共查询到20条相似文献,搜索用时 0 毫秒
1.
Nicholas W. Plummer Teresa L. Squire Sudha Srinivasan Elizabeth Huang Jon S. Zawistowski Hiroaki Matsunami Laura P. Hale Douglas A. Marchuk 《Mammalian genome》2006,17(2):119-128
Cerebral cavernous malformations are vascular defects of the central nervous system consisting of clusters of dilated vessels
that are subject to frequent hemorrhaging. The genes mutated in three forms of autosomal dominant cerebral cavernous malformations
have been cloned, but it remains unclear which cell type is ultimately responsible for the lesion. In this article we describe
mice with a gene trap insertion in the Ccm2 gene. Consistent with the human phenotype, heterozygous animals develop cerebral vascular malformations, although penetrance
is low. β-galactosidase activity in heterozygous brain and in situ hybridization in wild-type brain revealed Ccm2 expression in neurons and choroid plexus but not in vascular endothelium of small vessels in the brain. The expression pattern
of Ccm2 is similar to that of the Ccm1 gene and its interacting protein ICAP1 (Itgb1bp1). These data suggest that cerebral cavernous malformations arise as a result of defects in the neural parenchyma surrounding
the vascular endothelial cells in the brain.
Nicholas W. Plummer, Teresa L. Squire and Sudha Srinivasan contributed equally to this work. 相似文献
2.
The Caenorhabditis elegans vulva provides a simple model for the genetic analysis of pattern formation and organ morphogenesis during metazoan development. We have discovered an essential role for the polarity protein PAR-1 in the development of the vulva. Postembryonic RNA interference of PAR-1 causes a protruding vulva phenotype. We found that depleting PAR-1 during the development of the vulva has no detectable effect on fate specification or precursor proliferation, but instead seems to specifically alter morphogenesis. Using an apical junction-associated GFP marker, we discovered that PAR-1 depletion causes a failure of the two mirror-symmetric halves of the vulva to join into a single, coherent organ. The cells that normally form the ventral vulval rings fail to make contact or adhere and consequently form incomplete toroids, and dorsal rings adopt variably abnormal morphologies. We also found that PAR-1 undergoes a redistribution from apical junctions to basolateral domains during morphogenesis. Despite a known role for PAR-1 in cell polarity, we have observed no detectable differences in the distribution of various markers of epithelial cell polarity. We propose that PAR-1 activity at the cell cortex is critical for mediating cell shape changes, cell surface composition, or cell signaling during vulval morphogenesis. 相似文献
3.
Cooley MA Kern CB Fresco VM Wessels A Thompson RP McQuinn TC Twal WO Mjaatvedt CH Drake CJ Argraves WS 《Developmental biology》2008,319(2):336-345
Here we report that mouse embryos homozygous for a gene trap insertion in the fibulin-1 (Fbln1) gene are deficient in Fbln1 and exhibit cardiac ventricular wall thinning and ventricular septal defects with double outlet right ventricle or overriding aorta. Fbln1 nulls also display anomalies of aortic arch arteries, hypoplasia of the thymus and thyroid, underdeveloped skull bones, malformations of cranial nerves and hemorrhagic blood vessels in the head and neck. The spectrum of malformations is consistent with Fbln1 influencing neural crest cell (NCC)-dependent development of these tissues. This is supported by evidence that Fbln1 expression is associated with streams of cranial NCCs migrating adjacent to rhombomeres 2-7 and that Fbln1-deficient embryos display patterning anomalies of NCCs forming cranial nerves IX and X, which derive from rhombomeres 6 and 7. Additionally, Fbln1-deficient embryos show increased apoptosis in areas populated by NCCs derived from rhombomeres 4, 6 and 7. Based on these findings, it is concluded that Fbln1 is required for the directed migration and survival of cranial NCCs contributing to the development of pharyngeal glands, craniofacial skeleton, cranial nerves, aortic arch arteries, cardiac outflow tract and cephalic blood vessels. 相似文献
4.
Hébert JM Lin M Partanen J Rossant J McConnell SK 《Development (Cambridge, England)》2003,130(6):1101-1111
During development, the embryonic telencephalon is patterned into different areas that give rise to distinct adult brain structures. Several secreted signaling molecules are expressed at putative signaling centers in the early telencephalon. In particular, Fgf8 is expressed at the anterior end of the telencephalon and is hypothesized to pattern it along the anteroposterior (AP) axis. Using a CRE/loxP genetic approach to disrupt genes in the telencephalon, we address the role of FGF signaling directly in vivo by abolishing expression of the FGF receptor Fgfr1. In the Fgfr1-deficient telencephalon, AP patterning is largely normal. However, morphological defects are observed at the anterior end of the telencephalon. Most notably, the olfactory bulbs do not form normally. Examination of the proliferation state of anterior telencephalic cells supports a model for olfactory bulb formation in which an FGF-dependent decrease in proliferation is required for initial bulb evagination. Together the results demonstrate an essential role for Fgfr1 in patterning and morphogenesis of the telencephalon. 相似文献
5.
