首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lactobacillus rhamnosus GG (LGG) has been regarded as a safe probiotic strain. The aim of this study was to investigate whether dietary LGG supplementation could alleviate diarrhea via improving jejunal mucosal barrier function in the weaned piglets challenged by RV, and further analyze the potential roles for apoptosis of jejunal mucosal cells and intestinal microbiota. A total of 24 crossbred barrows weaned at 21 d of age were assigned randomly to 1 of 2 diets: the basal diet and LGG supplementing diet. On day 11, all pigs were orally infused RV or the sterile essential medium. RV infusion increased the diarrhea rate, increased the RV-Ab, NSP4 and IL-2 concentrations and the Bax mRNA levels of jejunal mucosa (P<0.05), decreased the villus height, villus height: crypt depth, the sIgA, IL-4 and mucin 1 concentrations and the ZO-1, occludin and Bcl-2 mRNA levels of jejunal mucosa (P<0.05), and affected the microbiota of ileum and cecum (P<0.05) in the weaned pigs. Dietary LGG supplementation increased the villus height and villus height: crypt depth, the sIgA, IL-4, mucin 1 and mucin 2 concentrations, and the ZO-1, occludin and Bcl-2 mRNA levels of the jejunal mucosa (P<0.05) reduced the Bax mRNA levels of the jejunal mucosa (P<0.05) in weaned pigs. Furthermore, dietary LGG supplementation alleviated the increase of diarrhea rate in the weaned pigs challenged by RV (P<0.05), and relieve the effect of RV infection on the villus height, crypt depth and the villus height: crypt depth of the jejunal mucosa (P<0.05), the NSP4, sIgA, IL-2, IL-4, mucin 1 and mucin 2 concentrations of jejunal mucosa (P<0.05), the ZO-1, occludin, Bax and Bcl-2 mRNA levels of the jejunal mucosa (P<0.05), and the microbiota of ileum and cecum (P<0.05) in the weaned pigs challenged by RV. These results suggest that supplementing LGG in diets alleviated the diarrhea of weaned piglets challenged by RV via inhibiting the virus multiplication and improving the jejunal mucosal barrier function, which was possibly due to the decreasing apoptosis of jejunal mucosal cells and the improvement of intestinal microbiota.  相似文献   

2.
The aim of this study was to investigate whether supplementation with chitosan (COS) could reduce diarrhea and to explore how COS alleviates intestinal inflammation in weaned pigs. Thirty pigs (Duroc×Landrace×Yorkshire, initial BW of 5.65±0.27) weaned at age 21 d were challenged with enterotoxigenic Escherichia coli during a preliminary trial period, and then divided into three treatment groups. Pigs in individual pens were fed a corn-soybean meal diet, that contained either 0 (control), 50 mg/kg chlortetracycline, or 300 mg/kg COS for 21 days. The post-weaning diarrhea frequency, calprotectin levels and TLR4 protein expression were decreased (P<0.05) in both the COS and chlortetracycline groups compared with control. Simultaneously, supplemental COS and chlortetracycline had no effect on the mRNA expression of TNF-α in the jejunal mucosa, or on the concentrations of IL-1β, IL-6 and TNF-α in serum. However, COS supplementation improved (P<0.05) the mRNA expression of IL-1β and IL-6 in the jejunal mucosa. The results indicate that supplementation with COS at 300 mg/kg was effective for alleviating intestinal inflammation and enhancing the cell-mediated immune response. As feed additives, chitosan and chlortetracycline may influence different mechanisms for alleviating inflammation in piglets.  相似文献   

