首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bruton's tyrosine kinase (Btk) represents an important signaling element downstream of ITAM-containing receptors, e.g. FcepsilonR1 and BCR. Btk is part of the calcium signalosome and thus, critically involved in intracellular calcium mobilization. Loss of Btk or expression of mutant forms results in severe disease phenotypes, X-linked agammaglobulinemia (XLA) and Xid in humans and mice, respectively. Previously, roles for Btk in TLR-mediated signal transduction have been found in monocytes/macrophages. In the present study we show that Btk deficiency moderately enhances or has no influence on the LPS- or lipopeptide-induced secretion of IL-6 and TNF-alpha from murine bone marrow-derived mast cells (BMMCs). Furthermore, activation of p38 kinase, which is required for cytokine production, is comparable in WT and Btk-/- BMMCs. Moreover, stability of the adaptor protein Mal as well as LPS-induced H(2)O(2) production does not vary between WT and Btk-/- cells. Interestingly, PKC-beta deficiency, which results in a Xid-like phenotype as well, has also no negative effect on LPS-induced cytokine secretion, suggesting that proteins of the calcium signalosome are not involved in TLR-mediated BMMC activation. In conclusion, the study reveals that Btk is dispensable for TLR signaling and function in murine BMMCs.  相似文献   

2.
Neurocan is a component of the extracellular matrix in brain. Due to its inhibition of neuronal adhesion and outgrowth in vitro and its expression pattern in vivo it was suggested to play an important role in axon guidance and neurite growth. To study the role of neurocan in brain development we generated neurocan-deficient mice by targeted disruption of the neurocan gene. These mice are viable and fertile and have no obvious deficits in reproduction and general performance. Brain anatomy, morphology, and ultrastructure are similar to those of wild-type mice. Perineuronal nets surrounding neurons appear largely normal. Mild deficits in synaptic plasticity may exist, as maintenance of late-phase hippocampal long-term potentiation is reduced. These data indicate that neurocan has either a redundant or a more subtle function in the development of the brain.  相似文献   

3.
MEK is a dual-specificity kinase that activates the extracellular signal-regulated kinase (ERK) mitogen-activated protein (MAP) kinase upon agonist binding to receptors. The ERK/MAP kinase cascade is involved in cell fate determination in many organisms. In mammals, this pathway is proposed to regulate cell growth and differentiation. Genetic studies have shown that although a single Mek gene is present in Caenorhabditis elegans, Drosophila melanogaster, and Xenopus laevis, two Mek homologs, Mek1 and Mek2, are present in the mammalian cascade. The inactivation of the Mek1 gene leads to embryonic lethality and has revealed the unique role played by Mek1 during embryogenesis. To investigate the biological function of the second homolog, we have generated mice deficient in Mek2 function. Mek2 mutant mice are viable and fertile, and they do not present flagrant morphological alteration. Although several components of the ERK/MAP kinase cascade have been implicated in thymocyte development, no such involvement was observed for MEK2, which appears to be nonessential for thymocyte differentiation and T-cell-receptor-induced proliferation and apoptosis. Altogether, our findings demonstrate that MEK2 is not necessary for the normal development of the embryo and T-cell lineages, suggesting that the loss of MEK2 can be compensated for by MEK1.  相似文献   

4.
Testicans are proteoglycans belonging to the BM-40/SPARC/osteonectin family of extracellular calcium-binding proteins. Testican-1 is strongly expressed in the brain and has been reported to modulate neuronal attachment and matrix metalloproteinase activation. Characterization of the mouse testican-1 gene (Ticn1), consisting of 12 exons out of which exon 3 is alternatively spliced, allowed the construction of a gene targeting construct. Mice deficient in testican-1 showed no obvious morphological or behavioral abnormalities, were fertile, and had normal life spans. Despite the fact that neither of the testican-1 homologues expressed in the brain, testican-2, testican-3 and SC1/hevin, showed an increased expression in Ticn1 null mice, these results, together with those from other gene targetings, indicate extensive functional redundancy among brain proteoglycans.  相似文献   