E-cadherin, the primary epithelial adherens junction protein, has been implicated as playing a critical role in nucleating formation of adherens junctions, tight junctions, and desmosomes. In addition to its role in maintaining structural tissue integrity, E-cadherin has also been suggested as an important modulator of cell signaling via interactions with its cytoplasmic binding partners, catenins, as well as with growth factor receptors. Therefore, we proposed that loss of E-cadherin from the developing mouse intestinal epithelium would disrupt intestinal epithelial morphogenesis and function. To test this hypothesis, we used a conditional knockout approach to eliminate E-cadherin specifically in the intestinal epithelium during embryonic development. We found that E-cadherin conditional knockout mice failed to survive, dying within the first 24 hours of birth. Examination of intestinal architecture at E18.5 demonstrated severe disruption to intestinal morphogenesis in animals lacking E-cadherin in the epithelium of the small intestine. We observed changes in epithelial cell shape as well as in the morphology of villi. Although junctional complexes were evident, junctions were abnormal, and barrier function was compromised in E-cadherin mutant intestine. We also identified changes in the epithelial cell populations present in E-cadherin conditional knockout animals. The number of proliferating cells was increased, whereas the number of enterocytes was decreased. Although Wnt/β-catenin target mRNAs were more abundant in mutants compared with controls, the amount of nuclear activated β-catenin protein was dramatically lower in mutants compared with controls. In summary, our data demonstrate that E-cadherin is essential for intestinal epithelial morphogenesis and homeostasis during embryonic development. 相似文献
6.
7.
Xu PX Zheng W Laclef C Maire P Maas RL Peters H Xu X 《Development (Cambridge, England)》2002,129(13):3033-3044
Eyes absent (Eya) genes regulate organogenesis in both vertebrates and invertebrates. Mutations in human EYA1 cause congenital Branchio-Oto-Renal (BOR) syndrome, while targeted inactivation of murine Eya1 impairs early developmental processes in multiple organs, including ear, kidney and skeletal system. We have now examined the role of Eya1 during the morphogenesis of organs derived from the pharyngeal region, including thymus, parathyroid and thyroid. The thymus and parathyroid are derived from 3rd pharyngeal pouches and their development is initiated via inductive interactions between neural crest-derived arch mesenchyme, pouch endoderm, and possibly the surface ectoderm of 3rd pharyngeal clefts. Eya1 is expressed in all three cell types during thymus and parathyroid development from E9.5 and the organ primordia for both of these structures failed to form in Eya1(-/-) embryos. These results indicate that Eya1 is required for the initiation of thymus and parathyroid gland formation. Eya1 is also expressed in the 4th pharyngeal region and ultimobranchial bodies. Eya1(-/-) mice show thyroid hypoplasia, with severe reduction in the number of parafollicular cells and the size of the thyroid lobes and lack of fusion between the ultimobranchial bodies and the thyroid lobe. These data indicate that Eya1 also regulates mature thyroid gland formation. Furthermore, we show that Six1 expression is markedly reduced in the arch mesenchyme, pouch endoderm and surface ectoderm in the pharyngeal region of Eya1(-/-) embryos, indicating that Six1 expression in those structures is Eya1 dependent. In addition, we show that in Eya1(-/-) embryos, the expression of Gcm2 in the 3rd pouch endoderm is undetectable at E10.5, however, the expression of Hox and Pax genes in the pouch endoderm is preserved at E9.5-10.5. Finally, we found that the surface ectoderm of the 3rd and 4th pharyngeal region show increased cell death at E10.5 in Eya1(-/-) embryos. Our results indicate that Eya1 controls critical early inductive events involved in the morphogenesis of thymus, parathyroid and thyroid. 相似文献
8.
The etiology of human malformations: insights from epidemiology 总被引:5,自引:0,他引:5
I Leck 《Teratology》1972,5(3):303-314
9.