3.
The contradiction between high susceptibility of early weaned piglets to enteric pathogens and rigid restriction of antibiotic use in the diet is still prominent in the livestock production industry. To address this issue, the study was designed to replace dietary antibiotics partly or completely by an immunostimulant, namely heat-killed Mycobacterium phlei (M. phlei). Piglets (n = 192) were randomly assigned to one of the four groups: (1) basal diet (Group A), (2) basal diet + a mixture of antibiotics (80 mg/kg diet, Group B), (3) basal diet + a mixture of antibiotics (same as in Group B, but 40 mg/kg diet) + heat-killed M. phlei (1.5 g/kg diet) (Group C) and (4) basal diet + heat-killed M. phlei (3 g/kg diet) (Group D). All piglets received the respective diets from days 21 to 51 of age and were weaned at the age of 28 d. Compared with the Control (Group A), in all other groups the average daily gain, average daily feed intake, small intestinal villus height:crypt depth ratio and protein levels of occludin and ZO-1 in the jejunal mucosa were increased. A decreased incidence of diarrhoea in conjunction with an increased sIgA concentration in the intestinal mucosa and serum IL-12 and IFN-γ concentrations was found in groups supplemented with heat-killed M. phlei (Groups C and D), but not in Group B. Groups C and D also showed decreased IL-2 concentrations in the intestinal mucosa with lower TLR4 and phosphor-IκB protein levels. The antioxidant capacity was reinforced in Groups C and D, as evidenced by the reduction in malondialdehyde and enhanced activities of antioxidant enzymes in serum. These data indicate that heat-killed M. phlei is a promising alternative to antibiotic use for early weaned piglets via induction of protective immune responses.  相似文献   

4.
5.
Glucose oxidase (GOD) is an aerobic dehydrogenase, which catalyses the oxidation of β-D-glucose to gluconic acid and hydrogen peroxide. This study aimed to investigate the effects of dietary glucose oxidase and its combined effects with Bacillus amyloliquefaciens SC06 (BaSC06) on the intestinal microbiota, immune function and antioxidant capacity of broilers. One-day-old male Lingnan yellow-feathered broilers (n = 720) were randomly assigned to four treatment groups: Control group (basal diet), Anti group (basal diet supplemented with 200 mg/kg enramycin), GOD group (basal diet supplemented with 75 U/kg GOD), and combination of GOD and BaSC06 (GB) group (GOD diet (75 U/kg) supplemented with 1 × 108 colony-forming units BaSC06/kg feed), with six replicates per group and 30 birds per replicate. The experiment was conducted over 52 days. The results indicated a significant decrease in α-diversity (Observed species, Chao1, PD_whole_tree and Shannon) with GOD treatment, compared with the control group. GB treatment also significantly decreased the Shannon index of cecal microbiota. GOD treatment significantly decreased the α-diversity, whereas GB treatment significantly increased these indices except for the Chao1 index, compared with the Anti group. Compared with the control group, the relative abundance of Bacteroides in the GOD and GB groups was significantly increased, whereas a decrease in Firmicutes was observed. Compared with the Anti group, GOD treatment significantly increased the relative abundances of Bacteroides and Lactobacillales, while GB treatment significantly increased Lactobacillales and decreased Proteobacteria levels. In addition, GOD treatment significantly decreased interleukin-10 and interferon-γ levels, compared with the control group. In contrast, GB treatment significantly downregulated interferon-γ levels and upregulated secretory immunoglobulin A, transforming growth factor-β and interleukin-2 expression in the jejunal mucosa. GOD treatment significantly decreased transforming growth factor-β and interleukin-10 levels, whereas GB treatment markedly increased interferon-γ expression in the jejunal mucosa compared with the Anti group. Furthermore, GB treatment significantly increased the total antioxidant capability levels and the total superoxide dismutase (T-SOD) and catalase (CAT) activities compared with the control group. Meanwhile, GOD treatment significantly increased glutathione peroxidase (GSH-Px) activity in the jejunal mucosa. Total superoxide dismutase, GSH-Px and CAT activities in the Anti group were higher than in the GOD and GB groups. The malondialdehyde levels in the control group were the highest among all groups. In conclusion, our results indicated that supplementation with GOD alone and its combination with BaSC06 in diet could increase antioxidant capacity, immune function and improve the intestinal microbiota composition of broilers. Combination treatment with GOD with BaSC06 exerted stronger effects than GOD treatment only.  相似文献   

