首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Nucleoside diphosphate kinase from extremely halophilic archaeon (HsNDK) requires above 2M NaCl concentration for in vitro refolding. Here an attempt was made to isolate mutations that allow HsNDK to refold in low salt media. Such a screening resulted in isolation of an HsNDK mutant, Gly114Arg, which efficiently refolded in the presence of 1M NaCl. This mutant, unlike the wild type enzyme, was expressed in Escherichia coli as an active form. The residue 114 is in close proximity to Glu155 of the neighboring subunit in the three dimensional hexameric structure of the HsNDK. It is thus possible that the attractive electrostatic interactions occur between Arg114 and Glu155 in the mutant HsNDK, stabilizing the hexameric subunit assembly.  相似文献   

2.
Nucleoside diphosphate kinase (HsNDK) from extremely halophilic haloarchaeon, Halobacterium salinarum, requires salt at high concentrations for folding. A D148C mutant, in which Asp148 was replaced with Cys, was designed to enhance stability and folding in low salt solution by S-S bond. It showed increased thermal stability by about 10 °C in 0.2 M NaCl over the wild type HsNDK. It refolded from heat-denaturation even in 0.1 M NaCl, while the wild type required 2 M NaCl to achieve the same level of activity recovery. This enhanced refolding is due to the three S-S bonds between two basic dimeric units in the hexameric HsNDK structure, indicating that assembly of the dimeric unit may be the rate-limiting step in low salt solution. Circular dichroism and native-PAGE analysis showed that heat-denatured HsNDK formed partially folded dimeric structure, upon refolding, in the absence of salt and the native-like secondary structure in the presence of salt above 0.1 M NaCl. However, it remained dimeric upon prolonged incubation at this salt concentration. In contrary, heat-denatured D148C mutant refolded into tetrameric folding intermediate in the absence of salt and native-like structure above 0.1 M salt. This native-like structure was then converted to the native hexamer with time.  相似文献   

3.
Killing of target cells by redirected granzyme B in the absence of perforin   总被引:7,自引:0,他引:7  
We have previously reported that nucleoside diphosphate kinase (HsNDK) from extremely halophilic archaeon Halobacterium salinarum was expressed in Escherichia coli as a soluble, but inactive form and required high salt concentrations for in vitro folding and activation. Here, we found that fusion of extra sequence containing hexa-His-tag at amino-terminus of HsNDK (His-HsNDK) facilitated folding and activation of HsNDK in E. coli. This is a first observation of active folding of halophilic enzyme from extremely halophilic archaeon in E. coli. The in vitro refolding rate of His-HsNDK after heat denaturation was greatly increased over the native HsNDK. Folded His-HsNDK isolated from E. coli formed a hexamer in both 0.2 M and 3.8 M NaCl at 30 °C, while the native HsNDK purified from H. salinarum dissociated to dimer in 0.2 M NaCl. The observed hexameric structure in 0.2 M NaCl indicates that amino-terminal extension also enhances dimer to hexamer assembly and stabilizes the structure in low salt. These results suggest that positive charges in fused amino-terminal extension are effective in suppressing the negative charge repulsion of halophilic enzyme and thus, facilitate folding and assembly of HsNDK.  相似文献   

4.
Arginine is effective in suppressing aggregation of proteins and may be beneficial to be included during purification processes. We have shown that arginine reduces non-specific protein binding in gel permeation chromatography and facilitates elution of antibodies from Protein-A columns. Here we have examined the effects of arginine on binding and elution of the proteins during hydrophobic interaction (HIC) and ion- exchange chromatographies (IEC) using recombinant monoclonal antibodies (mAbs) and human interleukin-6. In the case of HIC, the proteins were bound to a phenyl-Sepharose column in the presence of ammonium sulfate (AS) with or without arginine and eluted with a descending concentration of AS. While use of 1 M AS in the loading buffer resulted in complete binding of the mAb, inclusion of 1 M arginine in loading and equilibration buffer, only when using low-substituted phenyl-Sepharose, resulted in weaker binding of the proteins. While decreasing AS concentration to 0.75 M resulted in partial elution of the mAB, elution was facilitated with inclusion of 0.5-1 M arginine. In the case of IEC, arginine was included in the loading samples. Inclusion of arginine during binding to the IEC columns resulted in a greater recovery and less aggregation even when elution was done in the absence of arginine. These results indicate that arginine enhances elution of proteins bound to the resin, suggesting its effectiveness as a solvent for elution in HIC and IEC.  相似文献   