In wild-type Caenorhabditis elegans, the gonad is a complex epithelial tube that consists of long arms composed predominantly of germline tissue as well as somatic structures specialized for particular reproductive functions. In gon-1 mutants, the adult gonad is severely disorganized with essentially no arm extension and no recognizable somatic structure. The developmental defects in gon-1 mutants are limited to the gonad; other cells, tissues, and organs appear to develop normally. Previous work defined the regulatory "leader" cells as crucial for extension of the gonadal arms (J. E. Kimble and J. G. White, 1981, Dev. Biol. 81, 208-219). In gon-1 mutants, the leader cells are specified correctly, but they fail to migrate and gonadal arms are not generated. In addition, gon-1 is required for morphogenesis of the gonadal somatic structures. This second role appears to be independent of that required for leader migration. Parallel studies have shown that gon-1 encodes a secreted metalloprotease (R. Blelloch and J. Kimble, 1999, Nature 399, 586-590). We discuss how a metalloprotease may control two aspects of gonadal morphogenesis. 相似文献
10.
Hart AH Hartley L Sourris K Stadler ES Li R Stanley EG Tam PP Elefanty AG Robb L 《Development (Cambridge, England)》2002,129(15):3597-3608
In Xenopus, the Mix/Bix family of homeobox genes has been implicated in mesendoderm development. Mixl1 is the only known murine member of this family. To examine the role of Mixl1 in murine embryogenesis, we used gene targeting to create mice bearing a null mutation of Mixl1. Homozygous Mixl1 mutant embryos can be distinguished from their littermates by a marked thickening of the primitive streak. By the early somite stage, embryonic development is arrested, with the formation of abnormal head folds, foreshortened body axis, absence of heart tube and gut, deficient paraxial mesoderm, and an enlarged midline tissue mass that replaces the notochord. Development of extra-embryonic structures is generally normal except that the allantois is often disproportionately large for the size of the mutant embryo. In chimeras, Mixl1(-/-) mutant cells can contribute to all embryonic structures, with the exception of the hindgut, suggesting that Mixl1 activity is most crucial for endodermal differentiation. Mixl1 is therefore required for the morphogenesis of axial mesoderm, the heart and the gut during embryogenesis. 相似文献
11.
The carboxy-terminal domain of glycoprotein N of human cytomegalovirus is required for virion morphogenesis
下载免费PDF全文

Mach M Osinski K Kropff B Schloetzer-Schrehardt U Krzyzaniak M Britt W 《Journal of virology》2007,81(10):5212-5224
Glycoproteins M and N (gM and gN, respectively) are among the few proteins that are conserved across the herpesvirus family. The function of the complex is largely unknown. Whereas deletion from most alphaherpesviruses has marginal effects on the replication of the respective viruses, both proteins are essential for replication of human cytomegalovirus (HCMV). We have constructed a series of mutants in gN to study the function of this protein. gN of HCMV is a type I glycoprotein containing a short carboxy-terminal domain of 14 amino acids, including two cysteine residues directly adjacent to the predicted transmembrane anchor at positions 125 and 126. Deletion of the entire carboxy-terminal domain as well as substitution with the corresponding region from alpha herpesviruses or mutations of both cysteine residues resulted in a replication-incompetent virus. Recombinant viruses containing point mutations of either cysteine residue could be generated. These viruses were profoundly defective for replication. Complex formation of the mutant gNs with gM and transport of the complex to the viral assembly compartment appeared unaltered compared to the wild type. However, in infected cells, large numbers of capsids accumulated in the cytoplasm that failed to acquire an envelope. Transiently expressed gN was shown to be modified by palmitic acid at both cysteine residues. In summary, our data suggest that the carboxy-terminal domain of gN plays a critical role in secondary envelopment of HCMV and that palmitoylation of gN appears to be essential for function in secondary envelopment of HCMV and virus replication. 相似文献
12.
Chen C Marcus A Li W Hu Y Calzada JP Grossniklaus U Cyr RJ Ma H 《Development (Cambridge, England)》2002,129(10):2401-2409
The spindle plays a central role in chromosome segregation during mitosis and meiosis. In particular, various kinesins are thought to play crucial roles in spindle structure and function in both mitosis and meiosis of fungi and animals. A group of putative kinesins has been previously identified in Arabidopsis, called ATK1-ATK4 (previously known as KATA-KATD), but their in vivo functions have not been tested with genetic studies. We report here the isolation and characterization of a mutant, atk1-1, which has a defective ATK1 gene. The atk1-1 mutant was identified in a collection of Ds transposon insertion lines by its reduced fertility. Reciprocal crosses between the atk1-1 mutant and wild type showed that only male fertility was reduced, not female fertility. Molecular analyses, including revertant studies, indicated that the Ds insertion in the ATK1 gene was responsible for the fertility defect. Light microscopy revealed that, in the atk1-1 mutant, male meiosis was defective, producing an abnormal number of microspores of variable sizes. Further cytological studies indicated that meiotic chromosome segregation and spindle organization were both abnormal in the mutant. Specifically, the atk1-1 mutant male meiotic cells had spindles that were broad, unfocused and multi-axial at the poles at metaphase I, unlike the typical fusiform bipolar spindle found in the wild-type metaphase I cells. Therefore, the ATK1 gene plays a crucial role in spindle morphogenesis in male Arabidopsis meiosis. 相似文献
13.
