首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Retinal ganglion cells lose trophic responsiveness after axotomy.   总被引:11,自引:0,他引:11  
Whereas PNS neurons in culture are intrinsically responsive to peptide trophic factors, retinal ganglion cells (RGCs) are not unless they are depolarized, or their intracellular levels of cyclic AMP (cAMP) are elevated. We show here that depolarization increases cAMP in cultured RGCs sufficiently to enhance their responsiveness and that the trophic responsiveness of developing RGCs in intact retinas depends on physiological levels of activity and cAMP elevation. Responsiveness is lost after axotomy but is restored by cAMP elevation. The death of axotomized RGCs can be prevented if they are simultaneously stimulated by several trophic factors together with cAMP elevation. Thus, the death of RGCs after axotomy is not caused solely by the loss of retrograde trophic stimuli but also by a profound loss of trophic responsiveness.  相似文献   

4.
5.
Retinal ganglion cells in the rat were studied using the heavy metal intensified cytochrome oxidase and horseradish peroxidase histochemical methods.The results show that a population of large retinal ganglion cells was consistently observed with the cytochrome oxidase staining method in retinas of normal rats or rats which received unilateral thalamotomy at birth.These cytochrome oxidase rich ganglion cells appeared to have large somata,3-6 primary dendrites and extensive dendritic arbors,and are comparable to ganglion cells labeled by the wheat germ agglutinin conjugated to horseradish peroxidase (WGA-HRP).However,the morphological details of some of the cells revealed by the cytochrome oxidase staining method are frequently better than those shown by the HRP histochemical method.These results suggest that the mitochondrial enzyme cytochrome oxidase can be used as a simple but reliable marker for identifying and studying a population of retinal genglion cells with high metabolic rate in the rat.  相似文献   

6.
7.
It has long intrigued researchers why some but not all organisms can regenerate missing body parts. Plants are remarkable in that they can regenerate the entire organism from a small piece of tissue, or even a single cell. Epigenetic mechanisms that control chromatin organization are now known to regulate the cellular plasticity and reprogramming necessary for regeneration. Interestingly, although animals and plants have evolved different strategies and mechanisms to control developmental processes, they have maintained many similarities in the way they regulate chromatin organization. Given that plants can rapidly switch fate, we propose that an understanding of the mechanisms regulating this process in plant cells could provide a new perspective on cellular dedifferentiation in animals.  相似文献   

8.
Retinal ganglion cells send visual and circadian information to the brain regarding the environmental light-dark cycles. We investigated the capability of retinal ganglion cells of synthesizing melatonin, a highly reliable circadian marker that regulates retinal physiology, as well as the capacity of these cells to function as autonomous circadian oscillators. Chick retinal ganglion cells presented higher levels of melatonin assessed by radioimmunoassay during both the subjective day in constant darkness and the light phase of a light-dark cycle. Similar changes were observed in mRNA levels and activity of arylalkylamine N-acetyltransferase, a key enzyme in melatonin biosynthesis, with the highest levels of both parameters during the subjective day. These daily variations were preceded by the elevation of cyclic-AMP content, the second messenger involved in the regulation of melatonin biosynthesis. Moreover, cultures of immunopurified retinal ganglion cells at embryonic day 8 synchronized by medium exchange synthesized a [3H]melatonin-like indole from [3H]tryptophan. This [3H]indole was rapidly released to the culture medium and exhibited a daily variation, with levels peaking 8 h after synchronization, which declined a few hours later. Cultures of embryonic retinal ganglion cells also showed self-sustained daily rhythms in arylalkylamine N-acetyltransferase mRNA expression during at least three cycles with a period near 24 h. These rhythms were also observed after the application of glutamate. The results demonstrate that chick retinal ganglion cells may function as autonomous circadian oscillators synthesizing a melatonin-like indole during the day.  相似文献   

9.
Labelled axonally transported proteins belonging to four different phases of transport in the retinal ganglion cells of the rabbit were used as substrates in order to study proteolytic degradation in axons and nerve terminals.Proteins of both rapidly and slowly transported phases of axonal transport were easily degraded in small intact pieces of the superior colliculus.Addition of the Ca-dependent neutral protease, calpain, to isolated soluble and membrane fractions from the superior colliculus resulted in an increased rate of degradation of axonally transported components. The effects of calpain was most marked toward components in phases II and V of axonal transport in this system (Karlsson and Sjöstrand, 1971; Willard and Hulebak, 1977). The latter phase contains slowly transported neurofilament and microtubular protein while the former one contains rapidly transported membrane proteins.  相似文献   

10.
Lin B  Wang SW  Masland RH 《Neuron》2004,43(4):475-485
In Brn3b(-/-) mice, where 80% of retinal ganglion cells degenerate early in development, the remaining 20% include most or all ganglion cell types. Cells of the same type cover the retinal surface evenly but tile it incompletely, indicating that a regular mosaic and normal dendritic field size can be maintained in the absence of contact among homotypic cells. In Math5(-/-) mice, where only approximately 5% of ganglion cells are formed, the dendritic arbors of at least two types among the residual ganglion cells are indistinguishable from normal in shape and size, even though throughout development they are separated by millimeters from the nearest neighboring ganglion cell of the same type. It appears that the primary phenotype of retinal ganglion cells can develop without homotypic contact; dendritic repulsion may be an end-stage mechanism that fine-tunes the dendritic arbors for more efficient coverage of the retinal surface.  相似文献   

11.
Whim MD 《PloS one》2011,6(4):e19478

Background

In addition to polypeptide hormones, pancreatic endocrine cells synthesize a variety of bioactive molecules including classical transmitters and neuropeptides. While these co-transmitters are thought to play a role in regulating hormone release little is known about how their secretion is regulated. Here I investigate the synthesis and release of neuropeptide Y from pancreatic beta cells.

