首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ben-Menachem R  Tal M  Shadur T  Pines O 《Proteomics》2011,11(23):4468-4476
There are a growing number of examples of identical or almost identical proteins, which are localized to two (or more) separate compartments, a phenomenon that is termed protein dual localization, dual distribution or dual targeting. We previously divided a reference set of known yeast mitochondrial proteins into two groups, suggested to be dual localized or exclusive mitochondrial proteins. Here we examined this evaluation by screening 320 mitochondrial gene products for dual targeting, using the α-complementation assay. The analysis of the results of this experimentally independent screen supports our previous evaluation that dual localized mitochondrial proteins constitute a subgroup of mitochondrial proteins with distinctive properties. These proteins are characterized by a lower probability of mitochondrial localization (MitoProtII score), a lower net charge and are enriched for proteins with a weaker mitochondrial targeting sequence. Conversely, mRNAs of exclusive mitochondrial proteins are enriched in polysomes associated with mitochondria. Based on the discovery of more than 60 new gene products that are now assumed to be dual targeted, we have updated an annotation list of dual-targeted proteins. We currently estimate that more than a third of the mitochondrial proteome is dual targeted, and suggest that this abundant dual targeting presents an evolutionary advantage.  相似文献   

2.
Peroxisomes play key roles in energy metabolism, cell signaling, and plant development. A better understanding of these important functions will be achieved with a more complete definition of the peroxisome proteome. The isolation of peroxisomes and their separation from mitochondria and other major membrane systems have been significant challenges in the Arabidopsis (Arabidopsis thaliana) model system. In this study, we present new data on the Arabidopsis peroxisome proteome obtained using two new technical advances that have not previously been applied to studies of plant peroxisomes. First, we followed density gradient centrifugation with free-flow electrophoresis to improve the separation of peroxisomes from mitochondria. Second, we used quantitative proteomics to identify proteins enriched in the peroxisome fractions relative to mitochondrial fractions. We provide evidence for peroxisomal localization of 89 proteins, 36 of which have not previously been identified in other analyses of Arabidopsis peroxisomes. Chimeric green fluorescent protein constructs of 35 proteins have been used to confirm their localization in peroxisomes or to identify endoplasmic reticulum contaminants. The distribution of many of these peroxisomal proteins between soluble, membrane-associated, and integral membrane locations has also been determined. This core peroxisomal proteome from nonphotosynthetic cultured cells contains a proportion of proteins that cannot be predicted to be peroxisomal due to the lack of recognizable peroxisomal targeting sequence 1 (PTS1) or PTS2 signals. Proteins identified are likely to be components in peroxisome biogenesis, beta-oxidation for fatty acid degradation and hormone biosynthesis, photorespiration, and metabolite transport. A considerable number of the proteins found in peroxisomes have no known function, and potential roles of these proteins in peroxisomal metabolism are discussed. This is aided by a metabolic network analysis that reveals a tight integration of functions and highlights specific metabolite nodes that most probably represent entry and exit metabolites that could require transport across the peroxisomal membrane.  相似文献   

3.
The amino-terminal region of a 70 kDa mitochondrial outer membrane protein of yeast and the presequence of cytochrome c1, an inner membrane protein exposed to the intermembrane space, are thought to be responsible for localizing the proteins in their final destinations after synthesis in the cytosol. Gene fusion experiments were used to identify signals that are responsible for protein sorting between the outer and inner mitochondrial membranes. The submitochondrial localization of cytochrome c1 whose presequence was replaced by the amino-terminal region of the 70 kDa mitochondrial outer membrane protein has been investigated. We have also used an in vivo complementation assay to determine whether or not a 70k-cyt c1 fusion protein is functional. Both the first half and all of the presequence of cytochrome c1 can be replaced by the amino-terminal 12 or 29 residues of the 70 kDa protein for transport to the inner membrane and functional assembly into succinate-cytochrome c reductase. However, replacements by the amino-terminal 61 residues of the 70 kDa protein result in exclusive localization of the fusion proteins to the outer membrane, and the fusions cannot be assembled into the enzyme complex. These data indicate that a mitochondrial targeting signal alone is sufficient to direct cytochrome c1 of mature size to the inner membrane.  相似文献   

