首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Objective: To determine cytochrome P450 (CYP450) and cyclooxygenase (COX) expression and metabolite regulation and renal damage in the early stages of obesity‐related hypertension and diabetes. Research Methods and Procedures: Obese and lean Zucker rats at 10 to 12 weeks of age were studied. Blood pressure was measured in the conscious state using radiotelemetry. Blood glucose levels and body weight were measured periodically. Protein expression of CYP450 and COX enzymes in the kidney cortex, renal microvessels, and glomeruli was studied. The levels of CYP450 and COX metabolites in urine were measured, and urinary albumin excretion, an indicator of kidney damage, was measured. Results: Body weight and blood glucose averaged 432 ± 20 grams and 105 ± 5 mg/dl, respectively, in obese Zucker rats as compared with 320 ± 8 grams and 91 ± 5 mg/dl, respectively, in age‐matched 10‐ to 12‐week‐old lean Zucker rats. Renal microvascular CYP4A and COX‐2 protein levels were increased 2.3‐ and 17.0‐fold, respectively, in obese Zucker rats. The protein expression of CYP2C11 and CYP2C23 was decreased 2.0‐fold in renal microvessels isolated from obese Zucker rats when compared with lean Zucker rats. The urinary excretion rate of thromboxane B2 was increased significantly in obese Zucker as compared with lean Zucker rats (22.0 ± 1.8 vs. 13.4 ± 1.0 ng/d). Urinary albumin excretion, an index of kidney damage, was increased in the obese Zucker rat at this early age. Discussion: These results suggest that increased CYP4A and COX‐2 protein levels and decreased CYP2C11 and CYP2C23 protein levels occur in association with microalbuminuria during the onset of obesity‐related hypertension and type 2 diabetes.  相似文献   

2.
Chronic feeding of fructose to normal rats causes impaired glucose tolerance, loss of tissue sensitivity to insulin, hyperinsulinemia and hypertension. -Lipoic acid (LA), a co-enzyme known for its potent antioxidant effects, stimulates insulin-mediated glucose uptake in clinical and experimental diabetes. The purpose of this study was to examine whether LA can mitigate fructose-induced insulin resistance and associated abnormalities. Male Wistar rats of body weights 150–170 g were divided into 4 groups containing 12 rats each. Control rats received a control diet containing starch and water ad libitum. Fructose rats received a fructose-enriched diet (>60% of total calories). Fructose + LA rats received a fructose diet and LA (35 mg/kg b.w.) intraperitoneally. Control + LA rats received a normal diet and LA (35 mg/kg b.w.) intraperitoneally. After the treatment period of 20 days, blood pressure (BP) was measured. Oral glucose-tolerance test, insulin-sensitivity index, urea and creatinine clearance tests, and plasma and urinary sodium and potassium levels were analysed. Kallikrein activity and nitrite content were assayed. Additionally, the activities of RBC-membrane Na+/K+ ATPase and Ca2+ ATPase enzymes were assayed. Fructose rats showed increased BP, decreased glucose tolerance, decreased insulin sensitivity and altered sodium and potassium levels and renal clearance. LA supplementation mitigated these alterations. The increase in BP was attenuated and the levels of biochemical parameters were brought close to normal. The BP-lowering effect of LA in fructose rats may be related to improvement in insulin sensitivity.Communicated by L.C.-H. Wang.  相似文献   

3.
BACKGROUND/AIMS: This study determined alterations in renal dopamine production in streptozotocin-treated rats and explored the mechanisms underlying this alteration. METHODS: Streptozotocin (65 mg/kg) or vehicle was administered to 3-month-old male Wistar rats. Treated animals had hyperglycemia, glycosuria and increased diuresis, natriuresis and excretion of L-dopa. Urinary dopamine and dihydroxyphenylacetic acid were similar to those in control animals. The production of dopamine by renal cortex slices from treated rats was significantly less than that from control animals. The addition of glucose (8.4-18.4 mM) to the incubation medium decreased about 40% the uptake of L-dopa by isolated proximal tubular cells. Scatchard analysis of the saturation curves obtained in this condition showed a decrease in the V(max) without changes in the K(m). RESULTS: Our results confirm previous studies suggesting a renal dopaminergic deficiency in insulin-dependent diabetes and provide evidence strongly suggesting that a decrease in the number of tubular L-dopa transport sites is the underlying defect of this deficiency. CONCLUSION: These results highlight the role of the uptake of dopa as an important modulator of renal dopamine synthesis.  相似文献   

