首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Skewed segregations are frequent events in segregating populations derived from different interspecific crosses in tomato. To determine a basis for skewed segregations in the progeny of the cross between Lycopersicon esculentum and L. pennellii, monogenic segregations of 16 isozyme loci were analyzed in an F2 and two backcross populations of this cross. In the F2, 9 loci mapping to chromosomes 1, 2, 4, 9, 10 and 12 exhibited skewed segregations and in all cases there was an excess of L. pennellii homozygotes. The genotypic frequencies at all but one locus were at Hardy-Weinberg equilibria. In the backcross populations, all except two loci exhibited normal Mendelian segregations. No post-zygotic selection model could statistically or biologically explain the observed segregation patterns in the F2 and backcross populations. A pre-zygotic selection model, assuming selective elimination of the male gametophytes during pollen function (i.e., from pollination to karyogamy), could adequately explain the observed segregations in all three populations. The direction of the skewed segregations in the F2 population was consistent with that expected based on the effects of unilateral incompatibility reactions between the two species. In addition, the chromosomal locations of 5 of the 9 markers that exhibited skewed segregations coincided with the locations of several known compatibility-related genes in tomato. Multigenic unilateral incompatibility reactions between L. esculentum pollen and the stigma or style of L. pennellii (or its hybrid derivatives) are suggested to be the major cause of the skewed segregations in the F2 progeny of this cross.  相似文献   

2.
Both interspecific and intraspecific mechanisms restrict the exchange of genes between plants. Much research has focused on self incompatibility (SI), an intraspecific barrier, but research on interspecific barriers lags behind. We are using crosses betweenLycopersicon esculentum andL. pennellii as a model with which to study interspecific crossing barriers. The crossL. esculentum×L. pennellii is successful, but the reciprocal cross fails. Since the cross can be successfully made in one direction but not the other, gross genomic imbalance or chromosomal abnormality are precluded as causes. We showed that the lack of seed set observed in the crossL. pennellii×L. esculentum is due to the inability of pollen tubes to grow more than 2–3 mm into the style, whereas S1 crosses show continued slow pollen tube growth but, also, fail to set seed. These results indicate that the unilateral response is a barrier distinct from SI, differing from SI in the timing and location of expression in the style. We therefore suggest that this unilateral response in theL. pennellii×L. esculentum cross is more accurately referred to as unilateral incongruity (UI) rather than interspecific incompatibility. Periclinal chimeras were used to determine the tissues involved in UI. The results of crosses with the available chimeras indicate that the female parent must beL. pennellii at either LI (layer 1) or both LI and LII (layer 2) and the male parent must beL. esculentum at either LII or both LI and LII to observe UI similar to that seen in theL. pennellii×L. esculentum cross. Pollinations with a mixture of pollen fromL. pennellii and from transgenicL. esculentum plants harboring a pollen-specific GUS reporter gene marker were used to ascertain whether the growth of the pollen tubes of either species was modified as a possible means of overcoming UI. We found no evidence of communication between the two types of pollen tubes to either enhance or restrict all pollen tube growth.  相似文献   

3.
Summary The objective of this project was to introgress small overlapping chromosome segments which cover the genome of L. pennellii into Lycopersicon esculentum lines. The interspecific hybrid was backcrossed to L. esculentum, and a map of 981 cM, based on 146 molecular markers covering the entire genome, was produced. A similar backcross 1 population was selfed for six generations, under strong selection for cultivated tomato phenotypes, to produce 120 introgression lines. The introgression lines were assayed for the above-mentioned molecular markers, and 21 lines covering 936 cM of L. pennellii, with an average introgression of 86 cM, were selected to provide a resource for the mapping of new DNA clones. The rest of the lines have shorter introgressions consisting of specific regions with an average size of 38 cM. The proportion of the L. pennellii genome in the introgression lines was lower than expected (252 cM) because of strong selection against the wild-parent phenotype. The mean introgression rate for ends of linkage groups in the 120 lines was 3 times higher than for other regions of the genome. The introgression lines can assist in RFLP-based gene cloning by allowing the rapid selection of DNA markers that map to specific chromosome segments. The introgression lines also provide a base population for the mapping and breeding for quantitative traits such as salt and drought tolerance that characterize the wild species L. pennellii.  相似文献   

