首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 115 毫秒
1.
We used comparative genomics and experimental analyses to show that (1) eukaryotes and archaea, which possess the selenocysteine (Sec) protein insertion machinery contain an enzyme, O-phosphoseryl-transfer RNA (tRNA)[Ser]Sec kinase (designated PSTK), which phosphorylates seryl-tRNA[Ser]Sec to form O-phosphoseryl-tRNA[Ser]Sec and (2) the Sec synthase (SecS) in mammals is a pyridoxal phosphate-containing protein previously described as the soluble liver antigen (SLA). SecS uses the product of PSTK, O-phosphoseryl-tRNA[Ser]Sec, and selenophosphate as substrates to generate selenocysteyl-tRNA[Ser]Sec. Sec could be synthesized on tRNA[Ser]Sec from selenide, adenosine triphosphate (ATP), and serine using tRNA[Ser]Sec, seryl-tRNA synthetase, PSTK, selenophosphate synthetase, and SecS. The enzyme that synthesizes monoselenophosphate is a previously identified selenoprotein, selenophosphate synthetase 2 (SPS2), whereas the previously identified mammalian selenophosphate synthetase 1 did not serve this function. Monoselenophosphate also served directly in the reaction replacing ATP, selenide, and SPS2, demonstrating that this compound was the active selenium donor. Conservation of the overall pathway of Sec biosynthesis suggests that this pathway is also active in other eukaryotes and archaea that contain selenoproteins. X.-M. Xu and B. A. Carlson contributed equally to the studies described herein.  相似文献   

2.
Synthesis of monoselenophosphate, the selenium donor required for the synthesis of selenocysteine (Sec) is catalyzed by the enzyme selenophosphate synthetase (SPS), first described in Escherichia coli. SPS homologs were identified in archaea, mammals and Drosophila. In the latter, however, an amino acid replacement is present within the catalytic domain and lacks selenide-dependent SPS activity. We describe the identification of a novel Drosophila homolog, Dsps2. The open reading frame of Dsps2 mRNA is interrupted by an UGA stop codon. The 3'UTR contains a mammalian-like Sec insertion sequence which causes translational readthrough in both transfected Drosophila cells and transgenic embryos. Thus, like vertebrates, Drosophila contains two SPS enzymes one with and one without Sec in its catalytic domain. Our data indicate further that the selenoprotein biosynthesis machinery is conserved between mammals and fly, promoting the use of Drosophila as a genetic tool to identify components and mechanistic features of the synthesis pathway.  相似文献   

3.

Background

Selenophosphate, the key selenium donor for the synthesis of selenoprotein and selenium-modified tRNA, is produced by selenophosphate synthetase (SPS) from ATP, selenide, and H2O. Although free selenide can be used as the in vitro selenium substrate for selenophosphate synthesis, the precise physiological system that donates in vivo selenium substrate to SPS has not yet been characterized completely.

Scope of review

In this review, we discuss selenium metabolism with respect to the delivery of selenium to SPS in selenoprotein biosynthesis.

Major conclusions

Glutathione, selenocysteine lyase, cysteine desulfurase, and selenium-binding proteins are the candidates of selenium delivery system to SPS. The thioredoxin system is also implicated in the selenium delivery to SPS in Escherichia coli.

General significance

Selenium delivered via a protein-bound selenopersulfide intermediate emerges as a central element not only in achieving specific selenoprotein biosynthesis but also in preventing the occurrence of toxic free selenide in the cell. This article is part of a Special Issue entitled “Selenium research in biochemistry and biophysics – 200 year anniversary”.  相似文献   

4.
Selenophosphate synthetase (SPS), the selD gene product from Escherichia coli, catalyzes the biosynthesis of monoselenophosphate, AMP, and orthophosphate in a 1:1:1 ratio from selenide and ATP. It was recently demonstrated that selenium delivered from selenocysteine by an E. coli NifS-like protein could replace free selenide in the in vitro SPS assay for selenophosphate formation (G. M. Lacourciere, H. Mihara, T. Kurihara, N. Esaki, and T. C. Stadtman, J. Biol. Chem. 275:23769-23773, 2000). During growth of E. coli in the presence of 0.1 microM (75)SeO(3)(2-) and increasing amounts of L-selenocysteine, a concomitant decrease in (75)Se incorporation into formate dehydrogenase H and nucleosides of bulk tRNA was observed. This is consistent with the mobilization of selenium from L-selenocysteine in vivo and its use in selenophosphate formation. The ability of E. coli to utilize selenocysteine as a selenium source for selenophosphate biosynthesis in vivo supports the participation of the NifS-like proteins in selenium metabolism.  相似文献   