5.
Twinfilins are evolutionarily conserved regulators of cytoskeletal dynamics. They inhibit actin polymerization by binding both actin monomers and filament barbed ends. Inactivation of the single twinfilin gene from budding yeast and fruit fly results in defects in endocytosis, cell migration, and organization of the cortical actin filament structures. Mammals express three twinfilin isoforms, of which twinfilin-1 and twinfilin-2a display largely overlapping expression patterns in non-muscle tissues of developing and adult mice. The expression of twinfilin-2b, which is generated through alternative promoter usage of the twinfilin-2 gene, is restricted to heart and skeletal muscles. However, the physiological functions of mammalian twinfilins have not been reported. As a first step towards understanding the function of twinfilin in vertebrates, we generated twinfilin-2a deficient mice by deleting exon 1 of the twinfilin-2 gene. Twinfilin-2a knockout mice developed normally to adulthood, were fertile, and did not display obvious morphological or behavioural abnormalities. Tissue anatomy and morphology in twinfilin-2a deficient mice was similar to that of wild-type littermates. These data suggest that twinfilin-2a plays a redundant role in cytoskeletal dynamics with the biochemically similar twinfilin-1, which is typically co-expressed in same tissues with twinfilin-2a.  相似文献   

6.
7.
Cyclin-dependent kinases (CDKs) play an essential role in cell cycle regulation during the embryonic and post-embryonic development of various organisms. Full activation of CDKs requires not only binding to cyclins but also phosphorylation of the T-loop domain. This phosphorylation is catalysed by CDK-activating kinases (CAKs). Plants have two distinct types of CAKs, namely CDKD and CDKF; in Arabidopsis, CDKF;1 exhibits the highest CDK kinase activity in vitro . We have previously shown that CDKF;1 also functions in the activation of CDKD;2 and CDKD;3 by T-loop phosphorylation. Here, we isolated the knockout mutants of CDKF;1 and showed that they had severe defects in cell division, cell elongation and endoreduplication. No defect was observed during embryogenesis, suggesting that CDKF;1 function is primarily required for post-embryonic development. In the cdkf;1 mutants, T-loop phosphorylation of CDKA;1, an orthologue of yeast Cdc2/Cdc28p, was comparable to that in wild-type plants, and its kinase activity did not decrease. In contrast, the protein level and kinase activity of CDKD;2 were significantly reduced in the mutants. Substitution of threonine-168 with a non-phosphorylatable alanine residue made CDKD;2 unstable in Arabidopsis tissues. These results indicate that CDKF;1 is dispensable for CDKA;1 activation but is essential for maintaining a steady-state level of CDKD;2, thereby suggesting the quantitative regulation of a vertebrate-type CAK in a plant-specific manner.  相似文献   

8.
Cytochrome c is thought to play an important role in the initiation of apoptosis following its release from mitochondria. It is controversial whether such release is also involved in caspase activation and apoptotic cell death after ligation of the cell surface molecule Fas. We addressed this issue by investigating cells from the human cell lines Jurkat and SKW6 which had been treated with the inhibitor of the mitochondrial F0/F1-ATPase, oligomycin. Oligomycin-treatment led, over a wide range of concentrations, to ATP-depletion and, at similar concentrations, abrogated the appearance of caspase-3-like activity caused by stauroporine. Electroporation of cytochrome c protein into intact cells induced caspase activation in both cell lines and significant nuclear apoptosis in Jurkat cells. In ATP-depleted cells, electroporation of cytochrome c induced neither caspase activation nor nuclear fragmentation. Fas-induced caspase activation and nuclear apoptosis, however, were unaffected by the depletion of ATP. Thus, cytochrome c is unlikely to be an important factor in Fas-induced cell death.  相似文献   