5.
Role of arginine deiminase in growth of Mycoplasma hominis.   总被引:13,自引:5,他引:8       下载免费PDF全文
Arginine has been considered as the major energy source of nonglycolytic arginine-utilizing mycoplasmata. When three strains of Mycoplasma arginini, and one strain each of Mycoplasma arthritidis, Mycoplasma fermentans, Mycoplasma gallinarum, Mycoplasma gallisepticum and Mycoplasma hominis were grown in the medium with high arginine concentration (34 mM) compared with low arginine (4 mM), both the protein content of the organisms and the specific activity of arginine deiminase increased. M. fermentans, the one arginine-utilizing species included in the survey which is also glycolytic, showed an increase in protein content but no increase in specific activity of the enzyme. The glycolytic non-arginine-utilizing M. gallisepticum did not show an increase in either parameter. The Km for arginine deiminase from crude cell extracts was 1.66 X 10(-4)M. The enzyme demonstrated a hyperbolic activation curve subject to substrate inhibition and was not affected by the presence of L-histidine. When mycoplasmic protein and arginine deiminase were determined for M. hominis under aerobic and anaerobic conditions, aerobically grown cells exhibited no detectable enzymatic increases until late in log phase. Higher levels of arginine deiminase were observed earlier in the anaerobic growth cycle. The rate of 14CO2 evolution from [guanido-14C]arginine was not altered in arginine-supplemented cells compared with cells grown in low arginine. In addition, CO2 production did not parallel increased arginine deiminase activity. These observations argue that arginine is used only as an alternate energy source in these organisms.  相似文献   

6.
Arginine deiminase is a promising anticancer drug active against melanoma, hepatocarcinoma and other tumors. Recombinant strains of Escherichia coli that express arginine deiminase from pathogenic bacteria Mycoplasma have been developed. However, production costs of heterologous arginine deiminase are high due to use of an expensive inducer and extraction buffer, as well as using diluted culture for enzyme induction. We report on a new advanced protocol for Mycoplasma hominis arginine deiminase expression, extraction and renaturation. The main improvements include manipulation with dense suspensions of E. coli, use of lactose instead of isopropyl β-d-1-thiogalactopyranoside as an inducer and a cheaper but not less efficient buffer for solubilization of arginine deiminase inclusion bodies. In addition, supplementation of the storage culture medium with glucose and substrate (arginine) significantly stabilized the recombinant arginine deiminase producer. Homogenous preparations of recombinant arginine deiminase were obtained using anion-exchange and hydrophobic chromatography. The purified enzyme retained a specific activity of 30–34 U/mg for 12 months when stored at 4 °C in 20 mM sodium phosphate buffer pH 7.2 containing 1 M NaCl.  相似文献   

7.
Arginine has been effectively used in various column chromatographies for improving recovery and resolution, and suppressing aggregation. Here, we have tested the effectiveness of arginine as an eluent in dye-affinity column chromatography using Blue-Sepharose, which binds enzymes requiring adenyl-containing cofactors (e.g., NAD). A common eluent, NaCl, showed a broad elution peak with low recovery of lactate dehydrogenase, at most approximately 60% using 2M salt. The recovery decreased as the NaCl concentration was either decreased or increased; i.e., the recovery was maximum at 2M. On the contrary, addition of arginine to the eluent resulted in more than 80% recovery above 0.5M and the recovery was nearly independent of the arginine concentration. The elution peak was much sharper with arginine, leading to elution of more concentrated protein solution. Successful elution of proteins bound to the ATP-agarose resins by arginine was also described.  相似文献   

8.
Nucleoside diphosphate kinase (HsNDK) from an extremely halophilic archaea, Halobacterium salinarum, is composed of a homo hexamer, assembled as a trimer of basic dimeric units. It requires >2 M NaCl for refolding, although it does not require NaCl for stability or enzymatic activity below 30 °C. A HisN111L mutant with an N-terminal extension sequence containing hexa-His tag, in which Asn111 was replaced with Leu, was designed to be less stable between basic dimeric units. This mutant can lose between 6 and 12 hydrogen bonds between basic dimeric units in the hexamer structure. The HisN111L mutant had enhanced salt requirements for enzymatic activity and refolding even though the secondary structure of the HisN111L mutant was confirmed to be similar to the control, HisNDK, in low and high salt solutions using circular dichroism. We reported previously that G114R and D148C mutants, which had enhanced interactions between basic dimeric units, showed facilitated refolding and stabilization in low salt solution. The results of this study help to elucidate the process for engineering industrial enzymes by controlling subunit–subunit interactions through mutations.  相似文献   