6.
Weaning in the piglet is a stressful event associated with gastrointestinal disorders and increased disease susceptibility. Although stress is thought to play a role in postweaning intestinal disease, the mechanisms by which stress influences intestinal pathophysiology in the weaned pig are not understood. The objectives of these experiments were to investigate the impact of weaning on gastrointestinal health in the pig and to assess the role of stress signaling pathways in this response. Nineteen-day-old pigs were weaned, and mucosal barrier function and ion transport were assessed in jejunal and colonic tissues mounted on Ussing chambers. Weaning caused marked disturbances in intestinal barrier function, as demonstrated by significant (P < 0.01) reductions in transepithelial electrical resistance and increases in intestinal permeability to [3H]mannitol in both the jejunum and colon compared with intestinal tissues from age-matched, unweaned control pigs. Weaned intestinal tissues exhibited increased intestinal secretory activity, as demonstrated by elevated short-circuit current that was sensitive to treatment with tetrodotoxin and indomethacin, suggesting activation of enteric neural and prostaglandin synthesis pathways in weaned intestinal tissues. Western blot analyses of mucosal homogenates showed increased expression of corticotrophin-releasing factor (CRF) receptor 1 in the jejunum and colon of weaned intestinal tissues. Pretreatment of pigs with the CRF receptor antagonist alpha-helical CRF(9-41), which was injected intraperitoneally 30 min prior to weaning, abolished the stress-induced mucosal changes. Our results indicate that weaning stress induces mucosal dysfunction mediated by intestinal CRF receptors and activated by enteric nerves and prostanoid pathways.  相似文献   

7.
Early weaning usually causes intestinal disorders, enteritis, and diarrhea in young animals and human infants. Astragalus polysaccharides (APS) possesses anti-inflammatory activity. To study the anti-inflammatory mechanisms of APS and its potential effects on intestinal health, we performed an RNA sequencing (RNA-seq) study in lipopolysaccharide (LPS)-stimulated porcine intestinal epithelial cells (IPEC-J2) in vitro. In addition, LPS-stimulated BALB/c mice were used to study the effects of APS on intestinal inflammation in vivo. The results from the RNA-seq analysis show that there were 107, 756, and 5 differentially expressed genes in the control versus LPS, LPS versus LPS+APS, and control versus LPS+APS comparison groups, respectively. The results of Kyoto Encyclopedia of Genes and Genomes enrichment analysis indicated that the mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) signaling pathways play significant roles in the regulation of inflammatory factors and chemokine expression by APS. Further verification of the above two pathways by using western blot and immunofluorescence analysis revealed that the gene expression levels of the phosphorylated p38 MAPK, ERK1/2, and NF-κB p65 were inhibited by APS, while the expression of IκB-α protein was significantly increased (p < .05), indicating that APS inhibits the production of inflammatory factors and chemokines by the inhibition of activation of the MAPK and NF-κB inflammatory pathways induced by LPS stimulation. Animal experiments further demonstrated that prefeeding APS in BALB/c mice can alleviate the expression of the jejunal inflammatory factors interleukin 6 (IL-6), IL-Iβ, and tumor necrosis factor-α induced by LPS stimulation and improve jejunal villus morphology.  相似文献   

