首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Our aim was to study the potential mechanisms responsible for the improvement in glucose control in Type 2 diabetes (T2D) within days after Roux-en-Y gastric bypass (RYGB). Thirteen obese subjects with T2D and twelve matched subjects with normal glucose tolerance (NGT) were examined during a liquid meal before (Pre), 1 wk, 3 mo, and 1 yr after RYGB. Glucose, insulin, C-peptide, glucagon-like peptide-1 (GLP-1), glucose-dependent-insulinotropic polypeptide (GIP), and glucagon concentrations were measured. Insulin resistance (HOMA-IR), β-cell glucose sensitivity (β-GS), and disposition index (D(β-GS): β-GS × 1/HOMA-IR) were calculated. Within the first week after RYGB, fasting glucose [T2D Pre: 8.8 ± 2.3, 1 wk: 7.0 ± 1.2 (P < 0.001)], and insulin concentrations decreased significantly in both groups. At 129 min, glucose concentrations decreased in T2D [Pre: 11.4 ± 3, 1 wk: 8.2 ± 2 (P = 0.003)] but not in NGT. HOMA-IR decreased by 50% in both groups. β-GS increased in T2D [Pre: 1.03 ± 0.49, 1 wk: 1.70 ± 1.2, (P = 0.012)] but did not change in NGT. The increase in DI(β-GS) was 3-fold in T2D and 1.5-fold in NGT. After RYGB, glucagon secretion was increased in response to the meal. GIP secretion was unchanged, while GLP-1 secretion increased more than 10-fold in both groups. The changes induced by RYGB were sustained or further enhanced 3 mo and 1 yr after surgery. Improvement in glycemic control in T2D after RYGB occurs within days after surgery and is associated with increased insulin sensitivity and improved β-cell function, the latter of which may be explained by dramatic increases in GLP-1 secretion.  相似文献   

2.
Chronic hyperglycemia induces impairment of muscle growth and development of diabetes mellitus (DM). Since skeletal muscle is the major site for disposal of ingested glucose, impaired glucose metabolism causes imbalance between protein synthesis and degradation which adversely affects physical mobility.In this study, we investigated the effect of tocotrienol-rich fraction (TRF) supplementation on skeletal muscle damage in diabetic mice. Diabetes was induced by a high-fat diet with streptozotocin (STZ) injection (100 mg/kg) in male C57BL/6J mice. After diabetes was induced (fasting blood glucose levels≥250 mg/dl), normal control (CON) and diabetic control (DMC) groups were administrated with olive oil, while TRF treatment groups were administrated with TRF (dissolved in olive oil) at low dose (100 mg/kg BW, LT) or high dose (300 mg/kg BW, HT) by oral gavage for 12 weeks.TRF supplementation ameliorated muscle atrophy, plasma insulin concentration and homeostatic model assessment estimated insulin resistance in diabetic mice. Moreover, TRF treatment up-regulated IRS-1 and Akt levels accompanied by increased translocation of GLUT4. Furthermore, TRF increased mitochondrial biogenesis by activating SIRT1, SIRT3 and AMPK in diabetic skeletal muscle. These changes were in part mechanistically explained by reduced levels of skeletal muscle proteins related to oxidative stress (4-hydroxynonenal, protein carbonyls, Nrf2 and HO-1), inflammation (NFkB, MCP-1, IL-6 and TNF-α), and apoptosis (Bax, Bcl₂ and caspase-3) in diabetic mice. Taken together, these results suggest that TRF might be useful as a beneficial nutraceutical to prevent skeletal muscle atrophy associated with diabetes by regulating insulin signaling via AMPK/SIRT1/PGC1α pathways in type 2 diabetic mice.  相似文献   

3.
Insulin resistance is a hallmark feature of type-2 diabetes mellitus (T2DM). We determined the homeostatic model assessment insulin resistance (HOMA-IR) and evaluated its association with C-peptide, insulin, fasting blood glucose (FBG) and glycated hemoglobin (HbA1c) in T2DM patients and non-diabetic subjects. This study comprised a total of 47 T2DM patients and 38 non-diabetic controls. Venous blood samples from all the subjects were collected and sera were analyzed for FBG, HbA1c, insulin and C-peptide using an autoanalyzer. HOMA-IR was calculated using the following equation: HOMA-IR?=?fasting insulin (µU/ml)?×?fasting glucose (mmol/L)/22.5. There was a significant increase in the levels of FBG and HbA1c in diabetic patients. Although the levels of C-peptide and insulin did not differ significantly between the two groups, a significant increase in HOMA-IR was observed in T2DM patients. Both insulin and C-peptide were significantly correlated with HOMA-IR. In conclusion, C-peptide may serve as a simple and convenient predictor of HOMA-IR.  相似文献   

4.