5.
Proteins containing the 21st amino acid, selenocysteine (Sec), have been described in all three domains of life, but the composition of selenoproteomes in organisms varies significantly. Here, we report that aquatic arthropods possess many selenoproteins also detected in other animals and unicellular eukaryotes, and that most of these proteins were either lost or replaced with cysteine-containing homologs in insects. As a result of this selective selenoproteome reduction, fruit flies and mosquitoes have three known selenoproteins, and the honeybee, Apis mellifera, a single detected candidate selenoprotein. Moreover, we identified the red flour beetle, Tribolium castaneum, and the silkworm, Bombyx mori, as the first animals that lack any Sec-containing proteins. These insects also lost the Sec biosynthesis and insertion machinery, but selenophosphate synthetase 1 (SPS1), an enzyme previously implicated in Sec biosynthesis, is present in all insects, including T. castaneum and B. mori. These data indicate that SPS1 functions in a pathway unrelated to selenoprotein synthesis. Since SPS1 evolved from a protein that utilizes selenium for Sec biosynthesis, an attractive possibility is that SPS1 may define a new pathway of selenium utilization in animals.  相似文献   

6.
Biosynthesis of selenocysteine, the 21st proteinogenic amino acid, occurs bound to a dedicated tRNA in all three domains of life, Bacteria, Eukarya and Archaea, but differences exist between the mechanism employed by bacteria and eukaryotes/archaea. The role of selenophosphate and the enzyme providing it, selenophosphate synthetase, in archaeal selenoprotein synthesis was addressed by mutational analysis. Surprisingly, MMP0904, encoding a homologue of eukaryal selenophosphate synthetase in Methanococcus maripaludis S2, could not be deleted unless selD , encoding selenophosphate synthetase of Escherichia coli , was present in trans , demonstrating that the factor is essential for the organism. In contrast, the homologous gene of M. maripaludis JJ could be readily deleted, obviating the strain's ability to synthesize selenoproteins. Complementing with selD restored selenoprotein synthesis, demonstrating that the deleted gene encodes selenophosphate synthetase and that selenophosphate is the in vivo selenium donor for selenoprotein synthesis of this organism. We also showed that this enzyme is a selenoprotein itself and that M. maripaludis contains another, HesB-like selenoprotein previously only predicted from genome analyses. The data highlight the use of genetic methods in archaea for a causal analysis of their physiology and, by comparing two closely related strains of the same species, illustrate the evolution of the selenium-utilizing trait.  相似文献   

7.
8.
Selenophosphate synthetase (SPS), the selD gene product from Escherichia coli, catalyzes the biosynthesis of monoselenophosphate, AMP, and orthophosphate in a 1:1:1 ratio from selenide and ATP. Kinetic characterization revealed the K(m) value for selenide approached levels that are toxic to the cell. Our previous demonstration that a Se(0)-generating system consisting of l-selenocysteine and the Azotobacter vinelandii NifS protein can replace selenide for selenophosphate biosynthesis in vitro suggested a mechanism whereby cells can overcome selenide toxicity. Recently, three E. coli NifS-like proteins, CsdB, CSD, and IscS, have been overexpressed and characterized. All three enzymes act on selenocysteine and cysteine to produce Se(0) and S(0), respectively. In the present study, we demonstrate the ability of each E. coli NifS-like protein to function as a selenium delivery protein for the in vitro biosynthesis of selenophosphate by E. coli wild-type SPS. Significantly, the SPS (C17S) mutant, which is inactive in the standard in vitro assay with selenide as substrate, was found to exhibit detectable activity in the presence of CsdB, CSD, or IscS and l-selenocysteine. Taken together the ability of the NifS-like proteins to generate a selenium substrate for SPS and the activation of the SPS (C17S) mutant suggest a selenium delivery function for the proteins in vivo.  相似文献   