4.
Soliman A. Haroun 《Genetica》1996,98(1):103-106
Cytological studies were carried out on two wild species (L. hirsutum and L. pennellii) and the cultivated species (L. esculentum) of tomato and their F1 hybrids. Both parents and hybrids show a diploid chromosome number of 2n=24. The meiotic behaviour of the cultivated species showed a high degree of chromosome homology resulting in a high level of chiasmata frequency per bivalent. In contrast, the two wild species showed a slight increase in uniyalent frequency and a decrease in bivalent formation and chiasmata frequency. The meiotic behaviour of the hybrids showed a high level of univalents and low levels of bivalents as well as trivalents. Highly significant decreases in chiasmata frequency and increases in meiotic abnormalities, especially in the L. esculentum X L. pennellii hybrid, also were detected. The high meiotic irregularity and low chiasmata frequency recorded in the second hybrid indicated the disharmony and difference between its parental genomes and also served to predict its sterility. With regard to degree of pairing recorded in the hybrids, there is a possibility that sterility in such cases may refer to genetic factors in addition to the previously mentioned reasons. Pollen fertility showed no great difference between L. esculentum and L. hirsutum and their F1 hybrid, but a significant decrease was recorded in the L. esculentum X L. pennellii hybrid, which was clearly associated with high meiotic irregularity, low chiasmata frequency and chromosome association.  相似文献   

5.
Summary The potato aphid, Macrosiphum euphorbiae Thomas, is an important pest of tomato, Lycopersicon esculentum Mill., because it transmits tomato viruses and directly reduces crop yields by its feeding. This study was conducted to determine whether the wild tomato species, Lycopersicon pennellii (Corr.) D'Arcy, would be useful as a source of potato aphid resistance for tomato. Type IV trichome density and aphid resistance were assessed in six generations (P1, P2, F1, F2, BC1P1, and BC1P2) from crosses between L. pennellii (LA 716) and two tomato cultivars, New Yorker and VF Vendor. Weighted leastsquares were used in joint scaling tests to estimate the relative importance of gene effects on type IV trichome density and potato aphid resistance of the hybrids. A simple additive-dominance model adequately explained the variation in type IV trichome density. Models which included digenic epistatic effects were required to explain the variation in aphid resistance. Standard unit heritability estimates of aphid resistance in the backcross to L. esculentum were obtained by regression of BC1F2 off-spring families on BC1F1 parents. Regression coefficients and heritability estimates varied between years with the level and uniformity of the aphid infestation. In the 1985–1986 growing seasons, when aphid infestations were uniform, aphid resistance exhibited a moderate level of heritability (29.8% ± 14.1% and 47.1% ± 11.5% in New Yorker and VF Vendor backcross populations, respectively). The non-uniform aphid infestation of 1984 resulted in lower heritability estimates in the 1984–1985 growing seasons (16.1% ± 15.7% and 21.9% ± 14.8% in the New Yorker and VF Vendor backcross populations, respectively). Selection for potato aphid resistance would probably be most efficient if it were delayed until gene combinations are fixed in later generations, because of the large epistatic effects and the low heritability of this trait in seasons with variable aphid infestations.  相似文献   