[Purpose]

The purpose of this study was to investigate the effects of vitamin D supplementation and circuit training on body composition, abdominal fat, blood lipids, and insulin resistance in T2D and vitamin D deficient elderly women.

[Methods]

Fifty-two elderly women were randomly assigned to either the vitamin D supplementation with circuit training group (D+T: n = 15), the circuit training group (T: n = 13), the vitamin D supplementation group (D: n = 11), or the control group (CON: n = 13). The subjects in D took vitamin D supplements at 1,200 IU per day for 12 weeks; the subjects in T exercised 3 to 4 times per week, 25 to 40 minutes per session for 12 weeks; and the subjects in D+T participated in both treatments. Subjects in CON were asked to maintain normal daily life pattern for the duration of the study. Body composition, abdominal fat, blood lipids, and surrogate indices for insulin resistance were measured at pre- and post-test and the data were compared among the four groups and between two tests by utilizing two-way ANOVA with repeated measures. The main results of the present study were as follows:

[Results]

1) Body weight, fat mass, percent body fat, and BMI decreased significantly in T, whereas there were no significant changes in the variables in D and CON. Lean body mass showed no significant changes in all groups. 2) TFA and SFA decreased significantly in T, whereas there were no significant changes in the variables in D and CON. The other abdominal fat related variables showed no significant changes in all groups. 3) TC, TG, HDL-C, and LDL-C showed improvements in T, whereas there were no significant changes in the variables in D and CON. 4) Fasting glucose, fasting insulin, and HOMA-IR tended to be lower in D+T.

[Conclusion]

It was concluded that the 12 weeks of vitamin D supplementation and circuit training would have positive effects on abdominal fat and blood lipid profiles in T2D and vitamin D deficient elderly women. Vitamin D supplementation was especially effective when it was complemented with exercise training.  相似文献   

5.
Objective: Biliopancreatic diversion (BPD) restores normal glucose tolerance in a few weeks in morbid obese subjects with type 2 diabetes, improving insulin sensitivity. However, there is less known about the effects of BPD on insulin secretion. We tested the early effects of BPD on insulin secretion in obese subjects with and without type 2 diabetes. Methods and Procedures: Twenty‐one consecutive morbid obese subjects, 9 with type 2 diabetes (T2DM) and 12 with normal fasting glucose (NFG) were evaluated, just before and 1 month after BPD, by measuring body weight (BW), glucose, adipocitokines, homeostasis model assessment of insulin resistance (HOMA‐IR), acute insulin response (AIR) to e.v. glucose and the insulinogenic index adjusted for insulin resistance ([ΔI5/ΔG5]/HOMA‐IR). Results: Preoperatively, those with T2DM differed from those with NFG in showing higher levels of fasting glucose, reduced AIR (57.9 ± 29.5 vs. 644.9 ± 143.1 pmol/l, P < 0.01) and reduced adjusted insulinogenic index (1.0 ± 0.5 vs. 17.6 ± 3.9 1/mmol2, P < 0.001). One month following BPD, in both groups BW was reduced (by ~11%), but all subjects were still severely obese; HOMA‐IR and leptin decreased significanlty, while high‐molecular weight (HMW) adiponectin and adjusted insulinogenic index increased. In the T2DM group, fasting glucose returned to non‐diabetic values. AIR did not change in the NFG group, while in the T2DM group it showed a significant increase (from 58.0 ± 29.5 to 273.8 ± 47.2 pmol/l, P < 0.01). In the T2DM group, the AIR percentage variation from baseline was significantly related to changes in fasting glucose (r = 0.70, P = 0.02), suggesting an important relationship exists between impaired AIR and hyperglycaemia. Discussion: BPD is able to restore AIR in T2DM even just 1 month after surgery. AIR restoration is associated with normalization of fasting glucose concentrations.  相似文献   

