首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plant cystatins, similar to other defense proteins, include hypervariable, positively selected amino acid sites presumably impacting their biological activity. Using 29 single mutants of the eighth domain of tomato (Solanum lycopersicum) multicystatin, SlCYS8, we assessed here the potential of site-directed mutagenesis at positively selected amino acid sites to generate cystatin variants with improved inhibitory potency and specificity toward herbivorous insect digestive cysteine (Cys) proteases. Compared to SlCYS8, several mutants (22 out of 29) exhibited either improved or lowered potency against different model Cys proteases, strongly suggesting the potential of positively selected amino acids as target sites to modulate the inhibitory specificity of the cystatin toward Cys proteases of agronomic significance. Accordingly, mutations at positively selected sites strongly influenced the inhibitory potency of SlCYS8 against digestive Cys proteases of the insect herbivore Colorado potato beetle (Leptinotarsa decemlineata). In particular, several variants exhibited improved potency against both cystatin-sensitive and cystatin-insensitive digestive Cys proteases of this insect. Of these, some variants also showed weaker activity against leaf Cys proteases of the host plant (potato [Solanum tuberosum]) and against a major digestive Cys protease of the two-spotted stinkbug Perillus bioculatus, an insect predator of Colorado potato beetle showing potential for biological control. Overall, these observations suggest the usefulness of site-directed mutagenesis at positively selected amino acid sites for the engineering of recombinant cystatins with both improved inhibitory potency toward the digestive proteases of target herbivores and weaker potency against nontarget Cys proteases in the host plant or the environment.  相似文献   

2.
Positive selection is thought to contribute to the functional diversification of insect-inducible protease inhibitors in plants in response to selective pressures exerted by the digestive proteases of their herbivorous enemies. Here we assessed whether a reciprocal evolutionary process takes place on the insect side, and whether ingestion of a positively selected plant inhibitor may translate into a measurable rebalancing of midgut proteases in vivo. Midgut Cys proteases of herbivorous Coleoptera, including the major pest Colorado potato beetle (Leptinotarsa decemlineata), were first compared using a codon-based evolutionary model to look for the occurrence of hypervariable, positively selected amino acid sites among the tested sequences. Hypervariable sites were found, distributed within –or close to– amino acid regions interacting with Cys-type inhibitors of the plant cystatin protein family. A close examination of L. decemlineata sequences indicated a link between their assignment to protease functional families and amino acid identity at positively selected sites. A function-diversifying role for positive selection was further suggested empirically by in vitro protease assays and a shotgun proteomic analysis of L. decemlineata Cys proteases showing a differential rebalancing of protease functional family complements in larvae fed single variants of a model cystatin mutated at positively selected amino acid sites. These data confirm overall the occurrence of hypervariable, positively selected amino acid sites in herbivorous Coleoptera digestive Cys proteases. They also support the idea of an adaptive role for positive selection, useful to generate functionally diverse proteases in insect herbivores ingesting functionally diverse, rapidly evolving dietary cystatins.  相似文献   

3.
Peptide substrates of the general structure acetyl-Alan (n = 2-5), acetyl-Pro-Ala-Pro-Phe-Alan-NH2 (n = 0-3), and acetyl-Pro-Ala-Pro-Phe-AA-NH2 (AA = various amino acids) were synthesized and used to investigate the enzyme-substrate interactions of the microbial serine proteases thermitase, subtilisin BPN', and proteinase K on the C-terminal side of the scissile bond. The elongation of the substrate peptide chain up to the second amino acid on the C-terminal side (P'2) enhances the hydrolysis rate of thermitase and subtilisin BPN', whereas for proteinase K an additional interaction with the third amino acid (P'3) is possible. The enzyme subsite S'1 specificity of the proteases investigated is very similar. With respect to kcat/Km values small amino acid residues such as Ala and Gly are favored in this position. Bulky residues such as Phe and Leu were hydrolyzed to a lower extent. Proline in P'1 abolishes the hydrolysis of the substrates. Enzyme-substrate interactions on the C-terminal side of the scissile bond appear to affect kcat more than Km for all three enzymes.  相似文献   