8.
Glutathione (GSH) is considered to play an important role in maintaining the integrity of the small intestine. In piglets, altered mucosal GSH levels might therefore be involved in weaning-induced changes of the small intestinal morphology and barrier function. To test this hypothesis, we aimed to challenge the mucosal GSH redox status during the first 28 days after weaning, by feeding diets containing 5% fresh linseed oil (CON), or 2.5% (OF1) or 5% (OF2) peroxidized linseed oil (peroxide value 225 mEq O2/kg oil) and exploring the effects on gut integrity. Piglets were pair-fed and had a total daily feed allowance of 32 g/kg BW. A fourth treatment included animals that were fed the control diet ad libitum (ACON). Animals were sampled at days 5 and 28 post-weaning. The malondialdehyde (MDA) concentration and GSH redox status (GSH/GSSG Eh) were determined in blood, liver and small intestinal mucosa. Histomorphology of the duodenal and jejunal mucosa was determined, and Ussing chambers were used to assess fluorescein isothiocyanate dextran (FD4) and horseradish peroxidase (HRP) fluxes across the mucosa. Results show that peroxidized linseed oil imposed an oxidative challenge at day 28, but not at day 5 post-weaning. At day 28, increasing levels of dietary peroxides to pair-fed pigs linearly increased MDA levels in duodenal and jejunal mucosa. Moreover, FD4 fluxes were significantly increased in OF1 (+75%) and OF2 (+64%) in the duodenum, and HRP fluxes tended (P=0.099) to show similar differences, as compared to CON. This co-occurred with a significant 11 mV increase of the hepatic GSH/GSSG Eh, potentiated by a significantly increased GSH peroxidase activity for treatments OF1 (+47%) and OF2 (+63%) in liver as compared to CON. Furthermore; duodenal HRP flux significantly correlated with the hepatic glutathione disulphide (GSSG) level (r=0.650), as also observed in the jejunum for hepatic GSSG (r=0.627) and GSH/GSSG Eh (r=0.547). The jejunal permeability was not affected, but FD4 and HRP fluxes significantly correlated with the local GSH (r=0.619; r=0.733) and GSSG (r=0.635; r=0586) levels. Small intestinal histomorphology was not affected by dietary lipid peroxides, nor were there any correlations found with the GSH redox system. To conclude, under oxidative stress conditions, jejunal barrier function is related to the local and hepatic GSH redox system. It is suggested that the hepatic GSH system participates in the elimination of luminal peroxides, and thereby impacts on duodenal barrier function.  相似文献   

9.
The objective of the present study was to investigate the effects of dietary supplementation with copper-loaded chitosan nanoparticles (CNP-Cu) on growth performance, intestinal microflora, and morphology in weaned piglets. A number of 90 weaned piglets (Duroc × Landrace × Yorkshire), weaned at 21?days with body weight of 7.2?±?0.81?kg, were randomly divided into three groups by weight and sex, each treatment including three replicates of ten pigs. The piglets were fed the same basal diet supplemented with 0 (the control group), 100?mg/kg CNP-Cu, and 100?mg/kg chlortetracycline (the positive group). The results showed that 100?mg/kg CNP-Cu significantly increased average daily gain and feed intake and decreased feed/gain ratio and diarrhea rate (P?<?0.05). Compared with the control group, the amount of Escherichia coli in duodenum, jejunal, and caecum were significantly decreased by 100?mg/kg CNP-Cu; the number of lactobacillus in jejunal and caecum were increased (P?<?0.05), and the amount of bifidobacterium in duodenum and caecum were also increased (P?<?0.05). Moreover, the villous height of duodenum, jejunum, and ileum mucosa was significantly increased (P?<?0.05), and the crypt depth was significantly decreased (P?<?0.05). The results indicated that CNP-Cu is beneficial to growth and intestinal microflora and morphology and could be a potential substitution of chlortetracycline in diets of weaned piglets.  相似文献   

10.
Neonates are at increased risk for inflammatory bowel disease, but effective prevention and treatments are currently limited. This study was conducted with the lipopolysaccharide (LPS)-challenged piglet model to determine the effects of dietary supplementation with α-ketoglutarate (AKG) on the intestinal morphology and function. Eighteen 24-day-old pigs (weaned at 21 days of age) were assigned randomly to control, LPS, and LPS + AKG groups. The piglets in the control and LPS groups were fed a corn- and soybean meal-based diet, whereas the LPS + AKG group was fed the basal diet supplemented with 1% AKG. On days 10, 12, 14, and 16, piglets in the LPS and LPS + AKG groups received intraperitoneal administration of LPS (80 μg/kg BW), whereas piglets in the control group received the same volume of saline. On day 16, d-xylose was orally administrated to all pigs at the dose of 0.1 g/kg BW, 2 h after LPS or saline injection, and blood samples were collected 3 h thereafter. Twenty-four hours post-administration of LPS or saline, pigs were killed to obtain intestinal mucosae for analysis. Compared with the control group, LPS challenge reduced (P < 0.05) protein levels, the ratio of villus height to crypt depth, and the ratio of phosphorylated mTOR to total mTOR in duodenal, jejunal, and ileal mucosa. These adverse effects of LPS were attenuated (P < 0.05) by AKG supplementation. Moreover, AKG prevented the LPS-induced increase in intestinal HSP70 expression. Collectively, these novel results indicate that dietary supplementation with 1% AKG activates the mTOR signaling, alleviates the mucosal damage, and improves the absorptive function of the small intestine in LPS-challenged piglets. The findings not only help understand the mode of AKGs actions in the neonatal gut but also have important implications for infant nutrition under inflammatory conditions.  相似文献   