4.
The proteome of the outer membrane of mitochondria and chloroplasts consists of membrane proteins anchored by α-helical or β-sheet elements. While proteins with α-helical transmembrane domains are present in all cellular membranes, proteins with β-barrel structure are specific for these two membranes. The organellar β-barrel proteins are encoded in the nuclear genome and thus, have to be targeted to the outer organellar membrane where they are recognized by surface exposed translocation complexes. In the last years, the signals that ensure proper targeting of these proteins have been investigated as essential base for an understanding of the regulation of cellular protein distribution. However, the organellar β-barrel proteins are unique as most of them do not contain a typical targeting information in form of an N-terminal cleavable targeting signal. Recently, it was discovered that targeting and surface recognition of mitochondrial β-barrel proteins in yeast, humans and plants depends on the hydrophobicity of the last β-hairpin of the β-barrel. However, we demonstrate that the hydrophobicity is not sufficient for the discrimination of targeting to chloroplasts or mitochondria. By domain swapping between mitochondrial and chloroplast targeted β-barrel proteins atVDAC1 and psOEP24 we demonstrate that the presence of a hydrophilic amino acid at the C-terminus of the penultimate β-strand is required for mitochondrial targeting. A mutation of the chloroplast β-barrel protein psOEP24 which mimics such profile is efficiently targeted to mitochondria. Thus, we present the properties of the signal for mitochondrial targeting of β-barrel proteins in plants.  相似文献   

5.
The comparison of each of the 393 nuclear-encoded human mitochondrial proteins annotated in the SwissProt databank with 256,953 proteins from 94 prokaryote species showed that two thirds of the mitochondrial proteome were homologous with prokaryotic proteins, whereas one third was not. Prokaryotic mitochondrial proteins differ markedly from eukaryotic proteins, particularly in regard to their size, localization, function, and mitochondrial-targeting N-terminal sequence. Remarkably, the majority of nuclear genes implicated in respiratory chain mitochondrial diseases were found to be of prokaryotic ancestry. Our study indicates that the investigation of the co-evolution of eukaryotic and prokaryotic mitochondrial proteins should lead to a better understanding of mitochondrial diseases.  相似文献   

6.
Plant membrane proteome databases   总被引:6,自引:0,他引:6  
In all living organisms transmembrane (TM) proteins are crucially involved in many physiological processes and constitute 20-30% of the proteome. An important class of TM proteins are transporters that interconnect biochemical pathways across the plasma membrane and intracellular membranes, e.g. the mitochondrial membranes and chloroplast envelope membranes. In recent years, bioinformatical tools to predict TM domains and subcellular localization were developed and used to analyze the first complete plant genomes of Arabidopsis and rice. This review focuses on plant TM proteome databases that compile topology and intracellular targeting predictions and different kinds of experimental data. In addition, other web sites are discussed that contribute useful experimental and/or bioinformatical data.  相似文献   

7.
Intracellular delivery of the mitochondrial F1-ATPase beta-subunit precursor from the cytoplasm into the matrix of mitochondria is prevented by deletion of its mitochondrial import signal, a basic amphipathic alpha-helix at its amino terminus. Using a complementation assay, we have selected spontaneous mutations which restore the correct in vivo localization of the protein containing the import signal deletion. Analysis of these mutations revealed that different functional surrogate mitochondrial targeting signals formed within a narrow region of the extreme amino terminus of the import signal deleted beta-subunit. These modifications specifically replace different acidic residues with neutral or basic residues to generate a less acidic amphipathic helix within a region of the protein which is accessible for interaction with the membrane surface. The observations of this study confirm the requirement for amphipathicity as part of the mitochondrial import signal and suggest how mitochondrial targeting signals may have evolved within the extreme amino terminus of mitochondrial proteins.  相似文献   