9.
Rapid inactivation by phenylglyoxal of ribulose bisphosphate carboxylase/oxygenase (ribulose-P2 carboxylase) from the cyanobacterium Anacystis nidulans suggests the presence of an essential arginine, the modification of which is reduced in the presence of the substrate ribulose bisphosphate. Arginine 292 in the large subunit of ribulose-P2 carboxylase from A. nidulans was chosen for site-directed mutagenesis studies on the basis of the complete conservation of this residue in corresponding sequences of ribulose-P2 carboxylase from divergent organisms. Arginine 292 was changed to leucine and to lysine by directed mutagenesis using suitable plasmids and the bacteriophage M13. Both substitutions resulted in the production of purifiable holoenzyme with no activity after expression in Escherichia coli.  相似文献   

10.
Enzymes from extreme halophiles have potential as catalysts in biotransformations. We have developed methods for the expression in Escherichia coli and purification of two enzymes from Haloferax volcanii: dihydrolipoamide dehydrogenase and citrate synthase. Both enzymes were expressed in E. coli using the cytoplasmic expression vectors, pET3a and pET3d. Citrate synthase was soluble and inactive, whereas dihydrolipoamide dehydrogenase was expressed as inclusion bodies. Citrate synthase was reactivated following overnight incubation in 2 M KCl, and dihydrolipoamide dehydrogenase was refolded by solubilisation in 8 M urea followed by dilution into a buffer containing 2 M KCl, 10 microM FAD, 1 mM NAD, and 0.3 mM GSSG/3 mM GSH. Maximal activity was obtained after 3 days incubation at 4 degrees C. Purification of the two active enzymes was carried out using high-resolution methods. Dihydrolipoamide dehydrogenase was purified using copper-based metal ion affinity chromatography in the presence of 2 M KCl. Citrate synthase was recovered using dye-affinity chromatography in the presence of salt. A high yield of active enzyme was obtained in both cases. Following purification, characterisation of both recombinant proteins showed that their kinetics and salt-dependence were comparable to those of the native enzymes. Expression of active protein was attempted both by growth of E. coli in the presence of salt and betaine, and also by using periplasmic expression vectors in combination with a high salt growth media. Neither strategy was successful.  相似文献   

11.
Chlorella saccharophila can utilize the amino acids arginine, glutamate. ornithine and proline as sole sources of nitrogen for growth. By comparison C. autotrophica utilized only arginine and ornithine. Following osmotic shock of Chlorella autotrophica from 50 to 150% artificial seawater rapid synthesis of proline (the main osmoregulatory solute in this alga) occurred in cells grown on arginine or citrulline. However, little proline synthesis occurred in ornithine-grown cells. Distribution of radiolabelled carbon from [14C]-arginine assimilation following osmotic shock of C. autotrophica agrees with the following pathway of arginine utilization: arginine→citrulline→ornithine→glutamate semialdehyde→pyrroline-5-carboxylate→proline. These 4 steps are catalysed by arginine deiminase (EC 3.5.3.6), citrullinase (EC 3.5.1.20), ornithine transaminase (EC 2.6.1.13) and pyrroline-5-carboxylate reductase (EC 1.5.1.2), respectively. Of these 4 enzymes, only arginine deiminase and pyrroline-5-carboxylate reductase were detected in the crude extract of the 2 Chlorella species. Arginine deiminase did not require specific cations for optimal activity. The deimi-nase showed maximal activity at pH 8.0 and followed Michaelis-Menten kinetics with an apparent Km for L-arginine of 0.085 m M for the C. autotrophica enzyme and 0.097 m M for that of C. saccharophila. The activity of arginine deiminase was not influen-ced by growing C. saccharophila on arginine. Ornithine competitively inhibited arginine deiminase with an apparent K, of 2.4 m M for the C. autotrophica enzyme, and 3.8 m M for that of C. saccharophila . Arginine utilization by Chlorella is discussed in relation to that of other organisms.  相似文献   