9.
Selenophosphate synthetase (SPS), the selD gene product from Escherichia coli, catalyzes the biosynthesis of monoselenophosphate from selenide and ATP. Characterization of selenophosphate synthetase revealed the determined K(m) value for selenide is far above the optimal concentration needed for growth and approached levels which are toxic. Selenocysteine lyase enzymes, which decompose selenocysteine to elemental selenium (Se(0)) and alanine, were considered as candidates for the control of free selenium levels in vivo. The ability of a lyase protein to generate Se(0) in the proximity of SPS maybe an attractive solution to selenium toxicity as well as the high K(m) value for selenide. Recently, three E. coli NifS-like proteins, CsdB, CSD, and IscS, were characterized. All three proteins exhibit lyase activity on L-cysteine and L-selenocysteine and produce sulfane sulfur, S(0), or Se(0) respectively. Each lyase can effectively mobilize Se(0) from L-selenocysteine for selenophosphate biosynthesis.  相似文献   

10.
Although selenophosphate synthetase 1 (SPS1/SelD) is an essential gene in Drosophila, its function has not been determined. To elucidate its intracellular role, we targeted the removal of SPS1/SelD mRNA in Drosophila SL2 cells using RNA interference technology that led to the formation of vacuole-like globular structures. Surprisingly, these structures were identified as megamitochondria, and only depolarized mitochondria developed into megamitochondria. The mRNA levels of l(2)01810 and glutamine synthetase 1 (GS1) were increased by SPS1/SelD knockdown. Blocking the expression of GS1 and l(2)01810 completely inhibited the formation of megamitochondria induced by loss of SPS1/SelD activity and decreased the intracellular levels of glutamine to those of control cells suggesting that the elevated level of glutamine is responsible for megamitochondrial formation. Overexpression of GS1 and l(2)01810 had a synergistic effect on the induction of megamitochondrial formation and on the synthesis of glutamine suggesting that l(2)01810 is involved in glutamine synthesis presumably by activating GS1. Our results indicate that, in Drosophila, SPS1/SelD regulates the intracellular glutamine by inhibiting GS1 and l(2)01810 expression and that elevated levels of glutamine lead to a nutritional stress that provides a signal for megamitochondrial formation.  相似文献   

11.
Selenoprotein synthesis in archaea   总被引:9,自引:0,他引:9  
The availability of the genome sequences from several archaea has facilitated the identification of the encoded selenoproteins and also of most of the components of the machinery for selenocysteine biosynthesis and insertion. Until now, selenoproteins have been identified solely in species of the genera Methanococcus (M.) and Methanopyrus. Apart from selenophosphate synthetase, they include only enzymes with a function in energy metabolism. Like in bacteria and eukarya, selenocysteine insertion is directed by a UGA codon in the mRNA and involves the action of a specific tRNA and of selenophosphate as the selenium donor. Major differences to the bacterial system, however, are that no homolog for the bacterial selenocysteine synthase was found and, especially, that the SECIS element of the mRNA is positioned in the 3' nontranslated region. The characterisation of a homolog for the bacterial SelB protein showed that it does not bind to the SECIS element necessitating the activity of at least a second protein. The use of the genetic system of M. maripaludis allowed the heterologous expression of a selenoprotein gene from M. jannaschii and will facilitate the elucidation of the mechanism of the selenocysteine insertion process in the future.  相似文献   

12.
Selenocysteine incorporation in eukaryotes occurs cotranslationally at UGA codons via the interactions of RNA-protein complexes, one comprised of selenocysteyl (Sec)-tRNA([Ser]Sec) and its specific elongation factor, EFsec, and another consisting of the SECIS element and SECIS binding protein, SBP2. Other factors implicated in this pathway include two selenophosphate synthetases, SPS1 and SPS2, ribosomal protein L30, and two factors identified as binding tRNA([Ser]Sec), termed soluble liver antigen/liver protein (SLA/LP) and SECp43. We report that SLA/LP and SPS1 interact in vitro and in vivo and that SECp43 cotransfection increases this interaction and redistributes all three proteins to a predominantly nuclear localization. We further show that SECp43 interacts with the selenocysteyl-tRNA([Ser]Sec)-EFsec complex in vitro, and SECp43 coexpression promotes interaction between EFsec and SBP2 in vivo. Additionally, SECp43 increases selenocysteine incorporation and selenoprotein mRNA levels, the latter presumably due to circumvention of nonsense-mediated decay. Thus, SECp43 emerges as a key player in orchestrating the interactions and localization of the other factors involved in selenoprotein biosynthesis. Finally, our studies delineating the multiple, coordinated protein-nucleic acid interactions between SECp43 and the previously described selenoprotein cotranslational factors resulted in a model of selenocysteine biosynthesis and incorporation dependent upon both cytoplasmic and nuclear supramolecular complexes.  相似文献   