6.
Podocyte insulin sensitivity is critical for glomerular function, and the loss of appropriate insulin signaling leads to alterations and disorders featuring diabetic nephropathy. Energy-sensing pathways, such as AMP-dependent protein kinase (AMPK) and protein deacetylase SIRT1, have been shown to play an important role in insulin resistance. The absence of a stimulating effect of insulin on glucose uptake into podocytes after exposure to hyperglycemic conditions has been demonstrated to be related to a decreased level and activity of SIRT1 protein, leading to reduced AMPK phosphorylation.The present work was undertaken to investigate metformin's ability to restore the insulin responsiveness of podocytes by regulating SIRT1 and AMPK activities.Primary rat podocytes cultured with standard or high glucose concentrations for 5 days were transfected with siRNAs targeting SIRT1, AMPKα1, or AMPKα2. SIRT1 activity was measured by a fluorometric method. Insulin-stimulated changes in glucose uptake were used to detect insulin resistance. Podocyte permeability was measured by a transmembrane albumin flux assay to examine podocytes functioning.Our results demonstrated that metformin activated SIRT1 and AMPK, prevented hyperglycemia-induced reduction of SIRT1 protein levels, ameliorated glucose uptake into podocytes, and decreased glomerular filtration barrier permeability. Furthermore, metformin activated AMPK in a SIRT1-independent manner, as the increase in AMPK phosphorylation after metformin treatment was not affected by SIRT1 downregulation. Therefore, the potentiating effect of metformin on insulin-resistant podocytes seemed to be dependent on AMPK, as well as SIRT1 activity, establishing multilateral effects of metformin action.  相似文献   

7.
Muscle is the largest tissue in our body and plays an important role in glucose homeostasis and hence diabetes. In the present study, we examined the effects of taxifolin (TXF) on glucose metabolism in cultured L6 muscle cells (myotubes) and in type 2 diabetic (T2D) model KK-Ay/Ta mice. TXF dose-dependently increased glucose uptake (GU) in L6 myotubes under the condition of insulin absence. This increase in GU was partially, but significantly canceled by TXF treatment in combination with either LY294002, an inhibitor of phosphatidylinositol 3-kinase (PI3K), which phosphorylates protein kinase B (Akt) or Compound C, an inhibitor of 5’-adenosine monophosphate-activated protein kinase (AMPK). Furthermore, TXF was demonstrated to activate (=phosphorylate) both Akt and AMPK, and promote glucose transporter 4 (GLUT4) translocation to the plasma membrane from cytosol of L6 myotubes via both PI3K/Akt and AMPK signaling pathways. Based on these in vitro findings, we conducted an in vivo experiment in KK-Ay/Ta mice with hyperglycemia and hyperuricemia. Fasting plasma glucose, insulin, uric acid levels and an index of insulin resistance (HOMA-IR) increased significantly in the T2D model mice compared with normal ones. Such rises in the T2D state were significantly suppressed by oral administration of TXF for four weeks. These results suggest that TXF is a potent antihyperglycemic and antihyperuricemic phytochemical in the T2D state.  相似文献   

8.

Background

Calorie restriction (CR) is accepted as an experimental anti-aging paradigm. Several important signal transduction pathways including AMPK and SIRT1 are implicated in the regulation of physiological processes of CR. However, the mechanisms responsible for adaptations remain unclear in humans.

Scope of review

Four overweight male participants were enrolled and treated with 25% CR of their baseline energy requirements for 7 weeks. Characteristics, including body weight (BW), body mass index (BMI), %fat, visceral fat area (VFA), mean blood pressure (MBP) and VO2 max, as well as metabolic parameters, such as insulin, lipid profiles and inflammatory makers and the expression of phosphorylated AMPK and SIRT1 in peripheral blood mononuclear cells (PBMNCs), were determined at baseline and then after 7 weeks. In addition, we assessed the effects of the serum collected from the participants on AMPK and SIRT1 activation and mitochondrial biogenesis in cultured human skeletal muscle cells.