9.
Matrilin-3 is dispensable for mouse skeletal growth and development   总被引:7,自引:0,他引:7       下载免费PDF全文
Matrilin-3 belongs to the matrilin family of extracellular matrix (ECM) proteins and is primarily expressed in cartilage. Mutations in the gene encoding human matrilin-3 (MATN-3) lead to autosomal dominant skeletal disorders, such as multiple epiphyseal dysplasia (MED), which is characterized by short stature and early-onset osteoarthritis, and bilateral hereditary microepiphyseal dysplasia, a variant form of MED characterized by pain in the hip and knee joints. To assess the function of matrilin-3 during skeletal development, we have generated Matn-3 null mice. Homozygous mutant mice appear normal, are fertile, and show no obvious skeletal malformations. Histological and ultrastructural analyses reveal endochondral bone formation indistinguishable from that of wild-type animals. Northern blot, immunohistochemical, and biochemical analyses indicated no compensatory upregulation of any other member of the matrilin family. Altogether, our findings suggest functional redundancy among matrilins and demonstrate that the phenotypes of MED disorders are not caused by the absence of matrilin-3 in cartilage ECM.  相似文献   

10.
Numerous extracellular agonists induce consecutive stimulation of Ras guanine nucleotide exchange factors, Ras and c-Raf1, as the starting point of the intracellular mitogen-activated protein kinase cascade. Recent data point to a more complex reaction pattern of this simple sequence. This study was aimed at elucidating the activation process of endogenous c-Raf1 in U937 cells. Treatment of permeabilized U937 cells with the nonhydrolyzable nucleotide guanosine 5'-3-O-(thio)triphosphate (GTPgammaS) induced prolonged stimulation of Ras and c-Raf1 activity. Intriguingly, both signaling proteins expressed differential responses toward specific inhibitors of phosphoinositide 3-kinases and tyrosine kinases, which indicates diverse signaling reactions feeding into Ras and cRaf-1. Phosphorylation of c-Raf1 serine 338 by p21-activated kinase has been recently reported to contribute to phosphoinositide 3-kinase-dependent activation of c-Raf1. However, in U937 cells stimulation of c-Raf1 activity by GTPgammaS did not correlate with p21-activated kinase activity and Ser-338 phosphorylation. Thus Ser-338 phosphorylation appears dispensable for c-Raf1 activation under the conditions used. Together these data deny an essential role for serine 338 phosphorylation in c-Raf1 activation and disclose divergent signaling connections of Ras and c-Raf1 in U937 cells.  相似文献   

11.
Ghrelin is a peptide hormone that has been implicated in the regulation of food intake and energy homeostasis. Ghrelin is predominantly produced in the stomach, but is also expressed in many other tissues where its functions are not well characterized. In the rodent and human pancreas, ghrelin levels peak at late gestation and gradually decline postnatally. Several studies have suggested that ghrelin regulates beta cell function during embryonic development and in the adult. In addition, in a number of mouse models, ghrelin cells appear to replace insulin- and glucagon-producing cells in the islet. In this analysis, we investigated whether the absence or overexpression of ghrelin influenced the development and differentiation of the pancreatic islet during embryonic development. These studies revealed that ghrelin is dispensable for normal pancreas development during gestation. Conversely, we demonstrated that elevated ghrelin in the Nkx2.2 null islets is not responsible for the absence of insulin- and glucagon-producing cells. Finally, we have also determined that in the absence of insulin, ghrelin cells form in their normal numbers and ghrelin is expressed at wild type levels.  相似文献   

