opening, rapid inhibition of growth of etiolated seedlings, and leaf expansion in Arabidopsis (Arabidopsis thaliana). Their N-terminal region contains two light, oxygen, or voltage (LOV) domains, which bind flavin mononucleotide and form a covalent adduct between a conserved cysteine and the flavin mononucleotide chromophore upon photoexcitation. The C-terminal region contains a serine/threonine kinase domain that catalyzes blue-light-activated autophosphorylation. Here, we have transformed the phot1 phot2 (phot1-5 phot2-1) double mutant with PHOT expression constructs driven by the cauliflower mosaic virus 35S promoter. These constructs encode either wild-type phototropin or phototropin with one or both LOV-domain cysteines mutated to block their photochemistry. We selected multiple lines in each of the eight resulting categories of transformants for further physiological analyses. Specifically, we investigated whether LOV1 and LOV2 serve the same or different functions for phototropism and leaf expansion. Our results show that the LOV2 domain of phot1 plays a major role in phototropism and leaf expansion, as does the LOV2 domain of phot2. No complementation of phototropism or leaf expansion was observed for the LOV1 domain of phot1. However, phot2 LOV1 was unexpectedly found to complement phototropism to a considerable level. Similarly, transformants carrying a PHOT transgene with both LOV domains inactivated developed strong curvatures toward high fluence rate blue light. However, we found that the phot2-1 mutant is leaky and produces a small level of full-length phot2 protein. In vitro experiments indicate that cross phosphorylation can occur between functional phot2 and inactivated phot1 molecules. Such a mechanism may occur in vivo and therefore account for the functional activities observed in the PHOT transgenics with both lov domains inactivated. The implications of this mechanism with respect to phototropin function are discussed.  相似文献   

10.
Phototropin (phot) is a blue-light receptor protein that triggers phototropic responses, chloroplast relocation, and stomata opening to maximize the efficiency of photosynthesis in higher plants. Phot is composed of three functional domains. The N-terminal half folds into two light-oxygen-voltage-sensing domains called LOV1 and LOV2, each binding a flavin mononucleotide to absorb blue light. The C-terminal half is a serine/threonine kinase domain that causes light-dependent autophosphorylation leading to cellular signaling cascades. LOV2 domain is primarily responsible for activation of the kinase, and LOV1 domain is thought to act as a dimerization site and to regulate sensitivity to activation by blue light. Here we show the crystal structures of LOV1 domains of Arabidopsis phot1 and phot2 in the dark at resolutions of 2.1 Å and 2.0 Å, respectively. Either LOV1 domain forms a dimer through face-to-face association of β-scaffolds in the crystallographic asymmetric unit. Three types of interactions stabilizing the dimer structures found are as follows: contacts of side chains in their β-scaffolds, hydrophobic interactions of a short helix found in the N-terminus of a subunit with the β-scaffolds of both subunits, and hydrogen bonds mediated by hydration water molecules filling the dimer interface. The critical residues for dimerization are Cys261, forming a disulfide bridge between subunits in phot1-LOV1 domain, and Thr217 and Met232 in phot2-LOV1. The topology in homodimeric associations of the LOV1 domains is discussed when referring to those of homodimers or heterodimers of light-oxygen-voltage-sensing or Per-ARNT-Sim domains. The present results also provide clues to understanding structural basis in dimeric interactions of Per-ARNT-Sim protein modules in cellular signaling.  相似文献   

11.
Phototropin is a light-regulated kinase that mediates a variety of photoresponses such as phototropism, chloroplast positioning, and stomata opening in plants to increase the photosynthetic efficiency. Blue light stimulus first induces local conformational changes in the chromophore-bearing light-oxygen and voltage 2 (LOV2) domain of phototropin, which in turn activates the serine/threonine (Ser/Thr) kinase domain in the C terminus. To examine the kinase activity of full-length phototropin conventionally, we employed the budding yeast Saccharomyces cerevisiae. In this organism, Ser/Thr kinases (Fpk1p and Fpk2p) that show high sequence similarity to the kinase domain of phototropins exist. First, we demonstrated that the phototropin from Chlamydomonas reinhardtii (CrPHOT) could complement loss of Fpk1p and Fpk2p to allow cell growth in yeast. Furthermore, this reaction was blue light-dependent, indicating that CrPHOT was indeed light-activated in yeast cells. We applied this system to a large scale screening for amino acid substitutions in CrPHOT that elevated the kinase activity in darkness. Consequently, we identified a cluster of mutations located in the N-terminal flanking region of LOV2 (R199C, L202L, D203N/G/V, L204P, T207I, and R210H). An in vitro phosphorylation assay confirmed that these mutations substantially reduced the repressive activity of LOV2 on the kinase domain in darkness. Furthermore, biochemical analyses of the representative T207I mutant demonstrated that the mutation affected neither spectral nor multimerization properties of CrPHOT. Hence, the N-terminal flanking region of LOV2, as is the case with the C-terminal flanking Jα region, appears to play a crucial role in the regulation of kinase activity in phototropin.  相似文献   