4.
MCoTI-I and MCoTI-II from the seeds of Momordica cochinchinensis are inhibitors of trypsin-like proteases and the only known members of the large family of squash inhibitors that are cyclic and contain an additional loop connecting the amino- and the carboxy-terminus. To investigate the contribution of macrocycle formation to biological activity, we synthesized a set of open-chain variants of MCoTI-II that lack the cyclization loop and contain various natural and non-natural amino acid substitutions in the reactive-site loop. Upon replacement of P1 lysine residue #10 within the open-chain variant of MCoTI-II by the non-natural isosteric nucleo amino acid AlaG [beta-(guanin-9-yl)-L-alanine], a conformationally restricted arginine mimetic, residual inhibitory activity was detected, albeit reduced by four orders of magnitude. While the cyclic inhibitors MCoTI-I and MCoTI-II were found to be very potent trypsin inhibitors, with picomolar inhibition constants, the open-chain variants displayed an approximately 10-fold lower affinity. These data suggest that the formation of a circular backbone in the MCoTI squash inhibitors results in enhanced affinity and therefore is a determinant of biological activity.  相似文献   

5.
Fasciola parasites (liver flukes) express numerous cathepsin L proteases that are believed to be involved in important functions related to host invasion and parasite survival. These proteases are evolutionarily divided into clades that are proposed to reflect their substrate specificity, most noticeably through the S(2) subsite. Single amino acid substitutions to residues lining this site, including amino acid residue 69 (aa69; mature cathepsin L5 numbering) can have profound influences on subsite architecture and influence enzyme specificity. Variations at aa69 among known Fasciola cathepsin L proteases include leucine, tyrosine, tryptophan, phenylalanine and glycine. Other amino acids (cysteine, serine) might have been expected at this site due to codon usage as cathepsin L isoenzymes evolved, but C69 and S69 have not been observed. The introduction of L69C and L69S substitutions into FhCatL5 resulted in low overall activity indicating their expression provides no functional advantage, thus explaining the absence of such variants in Fasciola. An FhCatL5 L69F variant showed an increase in the ability to cleave substrates with P(2) proline, indicating F69 variants expressed by the fluke would likely have this ability. An FhCatL2 Y69L variant showed a decreased acceptance of P(2) proline, further highlighting the importance of Y69 for FhCatL2 P(2) proline acceptance. Finally, the P(1)-P(4) specificity of Fasciola cathepsin L5 was determined and, unexpectedly, aspartic acid was shown to be well accepted at P(2,) which is unique amongst Fasciola cathepsins examined to date.  相似文献   

6.
Many proteins that contain a carboxyl-terminal CaaX sequence motif, including Ras and yeast a-factor, undergo a series of sequential posttranslational processing steps. Following the initial prenylation of the cysteine, the three C-terminal amino acids are proteolytically removed, and the newly formed prenylcysteine is carboxymethylated. The specific amino acids that comprise the CaaX sequence influence whether the protein can be prenylated and proteolyzed. In this study, we evaluated processing of a-factor variants with all possible single amino acid substitutions at either the a(1), the a(2), or the X position of the a-factor Ca(1)a(2)X sequence, CVIA. The substrate specificity of the two known yeast CaaX proteases, Afc1p and Rce1p, was investigated in vivo. Both Afc1p and Rce1p were able to proteolyze a-factor with A, V, L, I, C, or M at the a(1) position, V, L, I, C, or M at the a(2) position, or any amino acid at the X position that was acceptable for prenylation of the cysteine. Eight additional a-factor variants with a(1) substitutions were proteolyzed by Rce1p but not by Afc1p. In contrast, Afc1p was able to proteolyze additional a-factor variants that Rce1p may not be able to proteolyze. In vitro assays indicated that farnesylation was compromised or undetectable for 11 a-factor variants that produced no detectable halo in the wild-type AFC1 RCE1 strain. The isolation of mutations in RCE1 that improved proteolysis of a-factor-CAMQ, indicated that amino acid substitutions E139K, F189L, and Q201R in Rce1p affected its substrate specificity.  相似文献   