12.
13.
14.
The Bambi (Bmp and activin membrane-bound inhibitor) gene encodes a transmembrane protein highly similar in amino acid sequence to transforming growth factor-beta (TGF-beta receptors, however, the Bambi intracellular domain is short and lacks a serine/threonine-kinase domain that is essential for transducing TGF beta signaling. Previous biochemical assays showed that Bambi interacts directly with BMP receptors and antagonizes BMP signaling. Interestingly, the expression of Bambi largely overlaps, both temporally and spatially, with that of Bmp4 during early embryonic development in Xenopus, zebrafish, and mice, which led to the hypothesis that Bambi may function to regulate BMP signaling during embryogenesis. To directly analyze the roles of Bambi during embryonic development, we generated mice carrying a conditional allele of Bambi, Bambi(flox), with loxP sequences flanking the first exon that encodes the N-terminus and signal peptide region of the Bambi protein. Mice homozygous for this targeted conditional allele appear normal and fertile. We crossed the Bambi(flox)/+ mice to the EIIa-Cre transgenic mice and generated mice carrying deletion of the first exon of the Bambi gene. Surprisingly, mice homozygous for the deleted allele were viable, fertile and did not exhibit any discernible developmental defect. Our data exclude an essential role for Bambi in mouse embryonic development and postnatal survival.  相似文献   

15.
MAPK p38 alpha is dispensable for lymphocyte development and proliferation   总被引:4,自引:0,他引:4  
Signals mediated by the p38alpha MAPK have been implicated in many processes required for the development and effector functions of innate and adaptive immune responses. As mice deficient in p38alpha exhibit embryonic lethality, most analyses of p38alpha function in lymphocytes have relied on the use of pharmacologic inhibitors and dominant-negative or constitutively active transgenes. In this study, we have generated a panel of low passage p38alpha(+/+), p38alpha(+/-), and p38alpha(-/-) embryonic stem (ES) cells through the intercrossing of p38alpha(+/-) mice. These ES cells were used to generate chimeric mice by RAG-deficient blastocyst complementation, with the lymphocytes in these mice being derived entirely from the ES cells. Surprisingly, B and T cell development were indistinguishable when comparing chimeric mice generated with p38alpha(+/+), p38alpha(+/-), and p38alpha(-/-) ES cell lines. Moreover, proliferation of p38alpha(-/-) B and T cells in response to Ag receptor and non-Ag receptor stimuli was intact. Thus, p38alpha is not an essential component of signaling pathways required for robust B and T lymphocyte developmental, nor is p38alpha essential for the proliferation of mature B and T cells.  相似文献   

16.
17.
Golgins are a family of coiled‐coil proteins located at the cytoplasmic surface of the Golgi apparatus and have been implicated in maintaining Golgi structural integrity through acting as tethering factors for retrograde vesicle transport. Whereas knockdown of several individual golgins in cultured cells caused Golgi fragmentation and disruption of vesicle trafficking, analysis of mutant mouse models lacking individual golgins have discovered tissue‐specific developmental functions. Recently, homozygous loss of function of GOLGA2, of which previous in vitro studies suggested an essential role in maintenance of Golgi structure and in mitosis, has been associated with a neuromuscular disorder in human patients, which highlights the need for understanding the developmental roles of the golgins in vivo. We report here generation of Golga5‐deficient mice using CRISPR/Cas9‐mediated genome editing. Although knockdown studies in cultured cells have implicated Golga5 in maintenance of Golgi organization, we show that Golga5 is not required for mouse embryonic development, postnatal survival, or fertility. Moreover, whereas Golga5 is structurally closely related to Golgb1, we show that inactivation of Golga5 does not enhance the severity of developmental defects in Golgb1‐deficient mice. The Golga5‐deficient mice enable further investigation of the roles and functional specificity of golgins in development and diseases.  相似文献   