11.
The present study was mainly conducted to determine whether dietary leucine supplementation could attenuate the decrease of the mucin production in the jejunal mucosa of weaned pigs infected by porcine rotavirus (PRV). A total of 24 crossbred barrows weaned at 21 d of age were assigned randomly to 1 of 2 diets supplemented with 1.00% L-leucine or 0.68% L-alanine (isonitrogenous control) for 17 d. On day 11, all pigs were orally infused PRV or the sterile essential medium. During the first 10 d of trial, dietary leucine supplementation could improve the feed efficiency (P = 0.09). The ADG and feed efficiency were impaired by PRV infusion (P<0.05). PRV infusion also increased mean cumulative score of diarrhea, serum rotavirus antibody concentration and crypt depth of the jejunal mucosa (P<0.05), and decreased villus height: crypt depth (P = 0.07), goblet cell numbers (P<0.05), mucin 1 and 2 concentrations (P<0.05) and phosphorylated mTOR level (P<0.05) of the jejunal mucosa in weaned pigs. Dietary leucine supplementation could attenuate the effects of PRV infusion on feed efficiency (P = 0.09) and mean cumulative score of diarrhea (P = 0.09), and improve the effects of PRV infusion on villus height: crypt depth (P = 0.06), goblet cell numbers (P<0.05), mucin 1 (P = 0.08) and 2 (P = 0.07) concentrations and phosphorylated mTOR level (P = 0.08) of the jejunal mucosa in weaned pigs. These results suggest that dietary 1% leucine supplementation alleviated the decrease of mucin production and goblet cell numbers in the jejunal mucosa of weaned pigs challenged by PRV possibly via activation of the mTOR signaling.  相似文献   

12.
13.
14.
L-Glutamate is a major oxidative fuel for the small intestine. However, few studies have demonstrated the effect of L-glutamate on the intestinal architecture and signaling of amino acids in the small intestine. The aim of this study was to investigate the effects of dietary L-glutamate supplementation on the intestinal architecture and expressions of jejunal mucosa amino acid receptors and transporters in weaning piglets. A total of 120 weaning piglets aged 35±1 days with an average body weight at 8.91±0.45 kg were randomly allocated to two treatments with six replicates of ten piglets each, fed with diets containing 1.21% alanine, or 2% L-glutamate. L-Glutamate supplementation increased the activity of glutamate oxaloacetate transaminase (GOT) in the jejunal mucosa. Also, the mRNA expression level of jejunal mucosa glutamine synthetase (GS) was increased by L-glutamate supplementation. The height of villi in duodenal and jejunal segments, and the relative mRNA expression of occludin and zonula occludens protein-1 (ZO-1) in jejunal mucosa were increased by dietary L-glutamate supplementation. L-Glutamate supplementation increased plasma concentrations of glutamate, arginine, histidine, isoleucine, leucine, methionine, phenylalanine and threonine. L-Glutamate supplementation also increased the relative mRNA expression of the jejunal mucosa Ca2+-sensing receptor (CaR), metabotropic glutamate receptor 1 (mGluR1) and metabotropic glutamate receptor 4 (mGluR4), and neutral amino acid transporter B0-like (SLC1A5) in the jejunal mucosa. These findings suggest that dietary addition of 2% L-glutamate improves the intestinal integrity and influences the expression of amino acid receptors and transporters in the jejunum of weaning, which is beneficial for the improvement of jejunal nutrients for digestion and absorption.  相似文献   