8.
The Parkinson disease-associated kinase Pink1 is targeted to mitochondria where it is thought to regulate mitochondrial quality control by promoting the selective autophagic removal of dysfunctional mitochondria. Nevertheless, the targeting mode of Pink1 and its submitochondrial localization are still not conclusively resolved. The aim of this study was to dissect the mitochondrial import pathway of Pink1 by use of a highly sensitive in vitro assay. Mutational analysis of the Pink1 sequence revealed that its N terminus acts as a genuine matrix localization sequence that mediates the initial membrane potential (Δψ)-dependent targeting of the Pink1 precursor to the inner mitochondrial membrane, but it is dispensable for Pink1 import or processing. A hydrophobic segment downstream of the signal sequence impeded complete translocation of Pink1 across the mitochondrial inner membrane. Additionally, the C-terminal end of the protein promoted the retention of Pink1 at the outer membrane. Thus, multiple targeting signals featured by the Pink1 sequence result in the final localization of both the full-length protein and its major Δψ-dependent cleavage product to the cytosolic face of the outer mitochondrial membrane. Full-length Pink1 and deletion constructs resembling the natural Pink1 processing product were found to assemble into membrane potential-sensitive high molecular weight protein complexes at the mitochondrial surface and displayed similar cytoprotective effects when expressed in vivo, indicating that both species are functionally relevant.  相似文献   

9.
Mitochondria consist of four compartments-outer membrane, intermembrane space, inner membrane, and matrix--with crucial but distinct functions for numerous cellular processes. A comprehensive characterization of the proteome of an individual mitochondrial compartment has not been reported so far. We used a eukaryotic model organism, the yeast Saccharomyces cerevisiae, to determine the proteome of highly purified mitochondrial outer membranes. We obtained a coverage of approximately 85% based on the known outer membrane proteins. The proteome represents a rich source for the analysis of new functions of the outer membrane, including the yeast homologue (Hfd1/Ymr110c) of the human protein causing Sj?gren-Larsson syndrome. Surprisingly, a subclass of proteins known to reside in internal mitochondrial compartments were found in the outer membrane proteome. These seemingly mislocalized proteins included most top scorers of a recent genome-wide analysis for mRNAs that were targeted to mitochondria and coded for proteins of prokaryotic origin. Together with the enrichment of the precursor form of a matrix protein in the outer membrane, we conclude that the mitochondrial outer membrane not only contains resident proteins but also accumulates a conserved subclass of preproteins destined for internal mitochondrial compartments.  相似文献   

10.
11.
The mitochondrial intermembrane space (IMS) is the most constricted sub-mitochondrial compartment, housing only about 5% of the mitochondrial proteome, and yet is endowed with the largest variability of protein import mechanisms. In this review, we summarize our current knowledge of the major IMS import pathway based on the oxidative protein folding pathway and discuss the stunning variability of other IMS protein import pathways. As IMS-localized proteins only have to cross the outer mitochondrial membrane, they do not require energy sources like ATP hydrolysis in the mitochondrial matrix or the inner membrane electrochemical potential which are critical for import into the matrix or insertion into the inner membrane. We also explore several atypical IMS import pathways that are still not very well understood and are guided by poorly defined or completely unknown targeting peptides. Importantly, many of the IMS proteins are linked to several human diseases, and it is therefore crucial to understand how they reach their normal site of function in the IMS. In the final part of this review, we discuss current understanding of how such IMS protein underpin a large spectrum of human disorders.  相似文献   

12.
Distler AM  Kerner J  Hoppel CL 《Proteomics》2008,8(19):4066-4082
For the proteomic study of mitochondrial membranes, documented high quality mitochondrial preparations are a necessity to ensure proper localization. Despite the state-of-the-art technologies currently in use, there is no single technique that can be used for all studies of mitochondrial membrane proteins. Herein, we use examples to highlight solubilization techniques, different chromatographic methods, and developments in gel electrophoresis for proteomic analysis of mitochondrial membrane proteins. Blue-native gel electrophoresis has been successful not only for dissection of the inner membrane oxidative phosphorylation system, but also for the components of the outer membrane such as those involved in protein import. Identification of PTMs such as phosphorylation, acetylation, and nitration of mitochondrial membrane proteins has been greatly improved by the use of affinity techniques. However, understanding of the biological effect of these modifications is an area for further exploration. The rapid development of proteomic methods for both identification and quantitation, especially for modifications, will greatly impact the understanding of the mitochondrial membrane proteome.  相似文献   

