首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
The 5'-termini of purified rat liver nucleolar and cytoplasmic 28S ribosomal RNA (rRNA) are precisely located within the homologous rDNA sequence by S1 nuclease protection mapping using an appropriate rDNA restriction fragment. The 5'-termini of nucleolar 28S rRNA are heterogeneous in length. The bulk of the nucleolar 28S rRNA map within two CTC motifs in rDNA located in the internal transcribed spacer 2 at the 50-60 and 5-15 bp upstream from the site of the homogeneous 5'-terminus of the cytoplasmic 28S rRNA. These results provide direct proof that nucleolar 28S rRNA molecules contain excess sequences at their 5'-termini and require further processing to generate the mature cytoplasmic 28S rRNA.  相似文献   

2.
The selection of sites for pseudouridylation in eukaryotic cytoplasmic rRNA occurs by the base pairing of the rRNA with specific guide sequences within the RNA components of box H/ACA small nucleolar ribonucleoproteins (snoRNPs). Forty-four of the 46 pseudouridines (Psis) in the cytoplasmic rRNA of Saccharomyces cerevisiae have been assigned to guide snoRNAs. Here, we examine the mechanism of Psi formation in 5S and 5.8S rRNA in which the unassigned Psis occur. We show that while the formation of the Psi in 5.8S rRNA is associated with snoRNP activity, the pseudouridylation of 5S rRNA is not. The position of the Psi in 5.8S rRNA is guided by snoRNA snR43 by using conserved sequence elements that also function to guide pseudouridylation elsewhere in the large-subunit rRNA; an internal stem-loop that is not part of typical yeast snoRNAs also is conserved in snR43. The multisubstrate synthase Pus7 catalyzes the formation of the Psi in 5S rRNA at a site that conforms to the 7-nucleotide consensus sequence present in other substrates of Pus7. The different mechanisms involved in 5S and 5.8S rRNA pseudouridylation, as well as the multiple specificities of the individual trans factors concerned, suggest possible roles in linking ribosome production to other processes, such as splicing and tRNA synthesis.  相似文献   

3.
5S rRNAs from Spinacea oleracea cytoplasmic and chloroplastic ribosomes have been subjected to digestion with the single strand specific nuclease S1 and to chemical modification of cytidines by sodium bisulphite in order to probe the RNA structure. According to these data, cytoplasmic 5S rRNA can be folded as proposed in the general eukaryotic 5S rRNA structure (1) and 5S rRNA from chloroplastides is shown to be more related to the general eubacterial structure (2).  相似文献   

4.
Creation of the mature 5' terminus of human 18 S rRNA in vitro occurs via a two-step processing reaction. In the first step, an endonucleolytic activity found in HeLa cell nucleolar extract cleaves an rRNA precursor spanning the external transcribed spacer-18 S boundary at a position 3 bases upstream from the mature 18 S terminus leaving 2',3'-cyclic phosphate, 5' hydroxyl termini. In the second step, a nucleolytic activity(s) found in HeLa cell cytoplasmic extract removes the 3 extra bases and creates the authentic 5'-phosphorylated terminus of 18 S rRNA. Here we have examined the sequence requirements for the trimming reaction. The trimming activity(s), in addition to requiring a 5' hydroxyl terminus, prefers the naturally occurring adenosine as the 5'-terminal base. By a combination of deletion, site-directed mutagenesis, and chemical modification interference approaches we have also identified a region of 18 S rRNA spanning bases +6 to +25 (with respect to the mature 5' end) which comprises a critical recognition sequence for the trimming activity(s).  相似文献   

5.
Although 5S rRNA is a highly conserved and universal component of eubacterial, archaeal, chloroplast, and eukaryotic cytoplasmic ribosomes, a mitochondrial DNA-encoded 5S rRNA has so far been identified only in land plants and certain protists. This raises the question of whether 5S rRNA is actually required for and used in mitochondrial translation. In the protist Acanthamoeba castellanii, BLAST searches fail to reveal a 5S rRNA gene in the complete mitochondrial genome sequence, nor is a 5S-sized RNA species detectable in ethidium bromide-stained gels of highly purified mitochondrial RNA preparations. Here we show that an alternative visualization technique, UV shadowing, readily detects a novel, mitochondrion-specific small RNA in A. castellanii mitochondrial RNA preparations, and that this RNA species is, in fact, a 5S rRNA encoded by the A. castellanii mitochondrial genome. These results emphasize the need for caution when interpreting negative results that suggest the absence of 5S rRNA and/or a mitochondrial DNA-encoded 5S rRNA sequence in other (particularly protist) mitochondrial systems.  相似文献   