7.
The amino acid sequences near the glycosylation sites and the oligosaccharide structures have been determined for the lysosomal protease cathepsin D from porcine spleen. Cathepsin D light and heavy chains were separately digested with proteases and the glycopeptides were purified. A single sequence was constructed from the amino acid sequence of the light chain glycopeptides which is: Tyr-Asn-Ser-Gly-Lys-Ser-Ser-Thr-Tyr-Val-Lys-Asn(CH2O)-Gly-Thr-Thr-Phe. A single glycopeptide sequence was also obtained for the heavy chain: Lys-Gly-Ser-Leu-Asp-Tyr-His-Asn(CH2O)-Val-Thr-Arg-Lys-Ala-Tyr. The light chain sequence is homologous with the sequence of porcine pepsin from residues 56 to 71. The heavy chain sequence is homologous with the pepsin sequence from residues 176 to 189. Thus, the 2 oligosaccharide-linked asparagines in cathepsin D correspond to residues 67 and 183 in pepsin and other homologous aspartyl proteases. These positions are located on the surface of the crystal structures of aspartyl proteases. Five oligosaccharides linked to Asn-67 were separated and their structures determined with proton NMR. Four major oligosaccharides are structural variants from the high mannose-type having 3, 5, 6, and 7 mannoses, respectively. A minor structure contained a third GlcNAc. Three oligosaccharide structures were found linked to Asn-183. Two major oligosaccharides are of the high mannose-type each with 5 mannose residues. One of the two contains a fucose linked to a GlcNAc. A third, very minor oligosaccharide contains galactose.  相似文献   

8.
Crude homogenates of the nematode Caenorhabditis elegans exhibit maximal proteolytic activity under acidic pH conditions. About 90% of this activity is inhibited by the oligopeptide pepstatin, which specifically inhibits the activity of aspartyl proteases such as pepsin, cathepsins D and E or renin. We have purified enzymes responsible for this proteolytic activity by a single-step affinity chromatography on pepstatin-agarose. Analysis of the purified fraction by 1D SDS gel electrophoresis revealed six bands ranging from 35 to 52 kDa. After electrotransfer to poly(vinylidene difluoride) membranes, all bands were successfully subjected to N-terminal microsequencing. On 2D gels, the purified protein bands split into 19 spots which, after renewed microsequencing, were identified as isoelectric variants of the six proteins already described. The N-termini obtained for these proteins could be correlated to genomic DNA sequences determined in the course of the C. elegans genome sequencing project. All these sequences were predicted to code for expressed proteins as collected in the WORMPEP database. Five of the six coding sequences identified in this study were found to contain the typical active-site consensus sequence of aspartyl proteases and displayed an overall amino acid identity between 25 and 66% as compared to aspartyl proteases from other organisms. In addition to the five aspartyl proteases detected at the protein level, we have identified the coding sequences for seven other enzymes of this protease family by a similarity search in the genomic DNA of C. elegans which has recently been completely sequenced.  相似文献   

9.
Two novel metalloproteases from Arabidopsis thaliana, termed AtPrePI and AtPrePII, were recently identified and shown to degrade targeting peptides in mitochondria and chloroplasts using an ambiguous targeting peptide. AtPrePI and AtPrePII are classified as dually targeted proteins as they are targeted to both mitochondria and chloroplasts. Both proteases harbour an inverted metal binding motif and belong to the pitrilysin subfamily A. Here we have investigated the subsite specificity of AtPrePI and AtPrePII by studying their proteolytic activity against the mitochondrial F(1)beta pre-sequence, peptides derived from the F(1)beta pre-sequence as well as non-mitochondrial peptides and proteins. The degradation products were analysed, identified by MALDI-TOF spectrometry and superimposed on the 3D structure of the F(1)beta pre-sequence. AtPrePI and AtPrePII cleaved peptides that are in the range of 10 to 65 amino acid residues, whereas folded or longer unfolded peptides and small proteins were not degraded. Both proteases showed preference for basic amino acids in the P(1) position and small, uncharged amino acids or serine residues in the P'(1) position. Interestingly, both AtPrePI and AtPrePII cleaved almost exclusively towards the ends of the alpha-helical elements of the F(1)beta pre-sequence. However, AtPrePI showed a preference for the N-terminal amphiphilic alpha-helix and positively charged amino acid residues and degraded the F(1)beta pre-sequence into 10-16 amino acid fragments, whereas AtPrePII did not show any positional preference and degraded the F(1)beta pre-sequence into 10-23 amino acid fragments. In conclusion, despite the high sequence identity between AtPrePI and AtPrePII and similarities in cleavage specificities, cleavage site recognition differs for both proteases and is context and structure dependent.  相似文献   