12.
Devising analysis tools for elucidating the regulatory mechanism of complex enzymes has been a challenging task for many decades. It generally requires the determination of the structural‐dynamical information of protein solvent systems far from equilibrium over multiple length and time scales, which is still difficult both theoretically and experimentally. To cope with the problem, we introduce a full‐residue space multiscale simulation method based on a combination of the kinetic Monte Carlo and molecular dynamics techniques, in which the rates of the rate‐determining processes are evaluated from a biomolecular forcefield on the fly during the simulation run by taking into account the full space of residues. To demonstrate its reliability and efficiency, we explore the light‐induced functional behavior of the full‐length phototropin1 from Chlamydomonas reinhardtii (Cr‐phot1) and its various subdomains. Our results demonstrate that in the dark state the light oxygen voltage‐2‐Jα (LOV2‐Jα) photoswitch inhibits the enzymatic activity of the kinase, whereas the LOV1‐Jα photoswitch controls the dimerization with the LOV2 domain. This leads to the repulsion of the LOV1‐LOV2 linker out of the interface region between both LOV domains, which results in a positively charged surface suitable for cell–membrane interaction. By contrast, in the light state, we observe that the distance between both LOV domains is increased and the LOV1‐LOV2 linker forms a helix–turn–helix (HTH) motif, which enables gene control through nucleotide binding. Finally, we find that the kinase is activated through the disruption of the Jα‐helix from the LOV2 domain, which is followed by a stretching of the activation loop (A‐loop) and broadening of the catalytic cleft of the kinase. Proteins 2014; 82:2018–2040. © 2014 Wiley Periodicals, Inc.  相似文献   

13.
Phototropins (phot1 and phot2) are autophosphorylating serine/threonine kinases that function as photoreceptors for phototropism, light-induced chloroplast movement, and stomatal opening in Arabidopsis. The N-terminal region of phot1 and phot2 contains two specialized PAS domains, designated LOV1 and LOV2, which function as binding sites for the chromophore flavin mononucleotide (FMN). Both LOV1 and LOV2 undergo a self-contained photocycle, which involves the formation of a covalent adduct between the FMN chromophore and a conserved active-site cysteine residue (Cys39). Replacement of Cys39 with alanine abolishes the light-induced photochemical reaction of LOV1 and LOV2. Here we have used the Cys39Ala mutation to investigate the role of LOV1 and LOV2 in regulating phototropin function. Photochemical analysis of a bacterially expressed LOV1 + LOV2 fusion protein indicates that LOV2 functions as the predominant light-sensing domain for phot1. LOV2 also plays a major role in mediating light-dependent autophosphorylation of full-length phot1 expressed in insect cells and transgenic Arabidopsis. Moreover, photochemically active LOV2 alone in full-length phot1 is sufficient to elicit hypocotyl phototropism in transgenic Arabidopsis, whereas photochemically active LOV1 alone is not. Further photochemical and biochemical analyses also indicate that the LOV1 and LOV2 domains of phot2 exhibit distinct roles. The significance for the different roles of the phototropin LOV domains is discussed.  相似文献   