Methodology/Principal Findings

NPY appears to be an authentic co-transmitter in neonatal, but not adult, beta cells because (1) early in mouse post-natal development, many beta cells are NPY-immunoreactive whereas no staining is observed in beta cells from NPY knockout mice; (2) GFP-expressing islet cells from an NPY(GFP) transgenic mouse are insulin-ir; (3) single cell RT-PCR experiments confirm that the NPY(GFP) cells contain insulin mRNA, a marker of beta cells. The NPY-immunoreactivity previously reported in alpha and delta cells is therefore likely to be due to the presence of NPY-related peptides. INS-1 cells, a beta cell line, are also NPY-ir and contain NPY mRNA. Using the FMRFamide tagging technique, NPY secretion was monitored from INS-1 beta cells with high temporal resolution. Peptide release was evoked by brief depolarizations and was potentiated by activators of adenylate cyclase and protein kinase A. Following a transient depolarization, NPY-containing dense core granules fused with the cell membrane and discharged their contents within a few milliseconds.

Conclusions

These results indicate that after birth, NPY expression in pancreatic islets is restricted to neonatal beta cells. The presence of NPY suggests that peptide co-transmitters could mediate rapid paracrine or autocrine signaling within the endocrine pancreas. The FMRFamide tagging technique may be useful in studying the release of other putative islet co-transmitters in real time.  相似文献   

12.

Urban areas are increasing worldwide, which poses threats to animal wildlife. However, in certain cases cities can provide refuges for endangered animals. The European green toad (Bufotes viridis) is one of such examples, which is known from cities throughout their distribution. In contrast, considerable areas of their former (primary) habitats have been degraded. The primary habitats of this species include steppes and wild river floodplains, both characterized by dynamic changes and the presence of open areas. We used available green toad observation data (2007–2020) to model the effects of land-use types on occurrence probability in the city of Vienna. Forest and densely populated areas were highly significantly negatively associated with green toad presence, while transformation/construction site areas showed a strong positive effect. Such occurrence pattern might be characteristic for early succession species, which depend on stochastic environmental disturbances (e.g., droughts and floods) in their primary habitats. We argue that urban landscape planning should appreciate the potential ecological value of open land in cities which is either in a transition phase or a permanent ‘wasteland’. Ecological managing of such landscape could vastly increase urban biodiversity.

  相似文献   

13.
This study of epithelial-mesenchymal transformation and epithelial cell polarity in vitro reveals that environmental conditions can have a profound effect on the epithelial phenotype, cell shape, and polarity as expressed by the presence of apical and basal surfaces. A number of different adult and embryonic epithelia were suspended within native collagen gels. Under these conditions, cells elongate, detach from the explants, and migrate as individual cells within the three-dimensional lattice, a previously unknown property of well-differentiated epithelia. Epithelial cells from adult and embryonic anterior lens were studied in detail. Elongated cells derived from the apical surface develop pseudopodia and filopodia characteristic of migratory cells and acquire a morphology and ultrastructure virtually indistinguishable from that of mesenchymal cells in vivo. It is concluded from these experiments that the three-dimensional collagen gel can promote dissociation, migration, and acquisition of secretory organelles by differentiated epithelial cells, and can abolish the apical-basal cell polarity characteristic of the original epithelium.  相似文献   

14.
New studies on chromosome inversion polymorphisms in Drosophila species show that the genetic constitution of populations is responding to recent climate change and that widespread species may have the potential to undergo adaptive shifts. Genetic markers in widespread species can act as indicators of climate change on natural populations.  相似文献   

15.
We investigate the signaling mechanisms that induce retinal ganglion cell (RGC) axon elongation by asking whether surviving neurons extend axons by default. We show that bcl-2 overexpression is sufficient to keep purified RGCs alive in the absence of any glial or trophic support. The bcl-2-expressing RGCs do not extend axons or dendrites unless signaled to do so by single peptide trophic factors. Axon growth stimulated by peptide trophic factors is remarkably slow but is profoundly potentiated by physiological levels of electrical activity spontaneously generated within embryonic explants or mimicked on a multielectrode silicon chip. These findings demonstrate that these surviving neurons do not constitutively extend axons and provide insight into the signals that may be necessary to promote CNS regeneration.  相似文献   