6.
Meiosis in hybrids betweenLycopersicon esculentum andSolanum pennellii   总被引:1,自引:0,他引:1  
Meiotic chromosome cytology was compared betweenSolanum pennellii, Lycopersicon esculentum, and the F1 hybrid. Pachytene chromosomes are very similar in gross morphology, but several of theS. pennellii chromosomes were found to have somewhat longer chromatic regions with discrete chromomeres, and darkly staining chromomeres in the achromatic regions.Little evidence could be found for the existence of rearrangements between chromosomes of the two species. With respect to chromomere pattern, on the other hand, a number of differences were seen. Meiosis in the hybrid is strictly regular. Only size inequalities occur in certain bivalents.Considering the evidence from chromosome pairing, hybridization compatibility, hybrid fertility, and plant morphology, it is concluded that the phylogenetic relationship is much closer betweenS. pennellii andL. esculentum than it is between either one andS. lycopersicoides. Attention is called to the present unsatisfactory placement ofS. pennellii and to the need for revising the taxonomy to place it andL. esculentum in the same genus, possibly in the same subgeneric category.This research was supported in part by grant G-10704 of the National Science Foundation.  相似文献   

7.
Summary We have previously described gene introgression from the wild nightshade Solanum lycopersicoides into tomato (Lycopersicon esculentum) through the use of either diploid or sesquidiploid hybrids (the latter consisting of two genomes of L. esculentum and one genome of S. lycopersicoides). Both types of intergeneric hybrids display pollen sterility, but workable ovule fertility. Unilateral incompatibility prevents their direct hybridization with staminate L. esculentum. Pollen of a self-compattible form of the related wild species L. pennellii is compatible with pistils of L. esculentum x S. lycopersicoides hybrids. This trait was backcrossed from L. pennellii to L. esculentum in order to develop bridging lines that could be used to obtain progeny from the intergeneric hybrids and to study the inheritance of bridging ability. In progeny of L. esculentum x S. lycopersicoides hybrids pollinated with L. pennellii-derived bridging lines, preferential transmission of L. pennellii alleles was observed for certain isozyme and RFLP markers on chromosomes 1, 6 and 10. The skewed segregations suggest linkage to three major pollen-expressed compatibility loci. This was confirmed by observations of pollen tube growth, which indicated that compatibility with pistils of the diploid intergeneric hybrid occurred only in bridging lines at least heterozygous for the L. pennellii markers on chromosomes 1, 6 and 10. Compatibility with the sesquidiploid hybrid required only the chromosome 1 and 6 loci, indicating an apparent effect of gene dosage on expression of incompatibility in the pistil. In an F2 L. esculentum x L. pennellii population, preferential transmission of L. pennellii alleles was observed for the same markers on chromosomes 1 and 10, as well as other markers on chromosomes 3, 11, and 12, but not 6. The chromosome 1 pollen compatibility locus maps to or near the S-locus, which determines S-allele specificity. The results are discussed in relation to existing genetic models for unilateral incompatibility, including the possible involvement of the S-locus.  相似文献   

8.
Summary Selection and screening methods were devised which resulted in the identification of a number of somatic hybrid callus clones following fusion of Lycopersicon esculentum protoplasts and L. pennellii suspension culture protoplasts. Visual selection for callus morphology combined with a high fusion frequency and irradiation of one parental protoplast type (137Cs source, 1.5 Krads) resulted in selection of a callus clone population containing a high proportion of somatic hybrids. Analysis of a dimeric isozyme for the presence of a heterodimeric form was found to be satisfactory for distinguishing parental-type calli, somatic hybrid calli, and mixed calli derived from both types of unfused parental cells. No somatic hybrid calli produced shoots, although the sexual hybrid between L. esculentum and L. pennellii regenerated well under the culture conditions employed. This result suggests that the non-regenerable growth habit of the L. pennellii suspension culture was dominant in the somatic hybrid. The culture conditions described here are suitable for obtaining regenerated plants from L. esculentum mesophyll protoplasts. L. esculentum protoplast calli from fusion cultures gave rise to shoots with L. esculentum phenotype at higher frequency than calli from control unfused L. esculentum mesophyll protoplast cultures. The use of probes for species-specific organelle DNA fragments allowed identification of organelle DNA restriction fragments in digests of total DNA from small samples of individual callus clones. The callus clones analyzed either carried predominantly one parental plastid DNA type or mixtures of both types. Use of a mitochondrial DNA (mtDNA) probe which distinguishes two parental mtDNA fragments revealed that the L. pennellii-specific fragment was present in all clones examined, but the L. esculentum fragment was absent or in low proportion.  相似文献   