6.
A rice (Oryza sativa L.) cDNA clone coding for the cytoplasmic ribosomal protein L5, which associates with 5 S rRNA for ribosome assembly, was cloned and its nucleotide sequence was determined. The primary structure of rice L5, deduced from the nucleotide sequence, contains 294 amino acids and has intriguing features some of which are also conserved in other eucaryotic homologues. These include: four clusters of basic amino acids, one of which may serve as a nucleolar localization signal; three repeated amino acid sequences; the conservation of glycine residues. This protein was identified as the nuclear-encoded cytoplasmic ribosomal protein L5 of rice by sequence similarity to other eucaryotic ribosomal 5 S RNA-binding proteins of rat, chicken, Xenopus laevis, and Saccharomyces cerevisiae. Rice L5 shares 51 to 62% amino acid sequence identity with the homologues. A group of ribosomal proteins from archaebacteria including Methanococcus vanniellii L18 and Halobacterium cutirubrum L13, which are known to be associated with 5 S rRNA, also related to rice L5 and the other eucaryotic counterparts, suggesting an evolutionary relationship in these ribosomal 5 S RNA-binding proteins.  相似文献   

7.
The chloroplast ribosomal unit of Chlamydomonas reinhardii displays two features which are not shared by other chloroplast ribosomal units. These include the presence of an intron in the 23 S ribosomal RNA gene and of two small genes coding for 3 S and 7 S rRNA in the spacer between the 16 S and 23 S rRNA genes (Rochaix & Malnoë, 1978). Sequencing of the 7 S and 3 S rRNAs as well as their genes and neighbouring regions has shown that: (1) the 7 S and 3 S rRNA genes are 282 and 47 base-pairs long, respectively, and are separated by a 23 base-pair A + T-rich spacer. (2) A sequence microheterogeneity exists within the 3 S RNA genes. (3) The sequences of the 7 S and 3 S rRNAs are homologous to the 5′ termini of prokaryotic and other chloroplast 23 S rRNAs, indicating that the C. reinhardii counterparts of 23 S rRNA have a composite structure. (4) The sequences of the 7 S and 3 S rRNAs are related to that of cytoplasmic 5.8 S rRNA, suggesting that these RNAs may perform similar functions in the ribosome. (5) Partial nucleotide sequence complementarity is observed between the 5′ ends of the 7 S and 3 S RNAs on one hand and the 23 S rRNA sequences which flank the ribosomal intron on the other. These data are compatible with the idea that these small rRNAs may play a role in the processing of the 23 S rRNA precursor.  相似文献   

8.
The portion of the internal transcribed spacer 1 found on 20S pre-rRNA accumulates in Saccharomyces cerevisiae lacking 5'----3' exoribonuclease 1, showing that an endonucleolytic cleavage at the 3' terminus of 18S rRNA is involved in the 20S pre-rRNA to 18S mature rRNA conversion. Smaller fragments of the spacer sequence are also found. The exoribonuclease may be involved as a cytoplasmic RNase in the hydrolysis of the spacer.  相似文献   

9.
10.
In this study, we analyzed a mitochondrial small (ms) RNA in Dictyostelium discoideum, which is 129 nucleotides long and has a GC content of only 22.5%. In the mitochondrial DNA, a single-copy gene (msr) for the ms RNA was located downstream of the gene for large-subunit rRNA. The location of msr was similar to that of the 5S rRNA gene in prokaryotes and chloroplasts, but clearly different from that in mitochondria of plants, liverwort and the chlorophycean alga Prototheca wikerhamii, in which small-subunit rRNA and 5S rRNA genes are closely linked. The primary sequence of ms RNA showed low homology with mitochondrial 5S rRNA from plants, liverwort and the chlorophycean alga, but the proposed secondary structure of ms RNA was similar to that of cytoplasmic 5S rRNA. In addition, ms RNA showed a highly conserved GAAC sequence in the same loop as in common 5S rRNA. However, ms RNA was detected mainly in the mitochondrial 25?000?×?g supernatant fraction which was devoid of ribosomes. It is possible that ms RNA is an evolutionary derivative of mitochondrial 5S rRNA.  相似文献   

11.
12.
Y L Chan  J Olvera    I G Wool 《Nucleic acids research》1983,11(22):7819-7831
The nucleotide sequence of a rat 28S rRNA gene was determined. The 28S rRNA encoded in the gene contains 4718 nucleotides and the molecular weight estimated from the sequence is 1.53 x 10(6). The guanine and cytosine content is 67%. The sequence of rat 28S rRNA diverges appreciably from that of Saccharomyces carlsbergensis 26S rRNA (about 50% identity), but more closely approximates that of Xenopus laevis 28S rRNA (about 75% identity). Rat 28S rRNA is larger than the analogous nucleic acids from yeast (3393 nucleotides) and X, laevis (4110 nucleotides) ribosomes. The additional bases are inserted in specific regions and tend to be rich in guanine and cytosine. 5.8S rRNA can interact with 28S rRNA by extensive hydrogen bonding at two sites near the 5' end of the latter.  相似文献   