Many organs, such as the liver, neural tube, and lung, form by the precise remodeling of flat epithelial sheets into tubes. Here we investigate epithelial tubulogenesis in Drosophila melanogaster by examining the development of the dorsal respiratory appendages of the eggshell. We employ a culture system that permits confocal analysis of stage 10-14 egg chambers. Time-lapse imaging of GFP-Moesin-expressing egg chambers reveals three phases of morphogenesis: tube formation, anterior extension, and paddle maturation. The dorsal-appendage-forming cells, previously thought to represent a single cell fate, consist of two subpopulations, those forming the tube roof and those forming the tube floor. These two cell types exhibit distinct morphological and molecular features. Roof-forming cells constrict apically and express high levels of Broad protein. Floor cells lack Broad, express the rhomboid-lacZ marker, and form the floor by directed cell elongation. We examine the morphogenetic phenotype of the bullwinkle (bwk) mutant and identify defects in both roof and floor formation. Dorsal appendage formation is an excellent system in which cell biological, molecular, and genetic tools facilitate the study of epithelial morphogenesis. 相似文献
14.
15.
Microvilli are actin-based fingerlike membrane projections that form the basis of the brush border of enterocytes and the Drosophila melanogaster photoreceptor rhabdomere. Although many microvillar cytoskeletal components have been identified, the molecular basis of microvillus formation is largely undefined. Here, we report that the Wiskott-Aldrich syndrome protein (WASp) is necessary for rhabdomere microvillus morphogenesis. We show that WASp accumulates on the photoreceptor apical surface before microvillus formation, and at the time of microvillus initiation WASp colocalizes with amphiphysin and moesin. The loss of WASp delays the enrichment of F-actin on the apical photoreceptor surface, delays the appearance of the primordial microvillar projections, and subsequently leads to malformed rhabdomeres. 相似文献
16.
Steensgaard P Garrè M Muradore I Transidico P Nigg EA Kitagawa K Earnshaw WC Faretta M Musacchio A 《EMBO reports》2004,5(6):626-631
Budding yeast Sgt1 is required for kinetochore assembly, and its homologues have a role in cAMP signalling in fungi and pathogen resistance in plants. The function of mammalian Sgt1 is unknown. We report that RNA interference-mediated depletion of Sgt1 from HeLa cells causes dramatic alterations of the mitotic spindle and problems in chromosome alignment. Cells lacking Sgt1 undergo a mitotic delay due to activation of the spindle checkpoint. The checkpoint response, however, is significantly weakened in Sgt1-depleted cells, and this correlates with a dramatic reduction in kinetochore levels of Mad1, Mad2 and BubR1. These effects are explained by a problem in kinetochore assembly that prevents the localization of Hec1, CENP-E, CENP-F, CENP-I, but not CENP-C, to mitotic kinetochores. Our studies implicate Sgt1 as an essential protein and a critical assembly factor for the mammalian kinetochore, and lend credit to the hypothesis of a kinetochore assembly pathway that is conserved from yeast to man. 相似文献
17.
18.
Dickkopf1 is required for embryonic head induction and limb morphogenesis in the mouse. 总被引:2,自引:0,他引:2
M Mukhopadhyay S Shtrom C Rodriguez-Esteban L Chen T Tsukui L Gomer D W Dorward A Glinka A Grinberg S P Huang C Niehrs J C Belmonte H Westphal 《Developmental cell》2001,1(3):423-434
Dickkopf1 (Dkk1) is a secreted protein that acts as a Wnt inhibitor and, together with BMP inhibitors, is able to induce the formation of ectopic heads in Xenopus. Here, we show that Dkk1 null mutant embryos lack head structures anterior of the midbrain. Analysis of chimeric embryos implicates the requirement of Dkk1 in anterior axial mesendoderm but not in anterior visceral endoderm for head induction. In addition, mutant embryos show duplications and fusions of limb digits. Characterization of the limb phenotype strongly suggests a role for Dkk1 both in cell proliferation and in programmed cell death. Our data provide direct genetic evidence for the requirement of secreted Wnt antagonists during embryonic patterning and implicate Dkk1 as an essential inducer during anterior specification as well as a regulator during distal limb patterning. 相似文献
19.