4.
Kidneys form dopamine (DA) from L-dopa and serotonin from L-5-hydroxytryptophan (L-5-HTP) via aromatic L-amino acid decarboxylase. We compared the ability of isolated perfused kidneys from adult (20-week-old) spontaneously hypertensive rats (SHR) and normotensive Wistar-Kyoto rats (WKY) to form these biogenic amines. Renal vascular resistance (RVR) was greater in perfused kidneys from SHR (n = 10) than WKY (n = 8) (p less than 0.01). Slight decreases in RVR were observed during L-dopa infusion but these were unrelated to DA formation. L-Dopa infusion was associated with greater DA output in SHR than WKY in both the renal venous and urinary effluents although the latter did not achieve statistical significance. L-5-HTP increased RVR to a greater degree in SHR than WKY kidneys. This was associated with larger quantities of serotonin in the urinary and venous effluents and greater pressor responses to exogenous serotonin in SHR than WKY kidneys; however, either parameter alone was not significantly increased. Our findings do not support a deficiency of intrarenal DA formation as a pathogenic factor for hypertension in SHR. Biogenic amine formation is as great if not greater in SHR than WKY kidneys and appears to contribute largely to the greater increases in renal resistance seen in SHR kidneys on infusion of L-5-HTP. Enhanced renal serotonin formation may elevate blood pressure, whereas enhanced renal DA formation would favor blood pressure lowering, perhaps as a compensatory mechanism.  相似文献   

5.
Akita mice are a genetic model of type 1 diabetes. In the present studies, we investigated the phenotype of Akita mice on the FVB/NJ background and examined urinary nephrin excretion as a marker of kidney injury. Male Akita mice were compared with non-diabetic controls for functional and structural characteristics of renal and cardiac disease. Podocyte number and apoptosis as well as urinary nephrin excretion were determined in both groups. Male FVB/NJ Akita mice developed sustained hyperglycemia and albuminuria by 4 and 8 weeks of age, respectively. These abnormalities were accompanied by a significant increase in systolic blood pressure in 10-week old Akita mice, which was associated with functional, structural and molecular characteristics of cardiac hypertrophy. By 20 weeks of age, Akita mice developed a 10-fold increase in albuminuria, renal and glomerular hypertrophy and a decrease in the number of podocytes. Mild-to-moderate glomerular mesangial expansion was observed in Akita mice at 30 weeks of age. In 4-week old Akita mice, the onset of hyperglycemia was accompanied by increased podocyte apoptosis and enhanced excretion of nephrin in urine before the development of albuminuria. Urinary nephrin excretion was also significantly increased in albuminuric Akita mice at 16 and 20 weeks of age and correlated with the albumin excretion rate. These data suggest that: 1. FVB/NJ Akita mice have phenotypic characteristics that may be useful for studying the mechanisms of kidney and cardiac injury in diabetes, and 2. Enhanced urinary nephrin excretion is associated with kidney injury in FVB/NJ Akita mice and is detectable early in the disease process.  相似文献   

6.
Nutrition is an important variable which may affect the risk for renal disease. We previously showed that a high fructose diet in mice produced hypertension and sympathetic activation [8]. The purpose of this study was to determine if a fructose diet altered renal function. A high fructose diet for 12 weeks impaired glucose tolerance, but caused no change in body weight, blood glucose or plasma insulin. Impairment in renal function was documented by the almost two fold increase in urinary protein excretion (Control: 6.6+/-0.6 vs. Fructose: 15.0+/-0.7 mmol protein/mmol creatinine; p<0.05) which was also accompanied by increases in urinary volume. The diet produced little change in renal histology, kidney weight or kidney weight/body weight ratio. Urinary excretion of angiotensin II/creatinine (Control: 78.9+/-16.6 vs. Fructose: 80.5+/-14.2 pg/mmol) and renal angiotensin converting enzyme activity (Control: 9.2+/-1.6 vs. Fructose: 7.6+/-1.0 ACE units) were not different between groups. There was a positive correlation between mean arterial pressure (r=0.7, p=0.01), blood pressure variability (BPV) (r=0.7, p=0.02), low frequency BPV component (r=0.677, p=0.03) and urinary protein excretion. Results show that consumption of a high fructose diet in mice had deleterious effects on renal function, which were correlated with cardiovascular changes.  相似文献   