9.
Summary Somatic hybrid plants have been regenerated following polyethylene glycol mediated fusion of leaf mesophyll protoplasts from tomato and protoplasts from Lycopersicon pennellii callus. Three different cultivars of tomato were used as sources of protoplasts: Early Girl, Manapal, and UC82B. Fusions were performed between protoplasts of these tomato cultivars and protoplasts of L. pennellii, and between protoplasts of the cultivars and protoplasts of L. pennellii that had been exposed to 3 or 6 krads of gamma radiation. Somatic hybrid plants were identified on the basis of heterozygous isozyme banding patterns, and leaf and flower morphology. Somatic hybrid plants were regenerated following fusion of tomato protoplasts with either untreated or irradiated L. pennellii protoplasts. All were heterozygous for isozyme loci on five different chromosomes. Regenerated somatic hybrids showed inheritance of either or both parental chloroplast genomes, but predominantly the L. pennellii mitochondrial genome. The regenerated somatic hybrid plants exhibited reduced fertility, less than 20% viable pollen. A total of 34 somatic hybrid calli were identified. Of these, 21 regenerated shoots, and 7 produced seed following manual pollinations.  相似文献   

10.
In this study, a relationship between lipid peroxidation, the antioxidant defense system and salt stress in salt-sensitive cultivated tomato (Lycopersicon esculentum) and its salt-tolerant wild relative (L. pennellii) was established. Superoxide dismutase (SOD) activities were significantly higher in the leaves of L. pennellii than those of L. esculentum after 12 and 84 d. POX activity showed a gradual increase in both cultivars under 70 mM NaCl. POX activity in L. pennellii significantly increased after 6 and 84 d whereas showed no remarkable change in leaves of L. esculentum under 140 mM NaCl. A higher salinity tolerance of L. pennellii was also correlated with a lower lipid peroxidation, which might be due to a higher content of antioxidant enzymes studied.  相似文献   

11.
Some accessions of Lycopersicon pennellii, a wild relative of the tomato Lycopersicon esculentum, are resistant to a number of important pests of cultivated tomato due to the accumulation of acylsugars, which constitute 90% of the exudate of type-IV trichomes in L. pennellii LA716. An interspecific F2 population, created by the cross L. esculentum x L. pennellii LA 716, was surveyed for acylsugar accumulation and subjected to RFLP/QTL analysis to determine the genomic regions associated with the accumulation of acylglucoses, acylsucroses, and total acylsugars, as well as with acylglucoses as a percentage of total acylsugars (mole percent acylglucoses). Data were analyzed using MAPMAKER/QTL with and without a log10 transformation. A threshold value of 2.4 (default value for MAPMAKER/QTL) was used, as well as 95% empirically derived threshold values. Five genomic regions, two on chromosome 2 and one each on chromosomes 3, 4 and 11, were detected as being associated with one or more aspects of acylsugar production. The L. esculentum allele is partially dominant to the L. pennellii allele in the regions on chromosomes 2 and 11, but the L. pennellii allele is dominant in the region on chromosome 3. Throughout this study, we report the comparative effects of analytical methodology on the identification of acylsugar QTLs. Similarities between our results and published results for the genus Solanum are also discussed.R. W. Doerge · S.-C. Liu · J. P. Kuai contributed equally to the paper, and we ordered randomly  相似文献   