14.
Iwata T  Yamamoto A  Tokutomi S  Kandori H 《Biochemistry》2007,46(23):7016-7021
Phototropin is a blue-light sensor protein in plants, and LOV domain binds a flavin mononucleotide (FMN) as a chromophore. A photointermediate state, S390, is formed by light-induced adduct formation between FMN and an S-H group of nearby cysteine, which triggers protein structural changes for kinase activation in phototropin. We previously studied the low-temperature Fourier transform infrared (FTIR) spectra between the S390 and unphotolyzed states for a LOV2 domain of a phototropin from Adiantum (neo1-LOV2), and found that the protein structures of the S390 intermediate are highly temperature dependent (Iwata, T., Nozaki, D., Tokutomi, S., Kagawa, T., Wada, M., and Kandori, H. (2003) Biochemistry 42, 8183-8191). At physiological temperature, amide-I vibration at 1640-1620 cm-1 is significantly changed, implying structural alteration of beta-sheet region. Such changes are largely suppressed at low temperatures, though S390 is formed. This observation suggested the presence of progressive protein structural changes in the unique active state (S390). Here we report that the hydration dependence of the amide-I vibrational bands in neo1-LOV2 is similar to the temperature dependence. As hydration of the sample is lowered, amide-I vibration at 1640-1620 cm-1 is significantly reduced. Instead, amide-I vibration at 1694 cm-1 newly emerged at low hydration as well as at low temperature, which shows a weakened hydrogen bond in the loop region. Spectral coincidence between low hydrations and temperatures strongly suggested that protein structural changes are similarly restricted under such conditions. It is likely that protein fluctuations are prerequisite for formation of the active state of neo1-LOV2.  相似文献   

15.
Phototropin (phot) is a blue-light sensor protein that elicits several photo responses in plants. Phototropin has two flavin mononucleotide (FMN)-binding domains, LOV1 and LOV2, in its N-terminal half. The C-terminal half is a blue-light-regulated Ser/Thr kinase. Various functional studies have reported that only LOV2 is responsible for the kinase activity, whereas the X-ray crystallographic structures of the LOV1 and LOV2 domains are almost identical. How does such a functional difference emerge? Our previous FTIR study of the LOV domains of Adiantum neochrome1 (neo1) showed that light-induced protein structural changes are small and temperature independent for neo1-LOV1, whereas the structural changes are large and highly temperature dependent for neo1-LOV2, which involve loops, alpha-helices, and beta-sheets. These observations successfully explained the different functions in terms of protein structural changes. They also suggested the presence of some crucial amino acids responsible for greater protein structural changes in the LOV2 domain. Here, we focused on phenylalanine-1010 (Phe1010) in neo1-LOV2, where FMN is sandwiched between Phe1010 and the reactive cysteine. Phenylalanine at this position is conserved for LOV2 domains, while the corresponding amino acid is leucine for LOV1 domains in almost all plant phototropins. We observed that unlike wild-type LOV2, the FTIR spectra of F1010L LOV2 exhibited no temperature dependence in the alpha-helical and beta-sheet regions and that spectral changes in amide-I of these regions were significantly reduced, which was similar to LOV1. Thus, the replacement of phenylalanine with leucine converts neo1-LOV2 into neo1-LOV1 in terms of protein structural changes that must be related to the different functions. We will discuss the roles of phenylalanine and leucine in the LOV2 and LOV1 domains, respectively.  相似文献   

16.
Phototropins (phot1 and phot2) are blue light-activated serine/threonine protein kinases that function to mediate a variety of adaptive processes that serve to optimize the photosynthetic efficiency of plants and thereby promote their growth. Light sensing by the phototropins is mediated by a repeated motif located within the N-terminal region of the protein designated the LOV domain. Although phototropins possess two LOV photosensors (LOV1 and LOV2), recent biophysical and structure-function analyses clearly indicate that the LOV2 domain plays a predominant role in regulating phototropin kinase activity owing to specific protein changes that occur in response to LOV2 photoexcitation. In particular, the central β-sheet scaffold plays a role in propagating the photochemical signal generated from within LOV2 to protein changes at the surface that are necessary for kinase activation.Key words: phototropin, LOV domain, FMN, cysteinyl adduct, amphipathic helix, receptor autophosphoryation  相似文献   