18.
Fibulin-2 is dispensable for mouse development and elastic fiber formation   总被引:1,自引:0,他引:1  
Fibulin-2 is an extracellular matrix protein belonging to the five-member fibulin family, of which two members have been shown to play essential roles in elastic fiber formation during development. Fibulin-2 interacts with two major constituents of elastic fibers, tropoelastin and fibrillin-1, in vitro and localizes to elastic fibers in many tissues in vivo. The protein is prominently expressed during morphogenesis of the heart and aortic arch vessels and at early stages of cartilage development. To examine its role in vivo, we generated mice that do not express the fibulin-2 gene (Fbln2) through homologous recombination of embryonic stem cells. Unexpectedly, the fibulin-2-null mice were viable and fertile and did not display gross and anatomical abnormalities. Histological and ultrastructural analyses revealed that elastic fibers assembled normally in the absence of fibulin-2. No compensatory up-regulation of mRNAs for other fibulin members was detected in the aorta and skin tissue. However, in the fibulin-2 null aortae, fibulin-1 immunostaining was increased in the inner elastic lamina, where fibulin-2 preferentially localizes. The results demonstrate that fibulin-2 is not required for mouse development and elastic fiber formation and suggest possible functional redundancy between fibulin-1 and fibulin-2.  相似文献   

19.
The Notch signaling pathway is an evolutionarily conserved signaling system which has been shown to be essential in cell fate specification and in numerous aspects of embryonic development in all metazoans thus far studied. We recently demonstrated that several components of the Notch signaling pathway, including the four Notch receptors and their five ligands known in mammals, are expressed in mouse oocytes, in mouse preimplantation embryos, or both. This suggested a possible implication of the Notch pathway in the first cell fate specification of the dividing mouse embryo, which results in the formation of the blastocyst. To address this issue directly, we generated zygotes in which both the maternal and the zygotic expression of Rbpsuh, a key element of the core Notch signaling pathway, were abrogated. We find that such zygotes give rise to blastocysts which implant and develop normally. Nevertheless, after gastrulation, these embryos die around midgestation, similarly to Rbpsuh-null mutants. This demonstrates that the RBP-Jkappa-dependent pathway, otherwise called the canonical Notch pathway, is dispensable for blastocyst morphogenesis and the establishment of the three germ layers, ectoderm, endoderm, and mesoderm. These results are discussed in the light of recent observations which have challenged this conclusion.  相似文献   

20.
T C Heineman  K Seidel    J I Cohen 《Journal of virology》1996,70(10):7312-7317
Varicella-zoster virus (VZV) open reading frames (ORFs) 47 and 66 encode proteins that are homologous to a family of eukaryotic serine-threonine kinases. Prior studies showed that the VZV ORF47 protein has kinase activity in vitro and is dispensable for replication in cultured cells. To examine the role of the ORF66 protein during infection, we constructed VZV recombinants that are unable to express either the ORF66 protein (ROka 66S) or both the ORF47 and ORF66 proteins (ROka 47S/66S). VZV unable to express ORF66 grew to titers similar to those of the parental VZV (ROka) in vitro; however, VZV lacking both ORF66 and ORF47 grew to titers lower than those of ROka. Nuclear extracts from ROka 66S- or ROka 47S-infected cells showed a 48-kDa phosphoprotein(s); a phosphoprotein with a similar size was not present in nuclear extracts from ROka 47S/66S-infected cells. To determine the role of the ORF66 protein in the phosphorylation of specific VZV-encoded proteins, we immunoprecipitated known VZV phosphoproteins (ORF4, ORF62, ORF63, and ORF68 proteins) from nuclear extracts of phosphate-labeled cells infected with ROka, ROka 66S, or ROka 47S/66S. Each of the VZV phosphoproteins was phosphorylated to a similar extent in the presence or absence of either the ORF66 protein or both the ORF66 and ORF47 proteins. From these studies we conclude (i) neither ORF66 alone nor ORF66 and ORF47 in combination are essential for VZV growth in cultured cells, (ii) ORF66 either is a protein kinase or induces protein kinase activity during infection, and (iii) the VZV phosphoproteins encoded by ORF4, ORF62, ORF63, and ORF68 do not require either ORF66 alone or ORF66 and ORF47 for phosphorylation in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号