7.
The goal of this study was to test the hypothesis that increases in oxidative stress in Dahl S rats on a high-salt diet help to stimulate renal nuclear factor-kappaB (NF-kappaB), renal proinflammatory cytokines, and chemokines, thus contributing to hypertension, renal damage, and dysfunction. We specifically studied whether antioxidant treatment of Dahl S rats on high Na intake would decrease renal inflammation and thus attenuate the hypertensive and adverse renal responses. Sixty-four 7- to 8-wk-old Dahl S or R/Rapp strain rats were maintained for 5 wk on high Na (8%) or high Na + vitamins C (1 g/l in drinking water) and E (5,000 IU/kg in food). Arterial and venous catheters were implanted at day 21. By day 35 in the high-Na S rats, antioxidant treatment significantly increased the renal reduced-to-oxidized glutathione ratio and decreased renal cortical H(2)O(2) and O(2)(*-) release and renal NF-kappaB. Antioxidant treatment with vitamins C and E in high-Na S rats also decreased renal monocytes/macrophages in the glomeruli, cortex, and medulla, decreased tumor necrosis factor-alpha by 39%, and decreased monocyte chemoattractant protein-1 by 38%. Vitamin-treated, high-Na S rats also experienced decreases in arterial pressure, urinary protein excretion, renal tubulointerstitial damage, and glomerular necrosis and increases in glomerular filtration rate and renal plasma flow. In conclusion, antioxidant treatment of high-Na Dahl S rats decreased renal inflammatory cytokines and chemokines, renal immune cells, NF-kappaB, and arterial pressure and improved renal function and damage.  相似文献   

8.
Wu D  Wen W  Qi CL  Zhao RX  Lü JH  Zhong CY  Chen YY 《Phytomedicine》2012,19(8-9):712-718
Berberine (BBR) is one of the main constituents in Rhizoma coptidis and it has widely been used for the treatment of diabetic nephropathy. The aims of the study were to investigate the effects and mechanism of action of berberine on renal damage in diabetic rats. Diabetes and hyperglycaemia were induced in rats by a high-fat diet and intraperitoneal injection of 40 mg/kg streptozotocin (STZ). Rats were randomly divided into 5 groups, such as i) control rats, ii) untreated diabetic rats iii) 250 mg/kg metformin-treated, iv and v) 100 and 200 mg/kg berberine-treated diabetic rats and treated separately for 8 weeks. The fasting blood glucose, insulin, total cholesterol, triglyceride, glycosylated hemoglobin were measured in rats. Kidneys were isolated at the end of the treatment for histology, Western blot analysis and estimation of malonaldehyde (MDA), superoxide dismutase (SOD) and renal advanced glycation endproducts (AGEs). The results revealed that berberine significantly decreased fasting blood glucose, insulin levels, total cholesterol, triglyceride levels, urinary protein excretion, serum creatinine (Scr) and blood urea nitrogen (BUN) in diabetic rats. The histological examinations revealed amelioration of diabetes-induced glomerular pathological changes following treatment with berberine. In addition, the protein expressions of nephrin and podocin were significantly increased. It seems likely that in rats berberine exerts an ameliorative effect on renal damage in diabetes induced by high-fat diet and streptozotocin. The possible mechanisms for the renoprotective effects of berberine may be related to inhibition of glycosylation and improvement of antioxidation that in turn upregulate the expressions of renal nephrin and podocin.  相似文献   