17.
Phototropin (phot) is a light-regulated protein kinase that mediates a variety of photoresponses in plants, such as phototropism, chloroplast positioning, and stomata opening. Arabidopsis has two homologues, phot1 and phot2, that share physiological functions depending on light intensity. A phot molecule has two photoreceptive light oxygen voltage-sensing domains, LOV1 and LOV2, and a Ser/Thr kinase domain. The LOV domains undergo a photocycle upon blue light (BL) stimulation, including transient adduct formation between the chromophore and a conserved cysteine (S390 intermediate) that leads to activation of the kinase. To uncover the mechanism underlying the photoactivation of the kinase, we have introduced a kinase assay system composed of a phot1 LOV2-linker-kinase polypeptide as a light-regulated kinase and its N-terminal polypeptide as an artificial substrate (Okajima, K., Matsuoka, D., and Tokutomi, S. (2011) LOV2-linker-kinase phosphorylates LOV1-containing N-terminal polypeptide substrate via photoreaction of LOV2 in Arabidopsis phototropin1. FEBS Lett. 585, 3391–3395). In the present study, we extended the assay system to phot2 and compared the photochemistry and kinase activation by BL between phot1 and phot2 to gain insight into the molecular basis for the different photosensitivities of phot1 and phot2. Photosensitivity of kinase activation by BL and the lifetime of S390 of phot1 were 10 times higher and longer, respectively, than those of phot2. This correlation was confirmed by an amino acid substitution experiment with phot1 to shorten the lifetime of S390. The present results demonstrated that the photosensitivity of kinase activation in phot involves the lifetime of S390 in LOV2, suggesting that the lifetime is one of the key factors for the different photosensitivities observed for phot1 and phot2.  相似文献   

18.
Blue light-induced chloroplast accumulation and avoidance relocation movements are controlled by the blue light photoreceptor phototropin. The Arabidopsis thaliana genome has two phototropin genes encoding phot1 and phot2. Each of these photoreceptors contains two LOV (light oxygen and voltage) domains and a kinase domain. The LOV domains absorb blue light though an associated flavin mononucleotide chromophore, while the kinase domain is thought to be associated with signal transduction. The phototropins control not only chloroplast relocation movement, but also blue light-induced phototropic responses, leaf expansion and stomatal opening. Here I review the role of phototropin as a photoreceptor for chloroplast photorelocation movement. Electronic Publication  相似文献   

19.
The plant photoreceptor phototropin is an autophosphorylating serine-threonine protein kinase activated by UV-A/blue light. Two domains, LOV1 and LOV2, members of the PAS domain superfamily, mediate light sensing by phototropin. Heterologous expression studies have shown that both domains function as FMN-binding sites. Although three plant blue light photoreceptors, cry1, cry2, and phototropin, have been identified to date, the photochemical reactions underlying photoactivation of these light sensors have not been described so far. Herein, we demonstrate that the LOV domains of Avena sativa phototropin undergo a self-contained photocycle characterized by a loss of blue light absorbance in response to light and a spontaneous recovery of the blue light-absorbing form in the dark. Rate constants and quantum efficiencies for the photoreactions indicate that LOV1 exhibits a lower photosensitivity than LOV2. The spectral properties of the photoproduct produced for both LOV domains are unrelated to those found for photoreduced flavins and flavoproteins, but are consistent with those of a flavin-cysteinyl adduct. Flavin-thiol adducts are generally short-lifetime reaction intermediates formed during the flavoprotein-catalyzed reduction of protein disulfides. By site-directed mutagenesis, we have identified several amino acid residues within the putative chromophore binding site of LOV1 and LOV2 that appear to be important for FMN binding and/or the photochemical reactivity. Among those is Cys39, which plays an important role in the photochemical reaction of the LOV domains. Replacement of Cys39 with Ala abolished the photochemical reactions of both LOV domains. We therefore propose that light sensing by the phototropin LOV domains occurs via the formation of a stable adduct between the FMN chromophore and Cys39.  相似文献   

20.
Phototropins are plant blue-light photoreceptors containing two light-, oxygen-, or voltage-sensitive (LOV) domains and a C-terminal kinase domain. The two LOV domains bind noncovalently flavin mononucleotide as a chromophore. We investigated the photocycle of fast-recovery mutant LOV2-I403V from Arabidopsis phototropin 2 by step-scan Fourier transform infrared spectroscopy. The reaction of the triplet excited state of flavin with cysteine takes place with a time constant of 3 μs to yield the covalent adduct. Our data provide evidence that the flavin is unprotonated in the productive triplet state, disfavoring an ionic mechanism of bond formation. An intermediate adduct species was evident that displayed changes in secondary structure in the helix or loop region, and relaxed with a time constant of 120 μs. In milliseconds, the final adduct state is formed by further alterations of secondary structure, including β-sheets. A comparison with wild-type adduct spectra shows that the mutation does not interfere with the functionality of the domain. All signals originate from within the LOV domain, because the construct does not comprise the adjacent Jα helix required for signal transduction. The contribution of early and late adduct intermediates to signal transfer to the Jα helix outside of the domain is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号