12.
Analytical chromatography using protein A affinity columns was employed for the fast and simple quantitative analysis of monoclonal antibodies (mAb) from suspension cultures of recombinant Chinese hamster ovary (rCHO) cells. Reliable results could not be obtained from analysis of rCHO cell culture supernatants containing dextran sulfate using elution buffers such as phosphate, glycine, or MgCl2. These problems increased as the number of analysis and the concentration of dextran sulfate in samples increased. Arginine was identified as an alternative eluent to overcome the hindrance by dextran sulfate. When the samples contain dextran sulfate up to 100 mg/L, the elution buffer containing 0.6–1.0 M arginine at pH 3.0–3.8 is useful for the effective analysis. Reproducible results in the mAb quantification could be obtained by this developed arginine elution buffer from rCHO cell culture supernatants containing dextran sulfate. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:1536–1541, 2015  相似文献   

13.
Arginine synergistically inactivates enveloped viruses at a pH or temperature that does little harm to proteins, making it a desired process for therapeutic protein manufacturing. However, the mechanisms and optimal conditions for inactivation are not fully understood, and therefore, arginine viral inactivation is not used industrially. Optimal solution conditions for arginine viral inactivation found in the literature are high arginine concentrations (0.7–1 M), a time of 60 min, and a synergistic factor of high temperature (≥40°C), low pH (≤pH 4), or Tris buffer (5 mM). However, at optimal conditions full inactivation does not occur over all enveloped viruses. Enveloped viruses that are resistant to arginine often have increased protein stability or membrane stabilizing matrix proteins. Since arginine can interact with both proteins and lipids, interaction with either entity may be key to understanding the inactivation mechanism. Here, we propose three hypotheses for the mechanisms of arginine induced inactivation. Hypothesis 1 describes arginine-induced viral inactivation through inhibition of vital protein function. Hypothesis 2 describes how arginine destabilizes the viral membrane. Hypothesis 3 describes arginine forming pores in the virus membrane, accompanied by further viral damage from the synergistic factor. Once the mechanisms of arginine viral inactivation are understood, further enhancement by the addition of functional groups, charges, or additives may allow the inactivation of all enveloped viruses in mild conditions.  相似文献   

14.
We have shown before that mutation of Gly114 to Arg enhances folding of hexameric nucleoside diphosphate kinase (HsNDK) from Halobacterium salinarum. In this study, we constructed three mutant forms, Gly114Lys (G114K), Gly114Ser (G114S) and Gly114Asp (G114D), to further clarify the role residue 114 plays in the stability and folding of HsNDK. While expression of G114D mutant resulted in inactive enzyme, other mutant HsNDKs were successfully expressed in active form. The G114K mutant, similar to Gly114Arg (G114R) mutant, refolded in 1 M NaCl after heat-denaturation, under which the wild-type HsNDK and G114S proteins showed no refolding.  相似文献   

15.
A halophilic archaeon, Haloarcula sp. strain S-1, produced extracellular organic solvent-tolerant -amylase. Molecular mass of the enzyme was estimated to be 70 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. This amylase exhibited maximal activity at 50°C in buffer containing 4.3 M NaCl, pH 7.0. Moreover, the enzyme was active and stable in various organic solvents (benzene, toluene, and chloroform, etc.). Activity was not detected at low ionic strengths, but it was detected in the presence of chloroform at low salt concentrations. On the other hand, no activity was detected in the presence of ethyl alcohol and acetone.  相似文献   

16.
Most halophilic enzymes from extremely halophilic archaea are denatured immediately after transfer from high-salt to low-salt medium. However, nucleoside diphosphate kinase (HsNDK) from the extremely halophilic archaeon Halobacterium salinarum seems to be exceptional, since the enzyme exhibited catalytic activity even under the low-salt condition. Here we show the mechanism how HsNDK is active under both high- and low-salt conditions that the HsNDK hexamer in high-salt medium dissociates into a dimer in the low-salt medium without denaturation. The observed change of the subunit structure was accompanied by a large decrease of alpha-helical content and lowered thermal sensitivity, yet keeping the conformations. This novel hexamer to dimer conversion under high- and low-salt conditions, respectively, seems to be the mechanism by which HsNDK is avoided from the irreversible denaturation.  相似文献   