12.
Two tomato species (Lycopersicon esculentum andL. pennellii) were grown under unheated plastic greenhouse and irrigated with 0 or 140 mM NaCl. Salinity induces a more important reduction in predawn leaf water potential (ψpd) inL. esculentum than inL. pennellii. In both species the osmotic adjustment was achieved by active solute accumulation. The leaf water potential at turgor loss point (ψtlp) seemed to be controlled by leaf osmotic potential (ψos). The results revealed the existence of limits to the accumulation of osmotic solutes in leaf tissues and the existence of an ontogenetic effect on the solute accumulation. In both species, but essentially inL. pennellii the inorganic solutes contribution especially Na+ and Cl? accumulation to ψos was higher than the organic solutes. Therefore, wild species save energy more markedly.  相似文献   

13.
We have shown that a major QTL for fruit weight (fw2.2) maps to the same position on chromosome 2 in the green-fruited wild tomato species, Lycopersicon pennellii and in the red-fruited wild tomato species, L. pimpinellifolium. An introgression line F2 derived from L. esculentum (tomato) x L. pennellii and a backcross 1 (BC1) population derived from L. esculentum x L. pimpinellifolium both place fw2.2 near TG91 and TG167 on chromosome 2 of the tomato highdensity linkage map. fw2.2 accounts for 30% and 47% of the total phenotypic variance in the L. pimpinellifolium and L. pennellii populations, respectively, indicating that this is a major QTL controlling fruit weight in both species. Partial dominance (d/a of 0.44) was observed for the L. pennellii allele of fw 2.2 as compared with the L. esculentum allele. A QTL with very similar phenotypic affects and gene action has also been identified and mapped to the same chromosomal region in other wild tomato accessions: L. cheesmanii and L. pimpinellifolium. Together, these data suggest that fw2.2 represents an orthologous QTL (i.e., derived by speciation as opposed to duplication) common to most, if not all, wild tomato species. High-resolution mapping may ultimately lead to the cloning of this key locus controlling fruit development in tomato.  相似文献   

14.
Pollen-tube growth and seed siring ability were measured in crosses between the Louisiana iris species Iris fulva and Iris hexagona and their F1 and F2 hybrids. Flowers of the parental species were pollinated with self, outcross intraspecific, and interspecific pollen. Pollen-tube lengths were similar for all three pollen types in I. fulva, but in I. hexagona interspecific pollen tubes were longer than intraspecific pollen tubes. Pollen-tube lengths also differed for F1 and F2 flowers pollinated with I. fulva, I. hexagona, and hybrid pollen. For both hybrid classes I. fulva pollen tubes were the shortest while pollen tubes from I. hexagona and hybrids grew the furthest. Mixtures of genetically marked pollen were used to assess the seed siring ability of intra- and interspecific pollen in the parental species by varying the proportion of each pollen type in a replacement series design. For both species, the observed proportions of hybrid seeds were lower than the expected based on the frequency of each pollen type in the mixtures across all treatments. Flowers of I. fulva produced less than 10% hybrid progeny even when 75% of the pollen applied to stigmas was derived from interspecific flowers. The frequency of hybrid seed formation was somewhat greater in I. hexagona, but was still significantly lower than expected across all mixture treatments. Seed set per fruit remained constant across the mixture treatments for both species, but in I. fulva fruit set decreased with an increase in the proportion of interspecific pollen. The data indicate that both pre- and postfertilization processes contribute to discrimination against hybrid seed formation.  相似文献   

15.
Oviposition and adult feeding of the leafminer Liriomyza trifollii (Burgess) (Diptera, Agromyzidae) on Lycopersicon pennellii (Corr.) D'Arcy and its F1 hybrid with Lycopersicon esculentum (Mill.) was significantly less than that on the cultivated tomato, L. esculentum. The resistance of L. pennellii and the F1 was reduced following rinsing of foliage with ethanol. Resistant attributes of L. pennellii were transferred to L. esculentum through appression of L. pennellii foliage to L. esculentum leaflets. Application of purified 2,3,4-tri-O-acylglucoses (the principal component of type IV glandular trichome exudate of L. pennellii) to L. esculentum significantly decreased feeding and oviposition on L. esculentum leaflets by 61–99%. Therefore the principal mechanism of resistance to this leafminer by L. pennellii is the secretion of these acylglucoses. Dose response analysis of acylglucoses applied to L. esculentum shows that dosages as low as 10% those found on L. pennellii provide large reductions (91%) in leaf punctures and mines.  相似文献   

