首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Although testicular germ cell tumors are generally quite responsive to treatment with cisplatin, a small fraction of them acquire resistance during therapy. Even when cisplatin treatment is successful the patient is often left with a residual teratoma at the site of the primary tumor suggesting that cisplatin may trigger differentiation in some tumors. Using the human embryonal carcinoma cell line NTera2/D1, we confirmed that exposure to the differentiating agent retinoic acid produced a reduction in pluripotency markers NANOG and POU5F1 (Oct3/4) and an acute concentration-dependent increase in resistance to both cisplatin and paclitaxel that reached as high as 18-fold for cisplatin and 61-fold for paclitaxel within four days. A two day exposure to cisplatin also produced a concentration-dependent decrease in the expression of the NANOG and POU5F1 and increased expression of three markers whose levels increase with differentiation including Nestin, SCG10 and Fibronectin. In parallel, exposure to cisplatin induced up to 6.2-fold resistance to itself and 104-fold resistance to paclitaxel. Paclitaxel did not induce differentiation or resistance to either itself or cisplatin. Neither retinoic acid nor cisplatin induced resistance in cervical or prostate cancer cell lines or other germ cell tumor lines in which they failed to alter the expression of NANOG and POU5F1. Forced expression of NANOG prevented the induction of resistance to cisplatin by retinoic acid. We conclude that cisplatin can acutely induce resistance to itself and paclitaxel by triggering a differentiation response in pluripotent germ cell tumor cells.  相似文献   

2.
Dual parameter flow cytoenzymology was used to detect biochemical differentiation of embryonal carcinoma cells, the undifferentiated, multipotent stem cells of teratocarcinomas. With the use of fluorogenic substrates, two enzyme systems, alkaline phosphatase (EC 3.1.3.1.) and carboxyl esterase (EC 3.1.1.), were studied. Embryonal carcinoma cells passaged in vitro for several years retained high alkaline phosphatase activities similar to those of embryonal carcinoma cells in embryoid bodies grown in vivo. Similar to the embryonal carcinoma cells in vivo, the in vitro embryonal carcinoma cells were capable of giving rise to progeny with greatly decreased levels of alkaline phosphatase. The embryonal carcinoma cell alkaline phosphatase was inhibited by l-p-bromotetramisole, suggesting a relationship between this enzyme and somatic, nonintestinal alkaline phosphatase isoenzymes. Determinations of esterase activities in viable teratocarcinoma cells showed that prior to any evidence of morphologic differentiation, the embryonal carcinoma cells are quite heterogeneous with regard to esterase activities.  相似文献   

3.
Figla基因过表达促进小鼠胚胎干细胞向雌性生殖细胞分化   总被引:1,自引:0,他引:1  
生殖系a因子(Figla)是最早表达的生殖细胞特异性转录因子之一,对卵泡的发育、Zp基因的表达和透明带的形成具有调节作用. Figla基因异常会引起卵巢早衰的发生. 本研究通过 PCR自小鼠基因组中扩增出Figla基因,将其克隆到真核报告载体pDsRed1 N1,构建了携带609 bp 的Figla重组载体pDsRed1 N1 Figla. 用该载体转染小鼠胚胎干细胞(mESCs)系J1、小鼠成纤维细胞系NIH 3T3、小鼠畸胎瘤细胞P19和小鼠精原细胞系GC1,在荧光显微镜下观察红色荧光蛋白(RFP)在细胞中的表达,同时检测转染细胞中Figla基因及其它生殖细胞特异性基因的表达. 结果显示,转染2 d,mESCs内Figla总表达量明显增加,且内源性表达量亦有所提高,即转入的外源性Figla基因可以促进内源性Figla的启动和表达. 免疫荧光染色显示,表达RFP 的细胞同时表达生殖特异性基因Vasa,减数分裂特异性基因Stra8、Scp3及卵母细胞标志基因Zp3. 通过QRT PCR检测发现,在转染3 d的细胞中,Vasa、Scp3和Zp1的表达较对照组均有明显上调,而Oct4和Stra8的表达量下降. 研究表明,Figla基因对生殖特异性基因的表达具有调控作用,可以激活雌性生殖基因表达,为更清楚地了解Figla基因在生殖细胞生长发育过程中的调控机制,以及发现该基因在生殖细胞中的新功能奠定了基础.  相似文献   