10.
The 1000 Genomes Project data provides a natural background dataset for amino acid germline mutations in humans. Since the direction of mutation is known, the amino acid exchange matrix generated from the observed nucleotide variants is asymmetric and the mutabilities of the different amino acids are very different. These differences predominantly reflect preferences for nucleotide mutations in the DNA (especially the high mutation rate of the CpG dinucleotide, which makes arginine mutability very much higher than other amino acids) rather than selection imposed by protein structure constraints, although there is evidence for the latter as well. The variants occur predominantly on the surface of proteins (82%), with a slight preference for sites which are more exposed and less well conserved than random. Mutations to functional residues occur about half as often as expected by chance. The disease-associated amino acid variant distributions in OMIM are radically different from those expected on the basis of the 1000 Genomes dataset. The disease-associated variants preferentially occur in more conserved sites, compared to 1000 Genomes mutations. Many of the amino acid exchange profiles appear to exhibit an anti-correlation, with common exchanges in one dataset being rare in the other. Disease-associated variants exhibit more extreme differences in amino acid size and hydrophobicity. More modelling of the mutational processes at the nucleotide level is needed, but these observations should contribute to an improved prediction of the effects of specific variants in humans.  相似文献   

11.
12.
The genes for five subtilisin-like serine proteases from alkaliphilic strains of Bacillus exhibiting resistance to oxidative inactivation were cloned and sequenced. The deduced amino acid sequences of the enzymes were highly homologous (greater than 88% identity). They were composed of 638 or 639 amino acids, including a possible approximately 200-amino acid prepro-peptide, and unique stretches of approximately 160 amino acids were found in the C-terminal regions. The molecular masses of mature enzymes (433 or 434 amino acids) were approximately 45 kDa for all. Amino acid sequence comparison and phylogenetic analysis indicated that these enzymes are far removed from other known subtilisins in the line of molecular evolution. We propose that these novel proteases be categorized as a new class of subtilisins, named oxidatively stable, alkaline protease.  相似文献   

13.
Our investigations demonstrate that proline-containing dipeptides can provoke a chemosensory response from the unicellular Tetrahymena pyriformis The chemotactic effects of the dipeptides have a close relationship with the side chain and the lipophilicity of the amino-terminal amino acid. Comparison of ‘mirror’ variants of proline-containing dipeptides points to the fact that dipeptides with small side chain and non-polar character amino acids (Gly-Pro, Ala-Pro) are preferred on the amino-terminal end. In the case of amino acids with very variable side chains, small (Pro-Gly) and the large side chain and non-polar character amino acids (Pro-Leu, Pro-Phe) on the carboxyl-terminal end can induce significant chemotactic responses. With valine on any terminus the proline-containing dipeptide induced a weak repellent effect.  相似文献   

14.
Three variants of a chymotrypsin-like protease were purified from scallop digestive glands successively by ion-exchange, gel filtration and high-performance liquid chromatographies. Enzyme activity was detected using succinyl-Ala-Ala-Pro-Phe-p-nitroanilide as a specific synthetic substrate for chymotrypsin. This proteinase was inhibited by chymostatin, diisopropylfluorophosphate and phenylmethylsulfonyl fluoride. Estimated molecular mass of the purified enzyme is around 32 kDa. These isoenzymes exhibit very low activities in hydrolyzing small synthetic specific substrates used for trypsic, elastolytic and collagenolytic measurements and referred mainly to a chymotrypsin-like proteinase. Very few differences were measured concerning pH profiles among the three isoenzymes. Stability is higher at low temperature for two variants. An N-terminal analysis was performed on one variant (B) among the three isoenzymes. The alignment of the N-terminal amino acid sequence indicates some homologies with abalone chymotrypsin-like protein and arthropod chymotrypsin proteases as well as with vertebrate serine protease counterparts (trypsin, chymotrypsin and elastase).  相似文献   