15.
Neonates with intrauterine growth retardation (IUGR) often suffer from impaired cellular immunity, and weaning may further aggravate adverse effects of IUGR on development and function of the immune system. In this study, we investigated effects of glutamine supplementation on immune status in the intestines of weaning pigs with IUGR, focusing on molecular mechanisms underlying altered immune response. Piglets with IUGR were weaned at 21 days of age and received orally 1.22 g alanine or 1 g glutamine per kg body weight every 12?h. Weight gain and intestinal weight of weaning piglets were increased by glutamine supplementation. Levels of serum IgG in piglets supplemented with glutamine were increased compared with Control piglets. The production of IL-1 and IL-8 in the serum and jejunum was decreased by glutamine supplementation, whereas the levels of IL-4 in the serum and the concentrations of IL-4 and IL-10 in the jejunum were increased. The expression of heat shock protein 70 (Hsp70) in the jejunum was increased by glutamine supplementation, but the degradation of inhibitor?κB and the activity of nuclear factor-κB (NF-κB) were decreased. In conclusion, glutamine supplementation enhanced immune response in weaning piglets with IUGR. The effects of glutamine in IUGR are associated with increased Hsp70 expression and suppression of NF-κB activation.  相似文献   

16.
The present study was conducted to investigate the effects of maternal zearalenone (ZEN) exposure on the intestine of pregnant Sprague-Dawley (SD) rats and its offspring. Ninety-six pregnant SD rats were randomly divided into four groups and were fed with diets containing ZEN at concentrations of 0.3 mg/kg, 48.5 mg/kg, 97.6 mg/kg or 146.0 mg/kg from gestation days (GD) 1 to 7. All rats were fed with mycotoxin-free diet until their offspring were weaned at three weeks of age. The small intestinal fragments from pregnant rats at GD8, weaned dams and pups were collected and studied for toxic effects of ZEN on antioxidant status, immune response, expression of junction proteins, and morphology. The results showed that ZEN induced oxidative stress, affected the villous structure and reduced the expression of junction proteins claudin-4, occludin and connexin43 (Cx43) in a dose-dependent manner in pregnant rats. Different effects on the expression of cytokines were also observed both in mRNA and protein levels in these pregnant groups. Ingestion of high levels of ZEN caused irreversible damage in weaned dams, such as oxidative stress, decreased villi hight and low expression of junction proteins and cytokines. Decreased expression of jejunal interleukin-8 (IL-8) and increased expression of gastrointestinal glutathione peroxidase (GPx2) mRNA were detected in weaned offspring, indicating long-term damage caused by maternal ZEN. We also found that the Nrf2 expression both in mRNA and protein levels were up-regulated in the ZEN-treated groups of pregnant dams and the high-dose of ZEN group of weaned dams. The data indicate that modulation of Nrf2-mediated pathway is one of mechanism via which ZEN affects gut wall antioxidant and inflammatory responses.  相似文献   

17.
Hou Y  Wang L  Zhang W  Yang Z  Ding B  Zhu H  Liu Y  Qiu Y  Yin Y  Wu G 《Amino acids》2012,43(3):1233-1242
The neonatal small intestine is susceptible to damage by endotoxin, but effective methods for prevention and treatment are lacking. N-acetylcysteine (NAC) is a widely used precursor of L: -cysteine for animal cells and plays an important role in protecting cells against oxidative stress. This study was conducted with the lipopolysaccharide (LPS)-challenged piglet model to determine the effects of NAC on intestinal function. Eighteen piglets were randomly allocated into control, LPS and LPS?+?NAC groups. The control and LPS groups were fed a corn- and soybean meal-based diet, and the LPS?+?NAC group was fed the basal diet +500?mg/kg NAC. On days 10, 13 and 20 of the trial, the LPS and LPS?+?NAC groups received intraperitoneal administration of LPS (100?μg/kg BW), whereas the control piglets received saline. On day 20 of the trial, D-: xylose (0.1?g/kg BW) was orally administrated to all piglets 2?h after LPS or saline injection, and blood samples were collected 1?h thereafter. One hour blood xylose test was used to measure intestinal absorption capacity and mucosal integrity, and diamine oxidase (DAO) was used as a marker of intestinal injury. On day 21 of the trial, pigs were killed to obtain the intestinal mucosa. Compared to the control, LPS challenge reduced (P?相似文献   