9.
Transient activation of the renin-angiotensin system (RAS) induces irreversible renal damage causing sustained elevation in blood pressure (BP) in Cyp1a1-Ren2 transgenic rats. In our current study we hypothesized that activation of the AT1-receptor (AT1R) leads to a T-cell response causing irreversible impairment of renal function and hypertension. Cyp1a1-Ren2 rats harbor a construct for activation of the RAS by indole-3-carbinol (I3C). Rats were fed a I3C diet between 4–8 weeks of age to induce hypertension. Next, I3C was withdrawn and rats were followed-up for another 12 weeks. Additional groups received losartan (20 mg/kg/day) or hydralazine (100 mg/kg/day) treatment between 4–8 weeks. Rats were placed for 24h in metabolic cages before determining BP at week 8, 12 and 20. At these ages, subsets of animals were sacrificed and the presence of kidney T-cell subpopulations was investigated by immunohistochemistry and molecular marker analysis. The development of sustained hypertension was completely prevented by losartan, whereas hydralazine only caused a partial decrease in BP. Markers of renal damage: KIM-1 and osteopontin were highly expressed in urine and kidney samples of I3C-treated rats, even until 20 weeks of age. Additionally, renal expression of regulatory-T cells (Tregs) was highly increased in I3C-treated rats, whereas the expression of T-helper 1 (Th1) cells demonstrated a strong decrease. Losartan prevented these effects completely, whereas hydralazine was unable to affect these changes. In young Cyp1a1-Ren2 rats AT1R activation leads to induction of an immune response, causing a shift from Th1-cells to Tregs, contributing to the development of irreversible renal damage and hypertension.  相似文献   

10.
Despite the effectiveness of renin-angiotensin blockade in retarding diabetic nephropathy progression, a considerable number of patients still develop end-stage renal disease. The present investigation aims to evaluate the protective potential of FPS-ZM1, a selective inhibitor of receptor for advanced glycation end products (RAGE), alone and in combination with valsartan, an angiotensin receptor blocker, against glomerular injury parameters in streptozotocin-induced diabetic rats. FPS-ZM1 at 1 mg/kg (i.p.), valsartan at 100 mg/kg (p.o.), and their combination were administered for 4 weeks, starting 2 months after diabetes induction in rats. Tests for kidney function, glomerular filtration barrier, and podocyte slit diaphragm integrities were performed. Combined FPS-ZM1/valsartan attenuated diabetes-induced elevations in renal levels of RAGE and phosphorylated NF-κB p65 subunit. It ameliorated glomerular injury due to diabetes by increasing glomerular nephrin and synaptopodin expressions, mitigating renal integrin-linked kinase (ILK) levels, and lowering urinary albumin, collagen type IV, and podocin excretions. FPS-ZM1 also improved renal function as demonstrated by decreasing levels of serum cystatin C. Additionally, the combination also alleviated indices of renal inflammation as revealed by decreased renal monocyte chemoattractant protein 1 (MCP-1) and chemokine (C-X-C motif) ligand 12 (CXCL12) expressions, F4/80-positive macrophages, glomerular TUNEL-positive cells, and urinary alpha-1-acid glycoprotein (AGP) levels. These findings underline the benefits of FPS-ZM1 added to valsartan in alleviating renal glomerular injury evoked by diabetes in streptozotocin rats and suggest FPS-ZM1 as a new potential adjunct to the conventional renin-angiotensin blockade.  相似文献   

11.
12.

Purpose

The aim of this study was to characterize short and medium-lasting effects of fructose supplementation on young Wistar rats. The diet was similar to actual human consumption.

Methods

Three week old male rats were randomly divided into 2 groups: control (C; n = 16), fructose fed (FF; n = 16) with a fructose enriched drink for 6 or 12 weeks. Bodyweight, fasting glycemia and systolic blood pressure were monitored. Glucose tolerance was evaluated using an oral glucose tolerance test. Insulinemia was measured concomitantly and enable us to calculate insulin resistance markers (HOMA-IR, Insulin Sensitivity Index for glycemia: ISI-gly). Blood chemistry analyses were performed.

Results

After six weeks of fructose supplementation, rats were not overweight but presented increased fasting glycemia, reduced glucose tolerance, and lower insulin sensitivity compared to control group. Systolic blood pressure and heart weight were also increased without any change in renal function (theoretical creatinine clearance). After twelve weeks of fructose supplementation, FF rats had increased bodyweight and presented insulin resistance (higher HOMA-IR, lower ISI-gly). Rats also presented higher heart volume and lower ASAT/ALAT ratio (presumed liver lesion). Surprisingly, the Total Cholesterol/Triglycerides ratio was increased only after six weeks of fructose supplementation, predicting a higher LDL presence and thus a higher risk of developing cardiovascular disease. This risk was no longer present after twelve weeks of a fructose enriched diet.