16.
Changes in leaf solute contents in response to saline (NaCl) and osmotic (polyethylene glycol, PEG, 6000) stresses were measured in three different salt tolerant cultivars of Lycopersicon esculentum (L.) Mill. (Pera, P-73 and Volgogradskij), and its wild relative L. pennellii (Correll) D'Arcy accession PE-47. Iso-osmotic stresses (–0. 5 MPa) of NaCl (140 mM) and PEG 6000 (150 g l-1) were applied to one-month old plants for 3 weeks. Decreasing leaf dry weight was similar in L. pennellii or L. esculentum cv. P-73 and Volgogradskij under both stresses, while leaf dry weight of L. esculentum cv. Pera decreased more under PEG stress than under NaCl stress. Water contents decreased in all the PEG treated populations, while their calculated solute potential (Ψs increased. Under osmotic stress, the total ion contents decreased in relation to control, whereas organic solutes (sugars, amino acids and organic acids) markedly increased in both tomato species, specially in the tomato cultivars, where these solutes represented 50% of the Ψ5 calculated. Soluble sugar increase was three times higher in leaves of L. esculentum than in the leaves of L. pennellii. Free proline increased under both stresses and its content was highest in L. esculentum and in L. pennellii, respectively, under NaCl and PEG stresses. Nevertheless, the contribution of this metabolite to Ψs did not exceed 5%, irrespective of treatment and species. The greater organic solute accumulation in L. esculentum than in L. pennellii– which was not reflected in their Ψ5 values – was not correlated with the tolerances of the two species to osmotic stress. Therefore, osmotic adjustment may not be the only process influencing salt and drought tolerances in tomato; the ability of plants to regulate their metabolic and physiological functions could also play an important role under these harmful conditions. The possible roles of inorganic solutes and metabolites in osmotic adjustment, energetic metabolism and redox regulation are discussed  相似文献   

17.
Summary Nineteen ripening-related or -specific clones from Lycopersicon esculentum were mapped via RFLP analysis using an F2 population from the cross L. esculentum x L. pennellii and cDNA or genomic clones of known map location. The map produced using cDNA and genomic clones of known map location corresponded well with previously published maps of tomato. The number of loci detected for each ripening-related or-specific clone varied from one to seven. These loci were located on all 12 chromosomes of the tomato genome. There was no significant clustering of ripening-related or-specific genes. Regions of very low recombination were observed. The clone for polygalacturonase (TOM6) mapped to a single region on chromosome 10, the same chromosome as the nor and alc ripening mutants. To fine map this chromosome, two backcross populations were produced from the cross of L. esculentum x L. pimpenillifolium, in which the esculentum parents used were homozygous for either the alc or the nor. The coding region for polygalacturonase is functionally unlinked to either of these two ripening mutants.  相似文献   

18.
A population of 257 BC1 plants was developed from a cross between an elite processing line of tomato (Lycopersicon esculentum cvM82-1-7) and the closely related wild species L. pimpinellifolium (LA1589). The population was used to construct a genetic linkage map suitable for quantitative trait locus (QTL) analysis to be conducted in different backcross generations. The map comprises 115 RFLP, 3 RAPD and 2 morphological markers that span 1279 cM of the tomato genome with an average distance between markers of 10.7 cM. This map is comparable in length to that of the highdensity RFLP map derived from a L. esculentum x L. pennellii F2 population. The order of the markers in the two maps is also in good agreement, however there are considerable differences in the distribution of recombination along the chromosomes. The segregation of six GATA-containing loci and 47 RAPD markers was also analyzed in subsets of the population. All of the microsatellite loci and 35 (75%) of the RAPDs mapped to clusters associated with centromeric regions.  相似文献   