13.
F(1)F(0) ATP synthase is ectopically expressed on the surface of several cell types, including endothelium and cancer cells. This study uses immunocytochemical detection methods via highly specific monoclonal antibodies to explore the possibility of plasma membrane localization of other mitochondrial proteins using an osteosarcoma cell line in which the location of the mitochondrial reticulum can be clearly traced by green fluorescent protein tagging of the organelle. We found that subunits of three of the four respiratory chain complexes were present on the surface of these cells. Additionally, we show for the first time that F(0) subunits d and OSCP of the ATP synthase are ectopically expressed. In all cases the OXPHOS proteins show a punctate distribution, consistent with data from proteome analysis of isolated lipid rafts that place the various mitochondrial proteins in plasma membrane microdomains. We also examined the cell surface for marker membrane proteins from several other intracellular organelles including ER, golgi and nuclear envelope. They were not found on the surface of the osteosarcoma cells. We conclude that mitochondrial membrane proteins are ectopically expressed, but not proteins from other cellular organelles. A specific mechanism by which the mitochondrion and plasma membrane fuse to deliver organellar proteins is suggested.  相似文献   

14.
线粒体是真核生物中重要的细胞器,其包含的全部蛋白质称为线粒体蛋白质组。人类线粒体大约包含1500多种蛋白质,由核基因和线粒体基因共同编码。线粒体是细胞能量合成和物质代谢的中心,其功能障碍将直接或问接引起许多疾病。目前线粒体蛋白质组学正是系统性地研究线粒体在生理、病理过程中的功能变化以及研究疾病发生机制的重要方法。将线粒体蛋白质组的研究方法、研究进展、线粒体蛋白质组的性质及其在相关疾病研究中的作用进行综述,并对线粒体蛋白质组学在疾病发生机制和诊断治疗中的发展前景进行展望。  相似文献   

15.
Targeted mRNA localization is a likely determinant of localized protein synthesis. To investigate whether mRNAs encoding mitochondrial proteins (mMPs) localize to mitochondria and, thus, might confer localized protein synthesis and import, we visualized endogenously expressed mMPs in vivo for the first time. We determined the localization of 24 yeast mMPs encoding proteins of the mitochondrial matrix, outer and inner membrane, and intermembrane space and found that many mMPs colocalize with mitochondria in vivo. This supports earlier cell fractionation and microarray-based studies that proposed mMP association with the mitochondrial fraction. Interestingly, a number of mMPs showed a dependency on the mitochondrial Puf3 RNA-binding protein, as well as nonessential proteins of the translocase of the outer membrane (TOM) complex import machinery, for normal colocalization with mitochondria. We examined the specific determinants of ATP2 and OXA1 mRNA localization and found a mutual dependency on the 3' UTR, Puf3, Tom7, and Tom70, but not Tom20, for localization. Tom6 may facilitate the localization of specific mRNAs as OXA1, but not ATP2, mRNA was mislocalized in tom6Δ cells. Interestingly, a substantial fraction of OXA1 and ATP2 RNA granules colocalized with the endoplasmic reticulum (ER) and a deletion in MDM10, which mediates mitochondria-ER tethering, resulted in a significant loss of OXA1 mRNA localization with ER. Finally, neither ATP2 nor OXA1 mRNA targeting was affected by a block in translation initiation, indicating that translation may not be essential for mRNA anchoring. Thus, endogenously expressed mRNAs are targeted to the mitochondria in vivo, and multiple factors contribute to mMP localization.  相似文献   

16.
The 11th influenza A virus gene product is an 87-amino-acid protein provisionally named PB1-F2 (because it is encoded by an open reading frame overlapping the PB1 open reading frame). A significant fraction of PB1-F2 localizes to the inner mitochondrial membrane in influenza A virus-infected cells. PB1-F2 appears to enhance virus-induced cell death in a cell type-dependent manner. For the present communication we have identified and characterized a region near the COOH terminus of PB1-F2 that is necessary and sufficient for its inner mitochondrial membrane localization, as determined by transient expression of chimeric proteins consisting of elements of PB1-F2 genetically fused to enhanced green fluorescent protein (EGFP) in HeLa cells. Targeting of EGFP to mitochondria by this sequence resulted in the loss of the inner mitochondrial membrane potential, leading to cell death. The mitochondrial targeting sequence (MTS) is predicted to form a positively charged amphipathic alpha-helix and, as such, is similar to the MTS of the p13(II) protein of human T-cell leukemia virus type 1. We formally demonstrate the functional interchangeability of the two sequences for mitochondrial localization of PB1-F2. Mutation analysis of the putative amphipathic helix in the PB1-F2 reveals that replacement of five basic amino acids with Ala abolishes mitochondrial targeting, whereas mutation of two highly conserved Leu to Ala does not. These findings demonstrate that PB1-F2 possesses an MTS similar to other viral proteins and that this MTS, when fused to EGFP, is capable of independently compromising mitochondrial function and cellular viability.  相似文献   