13.
14.
Selenophosphate synthetase (SPS) catalyzes the synthesis of selenophosphate, the selenium donor for the biosynthesis of selenocysteine and 2-selenouridine residues in seleno-tRNA. Selenocysteine, known as the 21st amino acid, is then incorporated into proteins during translation to form selenoproteins which serve a variety of cellular processes. SPS activity is dependent on both Mg(2+) and K(+) and uses ATP, selenide, and water to catalyze the formation of AMP, orthophosphate, and selenophosphate. In this reaction, the gamma phosphate of ATP is transferred to the selenide to form selenophosphate, while ADP is hydrolyzed to form orthophosphate and AMP. Most of what is known about the function of SPS has derived from studies investigating Escherichia coli SPS (EcSPS) as a model system. Here we report the crystal structure of the C17S mutant of SPS from E. coli (EcSPS(C17S)) in apo form (without ATP bound). EcSPS(C17S) crystallizes as a homodimer, which was further characterized by analytical ultracentrifugation experiments. The glycine-rich N-terminal region (residues 1 through 47) was found in the open conformation and was mostly ordered in both structures, with a magnesium cofactor bound at the active site of each monomer involving conserved aspartate residues. Mutating these conserved residues (D51, D68, D91, and D227) along with N87, also found at the active site, to alanine completely abolished AMP production in our activity assays, highlighting their essential role for catalysis in EcSPS. Based on the structural and biochemical analysis of EcSPS reported here and using information obtained from similar studies done with SPS orthologs from Aquifex aeolicus and humans, we propose a catalytic mechanism for EcSPS-mediated selenophosphate synthesis.  相似文献   

15.
A novel gene, sps2, detected in mouse embryo at the early stages of development has been identified as an analog of the E. coli selenophosphate synthetase gene. Unlike the E. coli enzyme, the presence of selenocysteine in the mouse enzyme is indicated by a TGA codon in the open reading frame of the cDNA. Using an N-FLAG monoclonal antibody, it was shown that the full length N-FLAG-sps2 gene product was expressed in COS-7 cells. To investigate the biological activity of the sps2 gene product in vivo, the mutated sps2 gene, which contains cysteine in the place of the TGA encoded selenocysteine in the wild type, was expressed in the E. coli selD deficient mutant, MB08. Like the E. coli wild type selD gene, the mutant sps2 gene complemented the selD mutation. However, replacement of Cys with either Ala, Ser, or Thr resulted in a loss of ability to complement the selD mutation. The SPS2-CYS protein expressed in E. coli was purified and its catalytic activity was determined. The Km value for ATP was 0.75 mM and Vmax was 9.23 nmole/min/mg protein. These results confirm that the mouse embryonic sps2 gene encodes an eukaryotic selenophosphate synthetase, and that availability of selenophosphate as a selenium donor compound is widespread.  相似文献   