15.
We have purified a 30-kDa serine protease (designated RNK-Met-1) from the granules of the rat large granular lymphocyte leukemia cell line (RNK-16) that hydrolytically cleaves model peptide substrates after methionine, leucine, and norleucine (Met-ase activity). Utilizing molecular sieve chromatography, heparin-agarose, chromatography, and reverse-phase high pressure liquid chromatography, RNK-Met-1 was purified to homogeneity and 25 NH2-terminal amino acids were sequenced. By using the polymerase chain reaction, oligonucleotide primers derived from amino acids at position 14-25 and from a downstream active site conserved in other serine protease genes were used to generate a 534-base pair cDNA clone encoding a novel serine protease from RNK-16 mRNA. This cDNA clone was used to isolate a full-length 867-base pair RNK-Met-1 cDNA from an RNK-16 lambda-gt11 library. The open reading frame predicts a mature protein of 238 amino acids with two potential sites for N-linked glycosylation. The cDNA also encodes a leader peptide of at least 20 amino acids. The characteristic Ile-Ile-Gly-Gly amino acids of the NH2 terminus and the His, Asp, and Ser residues that form the catalytic triad of serine proteases were both conserved. The amino acid sequence has less than 45% identity with any other member of the serine protease family, indicating that RNK-Met-1 is distinct and may itself represent a new subfamily of serine proteases. Northern blot analysis of total cellular RNA detected a single 0.9-kilobase mRNA in the in vitro and in vivo variants of RNK-16 and in spleen-derived plastic-adherent rat lymphokine-activated killer cells. RNK-Met-1 mRNA was not detectable in freshly isolated rat splenocytes, thymocytes, brain, colon, and liver or activated nonadherent rat splenocytes and thymocytes. These data indicate that RNK-Met-1 is a serine protease with unique activity that is expressed in the granules of large granular lymphocytes.  相似文献   

16.
《Journal of phycology》2001,37(Z3):37-37
Morris, R. L. & Rizzo P. J. Department of Biology, Texas A&M University, College Station, TX 77843 USA The major histone-like protein HCc was extracted from chromatin of the dinoflagellate Crypthecodinium cohnii, purified by carboxymethylcellulose (CMC) chromato-graphy and high performance liquid chromatography (HPLC), for protein sequencing. Four fractions were identified by HPLC fractionation of the CMC 400 mM NaCl peak, which proved to be very similar in amino acid composition, differing by only several amino acids. These differences are of the same level as the differences in histone variants of typical eukaryotes. The fractions were analyzed by peptide mapping using V8 protease, which also showed very close similarity between the four proteins. Protein sequence information was obtained by sequencing overlapping peptides, to yield approximately 80% of the protein sequence for two of the variants. Sequence comparisons with HCc1 and HCc2 from C,cohnii as reported by Sala-Rovira et al. (Chromosoma 100, 510) suggest that these variants are similar, but not identical to HCc1 and HCc2.  相似文献   

17.
From an RNK-16 lambda-gt11 library, we have isolated and sequenced a novel cDNA rat NK cell protease 1 (RNKP-1) that has characteristics unique to serine proteases. The cDNA clone is 1102 bp and contains a complete open reading frame with an AUG start codon and a TAA stop codon. The open reading frame translates into a protein of 248 amino acids that has one glycosylation site. The characteristic N-terminal Ile-Ile-Gly-Gly and the His, Asp, and Ser amino acid residues that form the catalytic triad of serine proteases are present. The nucleotide and amino acid sequences have 87 and 80% identity, respectively, with the murine CTL-specific serine protease CCPI. However, there are extensive differences in the substrate binding regions of these proteases. Comparison of hydropathic profiles and amino acid sequences of other proteases indicate that RNKP-1 is distinct and belongs to the subfamily of serine proteases of bone marrow origin. Northern blot analysis of poly A+ RNA from rat splenocytes cultured with Con A showed 1000 and 1400 nucleotide mRNA are detected with RNKP-1 after 1 day of Con A-stimulation. The expression of the two mRNA bands continues through day 5 of culture with the lectin and may represent RNKP-1 mRNA plus related sequences due to cross-hybridization. RNKP-1 is also expressed in RNK-16 cells, but is not expressed in freshly isolated rat splenocytes, brain, lung, or lymph node tissues. The induction of RNKP-1 expression in the Con A-cultured spleen cells is accompanied by increases in both NK and lymphokine-activated killer lymphocyte activities. These data indicate that RNKP-1 is a unique serine protease that may be preferentially expressed in NK cells.  相似文献   