4.
5.
为探究生长阻滞和DNA损伤诱导蛋白45γ(Growth arrest and DNA-damage-inducible protein GADD45 gamma,Gadd45g)对小鼠胚胎干细胞(mouse embryonic stem cells,m ESCs)在体外培养条件下自我更新状态的影响,通过设计并构建含有Gadd45g基因的重组质粒,将其导入m ESCs内,过表达目标基因;在含有白血病抑制因子(LIF)的血清培养条件下,通过细胞计数、碱性磷酸酶染色、qRT-PCR以及免疫荧光等实验手段检测m ESCs的生长情况。结果显示,与对照组相比,过表达Gadd45g基因后,m ESCs的生长速度减缓,碱性磷酸酶活性降低,且中内胚层标志基因的表达水平显著上升。进一步研究发现,在添加LIF的有血清或2i无血清培养体系中,过表达Gadd45g均可以降低细胞内STAT3蛋白的磷酸化水平,由此推断上调Gadd45g的表达会抑制STAT3的活性,从而推动m ESCs向中内胚层分化。研究结果扩大了目前人们对于ESCs分化机制的理解,有利于胚胎干细胞未来的基础研究与安全应用。  相似文献   

6.
Embryonal carcinoma cells (EC cells) can form a wide variety of differentiated cell types and thus resemble the pluripotential stem cells of the normal embryo. Certain EC cell derivatives acquire the biochemical and morphological features of primitive endoderm and have been called 'END' or endodermlike cells. Although these have also been called 'giant' because of their large size, their nuclear DNA contents are not known. Since cell size often corresponds to DNA content and primitive endoderm becomes polyploid during the course of normal development, EC-derived endoderm has been studied cytophotometrically. Thus, EC- and embryo-derived endoderm were found to be similar in that both of these tissues undergo polyploidization. Moreover, the polyploid cells of either EC or embryonic origin do not appear to be terminal cell types, since they can occasionally enter renewed cell division in spite of their large size.  相似文献   

7.
Pluripotent, feeder-dependent teratocarcinoma cell lines were cultured without a feeder layer in a medium containing 10 −;4 M β-mercaptoethanol (β-medium) and compared for the development of early markers with cells cultured with a feeder layer. The cells cultured in β-medium lost the PNA (peanut agglutinin) receptor typically at low density. This change was accompanied with enhanced secretion of plasminogen activator and the loss of sensitivity to anti-F9 serum, indicating the stem cell differentiation. In contrast, the cells cultured on a feeder layer did not show any marker changes, thus indicating the lack of differentiation. These results indicate that while the presence of feeder cells inhibits cell differentiation, cultivation in β–medium permits the differentiation of pluripotent teratocarcinoma cells.  相似文献   

8.
Induction of differentiation in cancer stem cells by drug treatment represents an important approach for cancer therapy. The understanding of the mechanisms that regulate such a forced exit from malignant pluripotency is fundamental to enhance our knowledge of tumour stability. Certain nucleoside analogues, such as 2′-deoxy-5-azacytidine and 1β-arabinofuranosylcytosine, can induce the differentiation of the embryonic cancer stem cell line NTERA 2 D1 (NT2). Such induced differentiation is associated with drug-dependent DNA-damage, cellular stress and the proteolytic depletion of stem cell factors. In order to further elucidate the mode of action of these nucleoside drugs, we monitored differentiation-specific changes of the dielectric properties of growing NT2 cultures using electric cell-substrate impedance sensing (ECIS). We measured resistance values of untreated and retinoic acid treated NT2 cells in real-time and compared their impedance profiles to those of cell populations triggered to differentiate with several established substances, including nucleoside drugs. Here we show that treatment with retinoic acid and differentiation-inducing drugs can trigger specific, concentration-dependent changes in dielectric resistance of NT2 cultures, which can be observed as early as 24 hours after treatment. Further, low concentrations of nucleoside drugs induce differentiation-dependent impedance values comparable to those obtained after retinoic acid treatment, whereas higher concentrations induce proliferation defects. Finally, we show that impedance profiles of substance-induced NT2 cells and those triggered to differentiate by depletion of the stem cell factor OCT4 are very similar, suggesting that reduction of OCT4 levels has a dominant function for differentiation induced by nucleoside drugs and retinoic acid. The data presented show that NT2 cells have specific dielectric properties, which allow the early identification of differentiating cultures and real-time label-free monitoring of differentiation processes. This work might provide a basis for further analyses of drug candidates for differentiation therapy of cancers.  相似文献   