Conclusion

On young Wistar rats, six weeks of fructose supplementation is sufficient to induce signs of metabolic syndrome. After twelve weeks of fructose enriched diet, rats are insulin resistant. This model enabled us to study longitudinally the early development of type 2 diabetes.  相似文献   

13.
何小瑞  施蕾 《生理学报》1992,44(3):215-221
实验在α氯醛糖和氨基甲酸乙酯混合麻醉的大鼠中进行。脑室内注射高张盐水(icv.HS)后,肾血浆流量、肾小球滤过率、尿量、尿钠排出量、尿钾排出量和渗透物质清除率均增加,游离水清除率下降。去除垂体后,icv.HS不再能引起上述肾脏反应。另外给大鼠静脉注射血管升压素(VP)拮抗剂(V_1和V_2受体拮抗剂),并不能削弱上述icv.HS引起的肾脏反应。脑室内注射高张盐水后,尿中多巴胺(DA)排出量无显著增多;给予多巴脱羧酶抑制剂苄丝肼也不能削弱icv.HS引起的肾脏反应。上述实验结果表明,在本实验条件下刺激脑内渗透压感受器引起的肾脏反应依赖于垂体的完整性,但看来并不依赖于外周的VP和DA,故垂体通过何种机制介导icv.HS引起上述肾脏反应,有待于进一步的研究。  相似文献   

14.
The roles of oxidative stress and renal superoxide dismutase (SOD) levels and their association with renal damage were studied in Dahl salt-sensitive (S) and salt-resistant (R)/Rapp strain rats during changes in Na intake. After 3 wk of a high (8%)-Na diet in S rats, renal medullary Cu/Zn SOD was 56% lower and Mn SOD was 81% lower than in R high Na-fed rats. After 1, 2, and 3 wk of high Na, urinary excretion of F(2)-isoprostanes, an index of oxidative stress, was significantly greater in S rats compared with R rats. Plasma F(2)-isoprostane concentration increased in the 2-wk S high Na-fed group. After 3 wk, renal cortical and medullary superoxide production was significantly increased in Dahl S rats on high Na intake, and urinary protein excretion, an index of renal damage, was 273 +/- 32 mg/d in S high Na-fed rats and 35 +/- 4 mg/d in R high Na-fed rats (P < 0.05). In conclusion, salt-sensitive hypertension in the S rat is accompanied by marked decreases in renal medullary SOD and greater renal oxidative stress and renal damage than in R rats.  相似文献   

15.
目的: 观察大鼠在一次性力竭运动后肾脏裂孔膜蛋白的表达水平,探究PKC抑制剂对其蛋白表达水平的影响,揭示PKC在运动性蛋白尿形成中的作用机制。方法: SD雄性大鼠30只随机分为对照组(C)、运动组(E)、运动联合PKC抑制剂组(EPI),每组10只。E组和EPI组大鼠分别进行一次性跑台力竭运动(25 m/min),EPI组大鼠运动前1 d及1 h腹腔注射PKC抑制剂白屈菜红碱(chelerythrine,5 mg/kg),C组和E组注射相应体积的生理盐水。运动后即刻麻醉后,取血液、尿液及肾脏组织,使用化学比色法检测尿蛋白、尿酸、尿糖、血尿素、血尿酸、血糖水平,使用荧光探针法检测肾脏ROS水平,使用Western blot法检测肾脏PKC、Nox2、Nox4、nephrin、podocin蛋白表达。结果: ①与C组相比,E组尿蛋白、尿酸、尿糖、血尿素、血尿酸显著增多(P<0.05),血糖显著减少(P<0.01),肾脏ROS生成显著增多(P<0.01),肾脏nephrin、podocin蛋白表达明显降低(P<0.05),PKC、Nox2、Nox4蛋白表达明显增多(P<0.05);②与E组比,EPI组尿蛋白、尿糖、血尿素显著减少(P<0.05),血糖显著增加(P< 0.01),肾脏ROS生成显著降低(P<0.01),EPI组肾组织中nephrin、podocin蛋白表达明显增加(P<0.05),PKC、Nox2蛋白表达明显降低(P<0.05)。结论: 一次性力竭运动通过PKC/NOX/ROS途径使大鼠肾脏裂孔膜蛋白nephrin、podocin表达下调;PKC抑制剂缓解力竭运动导致的肾脏裂孔膜蛋白表达下降,预防运动性蛋白尿的发生。  相似文献   