18.
Wu G  Yan S 《Peptides》2002,23(12):2085-2090
In this data-based theoretical analysis, we use a random approach to estimate amino acid pairs in human phenylalanine 4-hydroxylase (PAH) protein in order to determine which amino acid pairs are more sensitive to 187 variants in human PAH protein. The rationale of this study is based on our hypothesis and previous findings that the harmful variants are more likely to occur at randomly unpredictable amino acid pairs rather than at randomly predictable pairs. This is reasonable to argue as randomly predictable amino acid pairs are less likely to be deliberately evolved, whereas randomly unpredictable amino acid pairs are probably deliberately evolved in connection with protein function. 94.12% of 187 variants occurred at randomly unpredictable amino acid pairs, which accounted for 71.84% of 451 amino acid pairs in human PAH protein. The chance of a variant occurring is five times higher in randomly unpredictable amino acid pairs than in predictable pairs. Thus, randomly unpredictable amino acid pairs are more sensitive to variance in human PAH protein. The results also suggest that the human PAH protein has a natural tendency towards variants.  相似文献   

19.
Enantiomer discrimination by enzymes is a very accurate mechanism, which often involves few amino acids located at the active site. Lipase isoforms from Candida rugosa are very good enzymatic models to study this phenomenon as they display high sequence homology (>80%) and their enantioselectivity is often pointed out. In the present work, we investigated three lipases from C. rugosa (Lip1, Lip3, and Lip4, respectively) towards the resolution of 2-bromo-arylacetic acid esters, an important class of chemical intermediates in the pharmaceutical industry. All exhibited a high enantioselectivity, with Lip4 preferring the R-enantiomer (E-value = 15), while Lip1 and Lip3 showed an S-enantioselectivity >200. A combination of sequence and structure analysis of the three C. rugosa lipases suggested that position 296 could play a role in S- or R-enantiomer preference of C. rugosa lipases. This led to the construction by site-directed mutagenesis of Lip1 and Lip4 variants in which position 296 was, respectively, exchanged by a Gly, Ala, Leu, or Phe amino acid. Screening of these variants for their enantioselectivity toward 2-bromo phenyl acetic acid octyl esters revealed that steric hindrance of the amino acid residue introduced at position 296 controls both the enantiopreference and the enantioselectivity value of the lipase: bulkier is the amino acid at position 296, larger is the selectivity towards the S-enantiomer. To investigate further these observations at an atomic level, we carried out a preliminary modeling study of the tetrahedral intermediates formed by Lip1 and Lip4 with the (R, S)-2-bromo-phenylacetic acid octyl ester enantiomers that provides some insight regarding the determinants responsible for lipase enantiodiscrimination.  相似文献   

20.
Griffonia simplicifolia lectin II (GSII) is a plant defensive protein that significantly delays development of the cowpea bruchid Callosobruchus maculatus (F.). Previous structure/function analysis by site-directed mutagenesis indicated that carbohydrate binding and resistance to insect gut proteolysis are required for the anti-insect activity of this lectin. However, whether there is a causal link between carbohydrate binding and resistance to insect metabolism remains unknown. Two proteases principally responsible for digestive proteolysis in third and fourth instar larvae of C. maculatus were purified by activated thiol sepharose chromatography and resolved as cathepsin L-like proteases, based on N-terminal amino acid sequence analysis. Digestion of bacterially expressed recombinant GSII (rGSII) and its mutant protein variants with the purified gut proteases indicates that carbohydrate binding, presumably to a target ligand in insect gut, and proteolytic resistance are independent properties of rGSII, and that both facilitate its efficacy as a plant defensive molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号