9.
This paper describes the expression profile of the CD44 glycoprotein during differentiation of embryonal carcinoma (EC) and embryonic stem (ES) cells. We have recently shown that CD44 is expressed in discrete embryonic structures and, in view of this, we sought an in vitro differentiation model of development in which we could study more readily the structure and function of the CD44 molecule. The P19 EC and CGR8 ES cells were chosen as they have the capacity to develop down the cardiac muscle pathway and we have previously demonstrated that CD44 is expressed abundantly in the embryonic myocardium. The differentiation process in both cell types is accompanied by an induction of CD44 mRNA and protein. However, in differentiated cultures CD44 is not expressed in contractile cells, indicating that these P19 cells do not represent CD44-positive embryonic cardiomyocytes. Expression of CD44 is observed on fibroblast-like cells which appear to migrate over and out from the plated aggregates. Hyaluronan, the major ligand for CD44, is also associated with these CD44-positive fibroblast-like cells. It is suggested that expression of both receptor and ligand by the fibroblastic cells is required for cell:matrix adhesion and cell motility. As CD44 is up-regulated in these cultures, P19 cells are now established as a useful model system to study the factors regulating expression of the CD44 gene.  相似文献   

10.
Wu LY  Wang Y  Jin B  Zhao T  Wu HT  Wu Y  Fan M  Wang XM  Zhu LL 《Neurochemical research》2008,33(10):2118-2125
Nervous system development at early stage is in hypoxic environment. Very little is known about the role of hypoxia in neuronal development. P19 embryonal carcinoma (EC) cells are a widely used model for studying early neuronal development. In this study we investigated the roles of hypoxia in differentiation of dopaminergic neurons derived from P19 EC cells. Results demonstrate that hypoxia increases the percentage of differentiated neurons, especially neurons of dopaminergic phenotype. To investigate the potential mechanism involved in hypoxia promoted differentiation of dopaminergic neurons, we measured the expression of hypoxia-inducible factor 1α (HIF-1α), based on its characteristic response to hypoxia. The result shows that HIF-1α mRNA level in P19 EC cells increases after hypoxia treatment. It is known that HIF-1α regulates the expression of tyrosine hydroxylase (TH) gene through binding to its promoter. Therefore, we propose that the underlying mechanism for hypoxia promoted differentiation of dopaminergic neurons was mediated by HIF-1α up-regulation under hypoxia. Yue Wang—Co-first author. Special Issue in honor of Dr. Ji-Sheng Han.  相似文献   

11.
In the present study, we examined in detail the process of forming chimeric blastocysts between B242g embryonal carcinoma (EC) cells and normal mouse embryos. Electron microscopic observations of the developing aggregates revealed that the embryonic cells spread over the surface of the EC cells, resulting in the internalization of EC cells in the aggregates. When a single blastomere of an 8-cell embryo was aggregated with EC cells, the blastomere spread over and engulfed the EC cells. These results strongly suggest that EC cells are segregated and become situated in the inside position as the development of an aggregate proceeds, and then they are incorporated into the ICM of a blastocyst.  相似文献   