16.
17.
The four genes required for selenocysteine incorporation were isolated from the gram-positive, amino acid-fermenting anaerobe Eubacterium acidaminophilum, which expresses various selenoproteins of different functions. The sel genes were located in an unique organization on a continuous fragment of genomic DNA in the order selD1 (selenophosphate synthetase 1), selA (selenocysteine synthase), selB (selenocysteine-specific elongation factor), and selC (selenocysteine-specific tRNA). A second gene copy, encoding selenophosphate synthetase 2 (selD2), was present on a separate fragment of genomic DNA. SelD1 and SelD2 were only 62.9% identical, but the two encoding genes, selD1 and selD2, contained an in-frame UGA codon encoding selenocysteine, which corresponds to Cys-17 of Escherichia coli SelD. The function of selA, selB, and selC from E. acidaminophilum was investigated by complementation of the respective E. coli deletion mutant strains and determined as the benzyl viologen-dependent formate dehydrogenase activity in these strains after anaerobic growth in the presence of formate. selA and selC from E. acidaminophilum were functional and complemented the respective mutant strains to 83% (selA) and 57% (selC) compared to a wild-type strain harboring the same plasmid. Complementation of the E. coli selB mutant was only observed when both selB and selC from E. acidaminophilum were present. Under these conditions, the specific activity of formate dehydrogenase was 55% of that of the wild type. Transformation of this selB mutant with selB alone was not sufficient to restore formate dehydrogenase activity.  相似文献   

18.
Selenophosphate synthetase catalyzes the synthesis of the highly active selenium donor molecule selenophosphate, a key intermediate in selenium metabolism. We have determined the high-resolution crystal structure of human selenophosphate synthetase 1 (hSPS1). An unexpected reaction intermediate, with a tightly bound phosphate and ADP at the active site has been captured in the structure. An enzymatic assay revealed that hSPS1 possesses low ADP hydrolysis activity in the presence of phosphate. Our structural and enzymatic results suggest that consuming the second high-energy phosphoester bond of ATP could protect the labile product selenophosphate during catalytic reaction. We solved another hSPS1 structure with potassium ions at the active sites. Comparing the two structures, we were able to define the monovalent cation-binding site of the enzyme. The detailed mechanism of the ADP hydrolysis step and the exact function of the monovalent cation for hSPS1 catalytic reaction are proposed.  相似文献   

19.
Selenium in biology: facts and medical perspectives   总被引:10,自引:0,他引:10  
Several decades after the discovery of selenium as an essential trace element in vertebrates approximately 20 eukaryotic and more than 15 prokaryotic selenoproteins containing the 21st proteinogenic amino acid, selenocysteine, have been identified, partially characterized or cloned from several species. Many of these proteins are involved in redox reactions with selenocysteine acting as an essential component of the catalytic cycle. Enzyme activities have been assigned to the glutathione peroxidase family, to the thioredoxin reductases, which were recently identified as selenoproteins, to the iodothyronine deiodinases, which metabolize thyroid hormones, and to the selenophosphate synthetase 2, which is involved in selenoprotein biosynthesis. Prokaryotic selenoproteins catalyze redox reactions and formation of selenoethers in (stress-induced) metabolism and energy production of E. coli, of the clostridial cluster XI and of other prokaryotes. Apart from the specific and complex biosynthesis of selenocysteine, selenium also reversibly binds to proteins, is incorporated into selenomethionine in bacteria, yeast and higher plants, or posttranslationally modifies a catalytically essential cysteine residue of CO dehydrogenase. Expression of individual eukaryotic selenoproteins exhibits high tissue specificity, depends on selenium availability, in some cases is regulated by hormones, and if impaired contributes to several pathological conditions. Disturbance of selenoprotein expression or function is associated with deficiency syndromes (Keshan and Kashin-Beck disease), might contribute to tumorigenesis and atherosclerosis, is altered in several bacterial and viral infections, and leads to infertility in male rodents.  相似文献   

20.
High serum selenium levels have been associated epidemiologically with increased incidence of type 2 diabetes. The major fraction of total selenium in serum is represented by liver-derived selenoprotein P (SeP). This study was undertaken to test for a hypothesized effect of hyperglycemia and the antihyperglycemic drug metformin on hepatic selenoprotein P biosynthesis. Cultivation of rat hepatocytes in the presence of high glucose concentrations (25 mmol/l) resulted in increased selenoprotein P mRNA expression and secretion. Treatment with metformin dose-dependently downregulated SeP mRNA expression and secretion, and suppressed glucocorticoid-stimulated production of SeP. Moreover, metformin strongly decreased mRNA levels of selenophosphate synthetase 2 (SPS-2), an enzyme essential for selenoprotein biosynthesis. Taken together, these results indicate an influence of metformin on selenium metabolism in hepatocytes. As selenoprotein P is the major transport form of selenium, metformin treatment may thereby diminish selenium supply to extrahepatic tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号