17.
Variegate porphyria is an autosomal dominant disorder of heme metabolism resulting from a deficiency in protoporphyrinogen oxidase, an enzyme located on the inner mitochondrial membrane. This study examined the effect of three South African VP-causing mutations (H20P, R59W, R168C) on mitochondrial targeting. Only H20P did not target, and of eight protoporphyrinogen oxidase-GFP chimeric fusion proteins created, N-terminal residues 1-17 were found to be the minimal protoporphyrinogen oxidase sequence required for efficient mitochondrial targeting. Removal of this N-terminal sequence displayed mitochondrial localization, suggesting internal mitochondrial targeting signals. In addition, six constructs were engineered to assess the effect of charge and helicity on mitochondrial targeting of the protein. Of those engineered, only the PPOX20/H20P-GFP construct abolished mitochondrial targeting, presumably through disruption of the protoporphyrinogen oxidase alpha-helix. Based on our results we propose a mechanism for protoporphyrinogen oxidase targeting to the mitochondrion.  相似文献   

18.
19.
Dinur-Mills M  Tal M  Pines O 《PloS one》2008,3(5):e2161

Background

In eukaryotic cells, identical proteins can be located in different subcellular compartments (termed dual-targeted proteins).

Methodology/Principal Findings

We divided a reference set of mitochondrial proteins (published single gene studies) into two groups: i) Dual targeted mitochondrial proteins and ii) Exclusive mitochondrial proteins. Mitochondrial proteins were considered dual-targeted if they were also found or predicted to be localized to the cytosol, the nucleus, the endoplasmic reticulum (ER) or the peroxisome. We found that dual localized mitochondrial proteins have i) A weaker mitochondrial targeting sequence (MitoProtII score, hydrophobic moment and number of basic residues) and ii) a lower whole-protein net charge, when compared to exclusive mitochondrial proteins. We have also generated an annotation list of dual-targeted proteins within the predicted yeast mitochondrial proteome. This considerably large group of dual-localized proteins comprises approximately one quarter of the predicted mitochondrial proteome. We supported this prediction by experimental verification of a subgroup of the predicted dual targeted proteins.

Conclusions/Significance

Taken together, these results establish dual targeting as a widely abundant phenomenon that should affect our concepts of gene expression and protein function. Possible relationships between the MTS/mature sequence traits and protein dual targeting are discussed.  相似文献   

20.
Studying mitochondrial membrane proteins for ion or substrate transport is technically difficult, as the organelles are hidden within the cell interior and thus inaccessible to many conventional nondisruptive techniques. This technical barrier can potentially be overcome if the mitochondrial membrane proteins are targeted to the cell surface, where they can be more readily studied. We undertook experiments presented here to target two related mitochondrial membrane proteins, mitochondrial ATP-binding cassette-1 and -2 protein (mABC1 and mABC2, respectively) to the cell surface for functional studies. These two proteins have an N-terminal mitochondrial targeting signal (MTS), and we hypothesized that removal of this sequence or addition of a cell surface targeting signal would lead to cell membrane targeting of these proteins. When the MTS was removed from mABC1, it localized to intracellular secretory compartments as well as the plasma membrane. However, truncated mABC2 lacking the MTS aggregated inside the cell. Addition of a cell membrane signal sequence or the transmembrane domain from CD8 to the N-terminus of mABC1 or mABC2 resulted in similar subcellular localizations. We then performed patch clamp on cells expressing mABC1 on their surface. These cells exhibited nonselective transport of K(+) and Na(+) ions and resulted in the loss of membrane potential. Our findings open new ways to study mitochondrial membrane proteins in established cell culture systems by targeting them to the cell surface, where they can more reliably be studied using various molecular and cellular techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号