12.
BMP4 maintains self-renewal of mouse embryonic stem cells (ESCs) in collaboration with LIF. Here, we report the identification of a novel key BMP target gene, cochlin (Coch) in mouse ESCs. Coch can be significantly up-regulated by BMP4 specifically in ESCs but not in somatic differentiated cells, and this up-regulation is dependent on the BMP signaling mediators Smad1/5 and Smad4. Overexpression of Coch can partially substitute BMP4 to promote self-renewal of mouse ESCs together with LIF, whereas knockdown of Coch impairs self-renewal marker gene expression even in the presence of both BMP4 and LIF. Further studies showed that COCH could mimic BMP4 in repressing neural differentiation of mouse ESCs upon LIF withdrawal and the inhibitory effect of BMP4 on neural differentiation is compromised by Coch knockdown. Taken together, our data suggest that COCH is a part of the downstream target network of BMP signaling and serves as another important effector to fine-tune mouse ESC fates.  相似文献   

13.
1. The retinoblastoma susceptibility gene product, p105Rb (RB), is an important regulator in the control of cell proliferation, differentiation, and apoptosis. Several cellular factors that complex with RB and exert their cellular regulatory functions have been identified, such as the RB:cyclophilin A (CypA) complex. 2. CypA is a cytoplasmic immunophilin and known for its involvement in T-cell differentiation and proliferation. Although CypA has a pivotal role in the immune response, its function in other signaling pathways is largely unknown. 3. In this study, we used a model of neuronal differentiation to demonstrate that the nuclear translocation of CypA, the appearance of hypophosphorylated RB and the enhancement of RB: CypA complex formation correlates with retinoic acid induced neuronal differentiation. 4. Inhibition of CypA expression results in repression of both the hypophosphorylated RB and the neuron-specific differentiation marker, class III beta tubulin. 5. The evidence of enriched CypA and colocalization of RB with CypA in the nucleus of primary adult sensory neurons substantiated the important event of RB-mediated neuronal differentiation of p19 EC cells.  相似文献   

14.
We have previously cloned a novel guanine nucleotide-binding protein (G-protein)-coupled receptor, H218, that has sequence similarity to a lysophosphatidic acid receptor, edg2. We present here Northern analysis indicating that the H218 mRNA is expressed in undifferentiated F9 embryonal carcinoma cells. The H218 message is down-regulated and its stability is decreased during retinoic acid- and dibutyryl cAMP-induced differentiation. Treatment by various receptor-selective retinoids indicated that retinoic acid receptor β or γ signaling, but not retinoid X receptor activation, is required for the down-regulation of H218 mRNA. Activation of the H218 receptor may contribute to the phenotype of undifferentiated F9 embryonal carcinoma cells.  相似文献   

15.
Laminin isoforms laminin-511 and -521 are expressed by human embryonic stem cells (hESC) and can be used as a growth matrix to culture these cells under pluripotent conditions. However, the expression of these laminins during the induction of hESC differentiation has not been studied in detail. Furthermore, the data regarding the expression pattern of laminin chains in differentiating hESC is scarce. In the current study we aimed to fill this gap and investigated the potential changes in laminin expression during early hESC differentiation induced by retinoic acid (RA). We found that laminin-511 but not -521 accumulates in the committed cells during early steps of hESC differentiation. We also performed a comprehensive analysis of the laminin chain repertoire and found that pluripotent hESC express a more diverse range of laminin chains than shown previously. In particular, we provide the evidence that in addition to α1, α5, β1, β2 and γ1 chains, hESC express α2, α3, β3, γ2 and γ3 chain proteins and mRNA. Additionally, we found that a variant of laminin α3 chain—145 kDa—accumulated in RA-treated hESC showing that these cells produce prevalently specifically modified version of α3 chain in early phase of differentiation.  相似文献   

16.
17.
During epithelialization, cell adhesions and polarity must be established to maintain tissue assemblies and separate the biological compartments in the body. However, the molecular basis of epithelial morphogenesis, in particular, a role of cell adhesion molecules in epithelial differentiation from stem cells, remains unclear. Here, we show that the stable and conditional expression of a tight-junction protein, claudin-6 (Cldn6), triggers epithelial morphogenesis in mouse F9 stem cells. We also demonstrate that Cldn6 induces the expression of other tight-junction and microvillus molecules including Cldn7, occludin, ZO-1α+, and ezrin/radixin/moesin-binding phosphoprotein50. These events were inhibited by attenuation of Cldn6 using RNA interference or the C-terminal half of Clostridium Perfringens enterotoxin. Furthermore, similar results were obtained in mouse embryonic stem cells. Thus, we have uncovered that the Cldn6 functions as a novel cue to induce epithelial differentiation.  相似文献   