16.
Background: Renovascular hypertension elicits cardiac damage and remodeling. Two-kidney, one-clip (2K1C) is an experimental model used to study hypertension pathophysiology. In this model, the renin-angiotensin-system (RAS) is overactive due to renal artery stenosis, leading to cardiac remodeling. Redox mechanisms underlying RAS activation mediate hypertension-induced cardiovascular damage. Preclinical studies and clinical trials demonstrated resveratrol’s protective effects in cardiovascular diseases, mainly attributed to its antioxidant properties. We hypothesized resveratrol alone or in combination with an angiotensin-converting enzyme (ACE) inhibitor would be beneficial against cardiac damage caused by renovascular hypertension. Objective: We investigated the benefits of resveratrol against cardiac remodeling in 2K1C rats compared with captopril. Methods: Male Wistar rats underwent unilateral renal stenosis – 2K1C Goldblatt model of hypertension. Systolic Blood Pressure (SBP) was measured before and 6 weeks after surgery. Hypertensive 2K1C rats presented SBP≥160 mmHg. From the 6th week after the surgery, the animals received oral resveratrol (20 mg/kg), captopril (12 mg/kg), or their combination for 3 times per week for 3 weeks. Whole heart hypertrophy was evaluated. Histological assays assessed left ventricle hypertrophy and fibrosis. Results: Renovascular hypertension caused cardiac hypertrophy, accompanied by increased myocyte diameter and collagen deposition. Resveratrol reduced 2K1C rats’ SBP and whole heart hypertrophy, independently of captopril. Resveratrol caused a higher reduction in ventricular hypertrophy than captopril. Collagen deposition was greater reduced by 2K1C treated only with resveratrol than with captopril alone or combined with resveratrol. Conclusion: Independent of captopril, resveratrol prompts cardioprotective effects on cardiomyocyte remodeling and fibrosis resulting from renovascular hypertension in 2K1C rats.  相似文献   

17.
Hypertension is associated with increased reactive oxygen species (ROS). Renal ROS production and their effects on renal function have never been investigated in mineralocorticoid hypertensive rats. In this study we hypothesized that increased ROS production in kidneys from deoxycorticosterone (DOCA)-salt rats contributes to adverse renal morphological changes and impaired renal function in DOCA-salt hypertensive rats. We also determined whether ROS-induced renal injury was dependent on blood pressure. DOCA-salt hypertensive rats exhibited a marked increase in blood pressure, renal ROS production, glomerular and tubular lesions, and microalbuminuria compared to sham rats. Treatment of DOCA-salt hypertensive rats with apocynin for 28 days resulted in attenuation of systolic blood pressure and improvement of renal morphology. Renal superoxide level in DOCA-salt rats was 215% of sham-operated rats and it was significantly decreased to 140% with apocynin treatment. Urinary protein level was decreased from 27 +/- 3 mg/day in DOCA-salt hypertensive rats to 9 +/- 2 mg/day. 28 days of Vitamin E treatment also reduced renal injury in regard to urinary protein level and renal morphology but had no effect on blood pressure in DOCA-salt rats. Increased urinary 8-isoprostane, a marker for oxidative stress, in DOCA-salt hypertensive rats (55 +/- 8 ng/day) was diminished by vitamin E treatment (24 +/- 6 ng/day). These data suggest that renal injury characteristic of mineralocorticoid hypertension is associated with oxidative stress and is partly independent of blood pressure.  相似文献   