18.
The current study was conducted to investigate the effects of dietary zinc oxide (ZnO) on the antioxidant capacity, small intestine development, and jejunal gene expression in weaned piglets. Ninety-six 21-day-old piglets were randomly assigned to three dietary treatments. Each treatment had eight replicates with four piglets per replicate. The piglets were fed either control diet (control) or control diet supplemented with in-feed antibiotics (300 mg/kg chlortetracycline and 60 mg/kg colistin sulfate) or pharmacological doses of ZnO (3000 mg/kg). The experiment lasted 4 weeks. Blood samples were collected at days 14 and 28, while intestinal samples were harvested at day 28 of the experiment. Dietary high doses of ZnO supplementation significantly increased the body weight (BW) at day 14 and average daily gain (ADG) of days 1 to 14 in weaned piglets, when compared to control group (P < 0.05). The incidence of diarrhea of piglets fed ZnO-supplemented diets, at either days 1 to 14, days 14 to 28, or the overall experimental period, was significantly decreased in comparison with those in other groups (P < 0.05). Supplementation with ZnO increased the villus height of the duodenum and ileum in weaned piglets and decreased the crypt depth of the duodenum, when compared to the other groups (P < 0.05). Dietary ZnO supplementation decreased the malondialdehyde (MDA) concentration at either day 14 or day 28, but increased total superoxide dismutase (T-SOD) at day 14, when compared to that in the control (P < 0.05). ZnO supplementation upregulated the messenger RNA (mRNA) expression of zonula occludens-1 (ZO-1) and occludin in the jejunum mucosa of weaned piglets, compared to those in the control (P < 0.05). The pro-inflammatory cytokine interleukin-lβ (IL-1β) mRNA expression in the jejunum mucosa was downregulated in the ZnO-supplemented group, compared with the control (P < 0.05). Both in-feed antibiotics and ZnO supplementation decreased the mRNA expression of interferon-γ (IFN-γ), but increased the mRNA expression of transforming growth factor-β (TGF-β), in the jejunum mucosa of piglets, when compared to those in the control (P < 0.05). In summary, supplemental ZnO was effective on the prevention of post-weaning diarrhea (PWD) in weaned piglets and showed comparative growth-promoting effect on in-feed antibiotics, probably by the mechanism of improvement of the antioxidant capacity, restoration of intestinal barrier function and development, and modulation of immune functions.  相似文献   

19.
20.
Force-feeding was considered as a traditional high-efficiency approach to improve growth performance and accelerate fat deposition of Pekin ducks. However, force-feeding is a serious violation of international advocacy on animal welfare, because it can induce serious injuries to animals, such as damages to the digestive tract, effects on immunity and even severe oxidative stress. Therefore, it is urgent to stop force-feeding. The aim of this study was to determine the effects of force feeding on immune function, digestive function and oxidative stress in the mucosa of duodenum and jejunum of Pekin ducks. A total of 500 ducks were randomly divided into two groups. The control group was allowed to feed freely on a basal diet. The experimental group was force-fed by inserting a plastic feeding tube 8 to 10 inches long down the esophagus for 6 days. Compared with the control group, there was a significant (P<0.05) increase in serum diamine oxidase, d-lactic acid, endotoxin and corticosterone levels in the force-feeding group. The crypt depth in duodenum and jejunum showed significant differences (P<0.05) between the two groups and the intestinal villus epithelium cell was severely damaged in force-feeding group. Similarly, the activities of digestive enzymes as well as the levels of immune function in the duodenal and jejunal mucosa in the force-feeding group were significantly higher than the control group (P<0.05). However, there was a significant decrease in the superoxide dismutase, glutathione peroxidase and catalase levels with a marked increase in malondialdehyde level in duodenal and jejunal mucosa (P<0.05). In summary, at the end of the fattening period with force-feeding for 6 days, Pekin ducks experienced an adverse effect on the integrity of their duodenal and jejunal mucosa epithelium cell as well as their immune function and antioxidant capacity of Pekin ducks but also had improvement in digestive enzyme activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号