18.
Little is known about the mechanisms underlying the effects of Cyclosporin A (CsA) on the fate of stem cells, including cardiomyogenic differentiation. Therefore, we investigated the effects and the molecular mechanisms behind the actions of CsA on cell lineage determination of P19 cells. CsA induced cardiomyocyte-specific differentiation of P19 cells, with the highest efficiency at a concentration of 0.32 μM during embryoid body (EB) formation via activation of the Wnt signaling pathway molecules, Wnt3a, Wnt5a, and Wnt8a, and the cardiac mesoderm markers, Mixl1, Mesp1, and Mesp2. Interestingly, cotreatment of P19 cells with CsA plus dimethyl sulfoxide (DMSO) during EB formation significantly increases cardiac differentiation. In contrast, mRNA expression levels of hematopoietic and endothelial lineage markers, including Flk1 and Er71, were severely reduced in CsA-treated P19 cells. Furthermore, expression of Flk1 protein and the percentage of Flk1+ cells were severely reduced in 0.32 μM CsA-treated P19 cells compared to control cells. CsA significantly modulated mRNA expression levels of the cell cycle molecules, p53 and Cyclins D1, D2, and E2 in P19 cells during EB formation. Moreover, CsA significantly increased cell death and reduced cell number in P19 cells during EB formation. These results demonstrate that CsA induces cardiac differentiation but inhibits hemato-endothelial differentiation via activation of the Wnt signaling pathway, followed by modulation of cell lineage-determining genes in P19 cells during EB formation.  相似文献   

19.
Corneal transparency depends on a unique extracellular matrix secreted by stromal keratocytes, mesenchymal cells of neural crest lineage. Derivation of keratocytes from human embryonic stem (hES) cells could elucidate the keratocyte developmental pathway and open a potential for cell-based therapy for corneal blindness. This study seeks to identify conditions inducing differentiation of pluripotent hES cells to the keratocyte lineage. Neural differentiation of hES cell line WA01(H1) was induced by co-culture with mouse PA6 fibroblasts. After 6 days of co-culture, hES cells expressing cell-surface NGFR protein (CD271, p75NTR) were isolated by immunoaffinity adsorption, and cultured as a monolayer for one week. Keratocyte phenotype was induced by substratum-independent pellet culture in serum-free medium containing ascorbate. Gene expression, examined by quantitative RT-PCR, found hES cells co-cultured with PA6 cells for 6 days to upregulate expression of neural crest genes including NGFR, SNAI1, NTRK3, SOX9, and MSX1. Isolated NGFR-expressing cells were free of PA6 feeder cells. After expansion as a monolayer, mRNAs typifying adult stromal stem cells were detected, including BMI1, KIT, NES, NOTCH1, and SIX2. When these cells were cultured as substratum-free pellets keratocyte markers AQP1, B3GNT7, PTDGS, and ALDH3A1 were upregulated. mRNA for keratocan (KERA), a cornea-specific proteoglycan, was upregulated more than 10,000 fold. Culture medium from pellets contained high molecular weight keratocan modified with keratan sulfate, a unique molecular component of corneal stroma. These results show hES cells can be induced to differentiate into keratocytes in vitro. Pluripotent stem cells, therefore, may provide a renewable source of material for development of treatment of corneal stromal opacities.  相似文献   

20.
胚胎干细胞具有分化成三胚层细胞的潜能。它已被视为治疗多种疾痛的一种新兴策略。在现阶段,通过不同的诱导途径可将胚胎干细胞诱导成为肝细胞:体外诱导、体内诱导以及体外和体内相结合诱导分化。然而从体内实验结果来看,其嵌合率及分化率不高,这是一个亟需解决的问题,否则就无法成功地将其应用于临床治疗。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号