19.
Mortality of the potato aphid, Macrosiphum euphorbiae (Thomas), on Lycopersicon pennellii (Corr.) D'Arcy and its F1 hybrid with Lycopersicon esculentum Mill. was significantly greater than that on L. esculentum. Physical entrapment was not the sole mechanism of resistance in L. pennellii since few late instar aphids were found trapped in the sticky glandular exudate of the type IV trichomes; entrapment could, however, affect survival of early instars. Aphid settling on L. pennellii was dramatically less than that on L. esculentum, suggesting that starvation may have contributed to high mortality. Compared to L. esculentum, aphid feeding behavior on L. pennellii and the F1 was characterized by a delay in the time to first probe, a reduction in the number of probes, and a decrease in the total proportion of time spent feeding. Removal of the glandular exudate of the type IV trichomes from L. pennellii resulted in a decrease in preprobe time and an increase in both the number of probes and the percent of time spent probing. Transfer of glandular trichome exudate of L. pennellii to leaflets of L. esculentum resulted in an increase in resistance as measured by these three parameters.
Zusammenfassung Die Absterberate der Kartoffellaus, Macrosiphum euphorbiae Thomas, auf Lycopersicon pennellii (Corr.) D'Arcy, sowie auf der Kreuzung L. esculentum Mill. und L. pennellii, war deutlich grösser als auf L. esculentum. Das mechanische Verfangen der Läuse war nicht der Hauptgrund der Resistenz von L. pennellii. Wenige tote Läuse wurden in dem klebrigen Sekret der Typus IV Trichome gefunden. Auf L. pennellii siedelten sich die Läuse in viel geringerer Zahl an als auf L. esculentum. Dies führte zum Schluss, dass Verhungern eine der Ursachen der hohen Mortalität der Läuse war. Im Vergleich zum Saugverhalten auf L. esculentum war das Saugverhalten auf L. pennellii, wie auch auf F1, durch Folgendes gekennzeichnet 1) Verspätung des ersten Stichversuchs, 2) Verminderung der Stichversuche pro Zeiteinheit und 3) Verminderung des Zeitanteils, der zum Saugen verwendet wurde. Die Entfernung des Sekrets der Typus IV Trichomen auf L. pennellii verursachte 1) eine kürzere Zeitspanne vor dem ersten Stichversuch, 2) eine Vergrösserung der Anzahl Stichversuche pro Zeiteinheit, 3) eine Verlängerung der Saugzeit. Die Uebertragung des Sekretes von L. pennellii auf Blätter von L. esculentum verbesserte deren Resistenz gegen Blattläuse gemessen mit den genannten drei Kriterien.
  相似文献   

20.
Zhang ZS  Lu YG  Liu XD  Feng JH  Zhang GQ 《Genetica》2006,127(1-3):295-302
Pollen abortion is one of the major reasons causing the inter-subspecific F1 hybrid sterility in rice and is due to allelic interaction of F1 pollen sterility genes. The microsporogenesis and microgametogenesis of Taichung 65 and its three F1 hybrids were comparatively studied by using techniques of differential interference contrast microscopy, semi-thin section light microscopy, epifluorescence microscopy and TEM. The results showed that there were differences among the cytological mechanisms of pollen abortion due to allelic interaction at the three F1 pollen sterility loci. The allelic interaction at S-a locus resulted in microspores unable to extend the protoplasm membrane with the enlargement of the microspore at the middle microspore stage and finally producing empty abortive pollen. The allelic interaction at S-b locus caused asynchronous development of microspores at the middle microspore stage producing stainable abortive pollen. The allelic interaction at S-c locus mainly led to the non-dissolution of the generative cell wall and finally caused the hybrid F1 mainly producing stainable abortive pollen. Genotypic identification indicated that the abortive pollen were those with S j allele.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号