16.
Professional APCs (pAPC) can process and present on their own MHC class I molecules Ags acquired from Ag donor cells (ADC). This phenomenon of cross-presentation is essential in the induction of CD8(+) T cell responses to viruses that do not infect pAPC and possibly contributes to the induction of CD8(+) responses to many other viruses. However, little is known about the mechanisms underlying this process. In this study, we show that dendritic cells and macrophages cross-present a model Ag supplied by vaccinia virus-infected ADC via the cytosolic route. Strikingly, we also found that cross-presentation of Ags provided by vaccinia-infected cells occurs within a couple of hours of pAPC/ADC interaction, that the duration of cross-presentation lasts for only 16 h, and that cross-presentation can occur at early times of infection when the ADC are still alive.  相似文献   

17.
The stereotyped asymmetry of one-cell C. elegans embryos has proven to be an important model for identifying molecular determinants of cell polarity. How polarity is initiated is less well understood. Polarity establishment depends on centrosomes, which use two molecularly distinct pathways to break symmetry. In both, the centrosome's position adjacent to the cell cortex is thought to determine where polarization starts. Defects in centrosome-cortex juxtaposition correlate with defects in polarity establishment in several mutants, suggesting that these processes may be linked, but there is no direct test of this. Here we assess how centrosome position relative to the cortex affects polarity establishment. We find that centrosomes can initiate polarity from any position within the embryo volume, but centrosome-cortex proximity decreases the time required to initiate polarity. Polarization itself brings about close centrosome-cortex proximity. Prior to polarization, cytoplasmic microtubules constrain centrosome movement near the cortex, expanding the controversial role of microtubules during polarity establishment. The ability of centrosomes to induce a single polarity axis from any position within the egg emphasizes the flexible, self-organizing properties of polarization in C. elegans embryos and contrasts the common view of C. elegans development as invariant.  相似文献   

18.
Summary The capacities of retinal and pigmented cells to regenerate histotypic in-vitro-retinae (IVR) in rotary culture were investigated by dividing the eye cups of 6-day-old chicken embryos into a central and a peripheral part; they were cut along the ora serrata, and the retinal and the pigmented constituents of both parts were isolated. The 4 dissociated cell populations were cultured separately and in all double combinations. Two different types of IVR's were generated; one developed from central or peripheral retinal cells, the other required the addition of pigmented cells from the ciliary margin of the eye. The shape of these IVR's was examined using scanning electron microscopy, and they were also characterized histologically. The acetylcholinesterase pattern marked the inner half of the retina; F11-antibody and a peanut agglutinin marker revealed both plexiform layers and a radial fiber system. In both types, organized histotypical areas consisted of complete sets of retinal layers. In the type containing pigmented cells from the eye periphery, the sequence of layers was identical with that of an in-situ-retina (laminar IVR). In IVR's derived from retinal cells only, the sequence of layers was reversed (rosetted IVR).  相似文献   

19.
Summary There are conflicting reports about the existence and nature of a short-wavelength cone (S-cone) contribution to ganglion cells in the goldfish retina. The present study sought to resolve these discrepancies by examining the S-cone contribution while recording from single ganglion cells in the excised, isolated goldfish retina. The effect of variations in the retinal preparation (gas content and type of background lighting during recording) on the S-cone input was also examined. Cells were classified into one of three types based on the responses at light onset and offset, when responses were driven only by the long-wavelength cone system (L-cones) of the receptive field's center (L+/–(on-excitation/off-inhibition) L–/+, and L+/+). With rare exceptions, the threshold spectral sensitivities of the centers and surrounds of cells that possessed opposite on and off responses (L+/–and L–/+) exhibited S-cone contributions, either prior to and/or during chromatic adaptation of the middle-and long-wavelength cones; the S-cone response was antagonistic to the L-cone input. The L + / + center cells also contained a S-cone input, but it was synergistic to the L-cone input at suprathreshold intensities. These findings were robust across all of the retinal preparations employed. The discrepancies in the previous work were probably due to the incomplete classification of cells because of the use of threshold responses only.This work is based in part on a dissertation submitted by RMM in partial fulfillment of the requirements for a PhD degree from the New School for Social Research, New York, New York  相似文献   

20.
The adhesion receptor CD-31 is expressed on neutrophils and endothelial cells and participates in transendothelial migration of neutrophils. Although necessary, information on CD-31-induced signaling and its influence on the shape-forming actin network is scarce. Here, we found that antibody engagement of CD-31 on suspended neutrophils triggered a prompt intracellular Ca(2+) signal, providing the cells had been primed with a chemotactic factor. Inhibition of Src-tyrosine kinases blocked this Ca(2+) signal, but not a fMet-Leu-Phe-induced Ca(2+) signal. Despite the ability of fMet-Leu-Phe to activate Src-tyrosine kinases, it did not per se induce tyrosine phosphorylation of CD-31. However, fMet-Leu-Phe did enable such a phosphorylation following an antibody-induced engagement of CD-31. This clustering also triggered a Ca(2+)-dependent depolymerization of actin and, surprisingly enough, a simultaneous polymerization. The ability of CD-31 to signal dynamic alterations in the cytoskeleton, particularly the Ca(2+)-induced actin depolymerization, further explains how neutrophils can squeeze themselves out between adjacent endothelial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号