13.
14.
15.
16.
alpha-Amanitin acts in vitro and in vivo as a selective inhibitor of nucleoplasmic RNA polymerases. Treatment of mice with low doses of alpha-amanitin causes the following changes in the synthesis, maturation and nucleocytoplasmic transfer of liver RNA species. 1. The synthesis of the nuclear precursor of mRNA is strongly inhibited and all electrophoretic components are randomly affected. The labelling of cytoplasmic mRNA is blocked. These effects may be correlated with the rapid and lasting inhibition of nucleoplasmic RNA polymerase. 2. The synthesis and maturation of the nuclear precursor of rRNA is inhibited within 30min. (a) The initial effect is a strong (about 80%) inhibition of the early steps of 45S precursor rRNA maturation. (b) The synthesis of 45S precursor rRNA is also inhibited and the effect increases from about 30% at 30min to more than 70% at 150min. (c) The labelling of nuclear and cytoplasmic 28S and 18S rRNA is almost completely blocked. The labelling of nuclear 5S rRNA is inhibited by about 50%, but that of cytoplasmic 5S rRNA is blocked. (d) The action of alpha-amanitin on the synthesis of precursor rRNA cannot be correlated with the slight gradual decrease of nucleolar RNA polymerase activity (only 10-20% inhibition at 150min). (e) The inhibition of precursor rRNA maturation and synthesis precedes the ultrastructural lesions of the nucleolus detected by standard electron microscopy. 3. The synthesis of nuclear 4.6S precursor of tRNA is not affected by alpha-amanitin. However, the labelling of nuclear and cytoplasmic tRNA is decreased by about 50%, which indicates an inhibition of precursor tRNA maturation. The results of this study suggest that the synthesis and maturation of the precursor of rRNA and the maturation of the precursor of tRNA are under the control of nucleoplasmic gene products. The regulator molecules may be either RNA or proteins with exceedingly fast turnover.  相似文献   

17.
In Euglena gracilis, a 26 nucleotide leader sequence (spliced leader sequence = SL) is transferred by trans-splicing to the 5' end of a vast majority of cytoplasmic mRNAs (8). The SL originates from the 5' extremity of a family of closely related snRNAs (SL-RNAs) which are about 100 nucleotide long. In this paper we present the nucleotide sequences of two SL-RNA genes, confirming the sequences previously established by sequencing purified SL-RNAs. Although some SL-RNA genes are dispersed throughout the genome, we show that the majority of SL-RNA genes are located on 0.6 kb repeated units which also encode the cytoplasmic 5S rRNA. We estimate that the copy number of these repeated units is about 300 per haploid genome. The association of SL-RNA and 5S rRNA genes in tandemly repeated units is also found in nematodes but paradoxically does not exist in trypanosomes which are phylogenically much closer to Euglena. We also show that a high number of sequences analogous to the 26 nucleotide SL are dispersed throughout the genome and are not associated with SL-RNAs.  相似文献   

18.
M Jarsch  A B?ck 《Nucleic acids research》1983,11(21):7537-7544
The DNA sequence of the spacer (plus flanking) regions separating the 16S rRNA and 23S rRNA genes of two presumptive rDNA operons of the archaebacterium Methanococcus vannielii was determined. The spacers are 156 and 242 base pairs in size and they share a sequence homology of 49 base pairs following the 3' terminus of the 16S rRNA gene and of about 60 base pairs preceding the 5' end of the 23S rRNA gene. The 242 base pair spacer, in addition contains a sequence which can be transcribed into tRNAAla, whereas no tRNA-like secondary structure can be delineated from the 156 base pair spacer region. Almost complete sequence homology was detected between the end of the 16S rRNA gene and the 3' termini of either Escherichia coli or Halobacterium halobium 16S rRNA, whereas the putative 5' terminal 23S rRNA sequence shared partial homology with E. coli 23S rRNA and eukaryotic 5.8S rRNA.  相似文献   

19.
In this study, we analyzed a mitochondrial small (ms) RNA in Dictyostelium discoideum, which is 129 nucleotides long and has a GC content of only 22.5%. In the mitochondrial DNA, a single-copy gene (msr) for the ms RNA was located downstream of the gene for large-subunit rRNA. The location of msr was similar to that of the 5S rRNA gene in prokaryotes and chloroplasts, but clearly different from that in mitochondria of plants, liverwort and the chlorophycean alga Prototheca wikerhamii, in which small-subunit rRNA and 5S rRNA genes are closely linked. The primary sequence of ms RNA showed low homology with mitochondrial 5S rRNA from plants, liverwort and the chlorophycean alga, but the proposed secondary structure of ms RNA was similar to that of cytoplasmic 5S rRNA. In addition, ms RNA showed a highly conserved GAAC sequence in the same loop as in common 5S rRNA. However, ms RNA was detected mainly in the mitochondrial 25 000 × g supernatant fraction which was devoid of ribosomes. It is possible that ms RNA is an evolutionary derivative of mitochondrial 5S rRNA. Received: 17 May 1997 / Accepted: 26 August 1997  相似文献   

20.
Sequences of 5S and 5.8S rRNAs of the amoeboid protist Acanthamoeba castellanii have been determined by gel sequencing of terminally-labeled RNAs which were partially degraded with chemical reagents or ribonucleases. The sequence of the 5S rRNA is (formula, see text). This sequence is compared to eukaryotic 5S rRNA sequences previously published and fitted to a secondary structure model which incorporates features of several previously proposed models. All reported eukaryotic 5S rRNAs fit this model. The sequence of the 5.8S rRNA is (formula, see text). This sequence does not fit parts of existing secondary structure models for 5.8S rRNA, and we question the significance of such models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号