18.
Dyslipidemia and insulin resistance in obesity can lead to lipotoxicity and cellular damage. Renal lipotoxicity in association with an impairment of lipid metabolism induces renal damage through the activation of inflammation, ER stress, fibrosis and apoptosis. We investigated the effects of a combination treatment of the DPP-4 inhibitor vildagliptin and atorvastatin on renal lipotoxicity related to renal dysfunction and injury in a high-fat high-fructose diet (HFF)-induced insulin resistant condition. Male Wistar rats were fed on a high-fat diet and were given drinking water with 10% fructose for 16 weeks. After that, rats were divided into: no treatment (HFF), treatment with vildagliptin, atorvastatin and vildagliptin plus atorvastatin for 4 weeks. The results demonstrated that the combination treatment prominently improved insulin resistance, dyslipidemia and kidney morphological changes induced by HFF. These changes correlated well with the increased expression of nephrin and podocin and decreased urine protein. Notably, the combined treatment produced greater improvement in renal lipid metabolism through increasing fatty acid oxidation with the decreases in fatty acid transporters and fatty acid synthesis, thereby reducing renal lipid accumulation in HFF rats. The reduction in renal lipotoxicity via diminishing renal inflammation, ER stress, fibrosis and apoptosis was also more significant in the combined treatment group than in the other groups in which the drug was used as a monotherapy. In conclusion, the combination therapy produced synergistic beneficial effects on metabolic parameters, lipid metabolism and accumulation related to renal lipid accumulation-induced lipotoxicity and kidney injury in the HFF-induced insulin resistant model with improved outcomes.  相似文献   

19.
We investigated the effects of 4% fructose plus moderately high salt (MHS) (4% NaCl) treatment on tissue aldehyde conjugates, platelet cytosolic free calcium ([Ca2+]i), renal morphology, and systolic blood pressure (SBP) in Wistar-Kyoto rats, and whether these effects were reversible (R) after withdrawal of treatment. At age 7 weeks, rats were divided into 4 groups: NS group, given normal salt (NS) diet (0.7% NaCl) for 18 weeks; NS+F(R) group, NS diet and fructose in water for 14 weeks, then 4 weeks fructose withdrawal; MHS+F group, NS diet and fructose for 6 weeks, then MHS diet and fructose for 12 weeks; and MHS+F(R) group, NS diet and fructose for 6 weeks, then MHS diet and fructose for 8 weeks, then MHS and fructose withdrawal for 4 weeks. SBP in the NS+F(R) group increased during fructose treatment, but normalized within 1 week of withdrawal. Tissue aldehyde conjugates and platelet [Ca2+]i were normal at completion. Adverse renal vascular changes did not reverse to normal and were similar to those of the salt plus fructose-treated groups. This may have implications for future development of hypertension. MHS did not cause any additional increase in SBP or associated tissue alterations when added to fructose treatment. However, the SBP and tissue changes persisted even after discontinuation of treatment. The fructose and salt combination may result in long-lasting vascular alterations leading to hypertension.  相似文献   

20.
AimsIn 3/4 nephrectomized (3/4nx) rats the renal dopaminergic system was suggested to be involved in the adaptive increase of sodium excretion two weeks after renal mass ablation. The aim of the present study was to evaluate the renal adaptations in sodium handling and renal dopaminergic system activity in 3/4nx rats up to twenty-six weeks after surgery.Main methodsThe rats were placed in metabolic cages for the collection of 24 h urine for evaluation of sodium, dopamine, dopamine precursor and metabolites. Blood pressure, aromatic L-amino acid decarboxylase (AADC) activity in proximal tubules and the effect of dopamine D1 receptor selective antagonist (Sch-23390) on natriuresis was evaluated.Key findingsA time-dependent increase in both systolic and diastolic blood pressure was observed in 3/4nx rats, and this was accompanied by a decrease in urinary levels of dopamine and in renal AADC activity at twenty-six weeks after renal mass ablation. In contrast to what has been found two weeks after renal mass ablation, the natriuretic response to volume expansion was progressively reduced in 3/4nx rats at ten and twenty-six weeks after surgery and this was accompanied by insensitivity of natriuresis to Sch-23390.SignificanceIn conclusion the renal dopaminergic system activity is compromised in 3/4nx rats in a time-dependent manner after renal mass ablation. It is suggested that this may contribute to compromise sodium excretion and increase blood pressure, in chronic renal insufficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号