17.
The genes for the acetate-activating enzymes, acetate kinase and phosphotransacetylase (ack and pta), from Methanosarcina thermophila TM-1 were cloned and sequenced. Both genes are present in only one copy per genome, with the pta gene adjacent to and upstream of the ack gene. Consensus archaeal promoter sequences are found upstream of the pta coding region. The pta and ack genes encode predicted polypeptides with molecular masses of 35,198 and 44,482 Da, respectively. A hydropathy plot of the deduced phosphotransacetylase sequence indicates that it is a hydrophobic polypeptides; however, no membrane-spanning domains are evident. Comparison of the amino acid sequences deduced from the M. thermophila and Escherichia coli ack genes indicate similar subunit molecular weights and 44% identity (60% similarity). The comparison also revealed the presence of several conserved arginine, cysteine, and glutamic acid residues. Arginine, cysteine, and glutamic acid residues have previously been implicated at or near the active site of the E. coli acetate kinase. The pta and ack genes were hyperexpressed in E. coli, and the overproduced enzymes were purified to homogeneity with specific activities higher than those of the enzymes previously purified from M. thermophila. The overproduced phosphotransacetylase and acetate kinase migrated at molecular masses of 37,000 and 42,000 Da, respectively. The activity of the acetate kinase is optimal at 65 degrees C and is protected from thermal inactivation by ATP. Diethylpyrocarbonate and phenylglyoxal inhibited acetate kinase activity in a manner consistent with the presence of histidine and arginine residues at or near the active site; however, the thiol-directed reagents 5,5'-dithiobis (2-nitrobenzoic acid) and N-ethylmaleimide were ineffective.  相似文献   

18.
精氨酸氨化方法的干扰因素分析   总被引:2,自引:0,他引:2  
精氨酸氨化方法的干扰因素分析林启美(中国农业大学土壤和水科学系,北京100094)TheInterferingFactorsofArginineAmmonificationMethod.LinQimei(DepartmentofSoilandWate...  相似文献   

19.
1, 2-Cyclohexanedione reacts specifically with the guanidino group of arginine or arginine residues at pH 8 to 9 in sodium borate buffer in the temperature range of 25-40 degrees. The single product, N-7, N-8-(1,2-dihydroxycyclohex-1,2-ylene)-L-arginine (DHCH-arginine) is stable in acidic solutions and in borate buffers (pH 8 to 9). DHCH-Arginine is converted to N-7-adipyl-L-arginine by periodate oxidation. The structures of the two compounds were elucidated by chemical and physicochemical means. Arginine or arginyl residues can be regenerated quantitatively from DHCH-arginine by incubation at 37 degrees in hydroxylamine buffer at pH 7.0 FOR 7 TO 8 hours. Analysis of native egg white lysozyme and native as well as oxidized bovine pancreatic RNase, which were treated with cyclohexanedione, showed that only arginine residues were modified. The utility of the method in sequence studies was shown on oxidized bovine pancreatic ribonuclease A. Arginine modification was complete in 2 hours at 35 degrees in borate buffer at pH 9.0 with a 15-fold molar excess of the reagent. The derived peptides showed that tryptic hydrolysis was entirely limited to peptide bonds involving lysine residues, as shown both by two-dimensional peptide patterns and by isolation of the resulting peptides. The stability of DHCH-arginyl residues permits isolation of labeled peptides.  相似文献   

20.
We have measured the uptake of arginine into vacuolar membrane vesicles from Neurospora crassa. Arginine transport was found to be dependent on ATP hydrolysis, Mg2+, time, and vesicle protein with transported arginine remaining unmodified after entry into the vesicles. The Mg2+ concentration required for optimal arginine transport varied with the ATP concentration so that maximal transport occurred when the MgATP2- concentration was at a maximum and the concentrations of free ATP and Mg2+ were at a minimum. Arginine transport exhibited Michaelis-Menten kinetics when the arginine concentration was varied (Km = 0.4 mM). In contrast, arginine transport did not follow Michaelis-Menten kinetics when the MgATP2-concentration was varied (S0.5 = 0.12 mM). There was no inhibition of arginine transport when glutamine, ornithine, or lysine were included in the assay mixture. In contrast, arginine transport was inhibited 43% when D-arginine was present at a concentration 16-fold higher than that of L-arginine. Measurements of the internal vesicle volume established that arginine is concentrated 14-fold relative to the external concentration. Arginine transport was inhibited by dicyclohexylcarbodiimide, carbonyl cyanide m-chlorophenyl-hydrazone, and potassium nitrate (an inhibitor of vacuolar ATPase activity). Inhibitors of the plasma membrane or mitochondrial ATPase such as sodium vanadate or sodium azide did not affect arginine transport activity. In addition, arginine transport had a nucleoside triphosphate specificity similar to that of the vacuolar ATPase. These results suggest that arginine transport is dependent on vacuolar ATPase activity and an intact proton channel and proton gradient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号