Major conclusions

After CR, BW, BMI, %fat, VFA and MBP all significantly decreased, while VO2 max increased, compared to those at baseline. The levels of fasting insulin, free fatty acid, and inflammatory makers, such as interleukin-6 and visfatin, were significantly reduced, whereas the expression of phosphorylated AMPK and SIRT1 was significantly increased in PBMNCs collected after CR, compared to those at baseline. The skeletal muscle cells that were cultured in serum collected after CR showed an increase in AMPK and SIRT1 activity as well as mitochondrial biogenesis.

General significance

CR is beneficial for obesity-related metabolic alterations and induces cellular adaptations against aging, possibly through AMPK and SIRT1 activation via circulating factors.  相似文献   

9.
Glycolipid metabolism disorder is one of the causes of type 2 diabetes (T2D). Alternate-day fasting (ADF) is an effective dietary intervention to counteract T2D. The present study is aimed to determine the underlying mechanisms of the benefits of ADF metabolic on diabetes-induced glycolipid metabolism disorders in db/db mice. Here, leptin receptor knock-out diabetic mice were subjected to 28 days of isocaloric ADF. We found that ADF prevented insulin resistance and bodyweight gain in diabetic mice. ADF promoted glycogen synthesis in both liver and muscle. ADF also activated recombinant insulin receptor substrate-1 (IRS-1)/protein kinase B (AKT/PKB) signaling,inactivated inflammation related AMP-activated protein kinase (AMPK) and the inflammation-regulating nuclear factor kappa-B (NF-κB) signaling in the liver. ADF also suppressed lipid accumulation by inactivating the expression of peroxisome proliferator–activated receptor gamma (PPAR-γ) and sterol regulatory element-binding protein-1c (SREBP-1c). Furthermore, ADF elevated the expression of fibroblast growth factor 21 (FGF21) and down-stream signaling AMPK/silent mating type information regulation 2 homolog 1 (SIRT1)/peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) in the liver of diabetic mice. The mitochondrial biogenesis and autophagy were also stimulated by ADF. Interestingly, ADF also enhanced the bile acids (BAs) metabolism by generating more cholic acid (CA), deoxycholic acid (DCA) and tauroursodeoxycholic acid (TUDCA) in db/db mice. In conclusion, ADF could significantly inhibit T2D induced insulin resistance and obesity, promote insulin signaling,reduce inflammation, as well as promote glycogen synthesis and lipid metabolism. It possibly depends on FGF21 and BA metabolism to enhance mitochondrial biosynthesis and energy metabolism.  相似文献   

10.
Post-menopausal women exhibit decreases in circulating estrogen levels and whole body insulin sensitivity, suggesting that estrogen regulates skeletal muscle glucose disposal. Thus, we assessed whether estrogen stimulates glucose uptake or enhances insulin sensitivity in skeletal muscle. Ex vivo muscle stimulation with 17β-estradiol (10 nM) resulted in a rapid (?10 min) increase in the phosphorylation of Akt, AMP-activated protein kinase (AMPK), and TBC1D1/4, key signaling proteins that regulate glucose uptake in muscle. Treatment with the estrogen receptor antagonist, ICI 182,780, only partly inhibited signaling, suggesting both an estrogen receptor-dependent and independent mechanism of estradiol action. 17β-Estradiol did not stimulate ex vivo muscle [3H]-2-deoxyglucose uptake or enhance insulin-induced glucose uptake, demonstrating discordance between the estradiol-induced stimulation of signaling proteins and muscle glucose uptake. This study is the first to demonstrate that estradiol stimulates Akt, AMPK, and TBC1D1/4 in intact skeletal muscle, but surprisingly, estradiol does not stimulate muscle glucose uptake.  相似文献   

11.
《Endocrine practice》2010,16(3):476-485
ObjectiveTo review the role of vitamin D in prediabetes on the basis of evidence from human studies.MethodsEnglish-language literature in MEDLINE (January 1969-July 2009) was searched for observational studies and randomized controlled trials of vitamin D deficiency and treatment in prediabetes, including impaired fasting glucose, impaired glucose tolerance, and metabolic syndrome. Search terms included hyperglycemia, glucose, glycohemoglobin, insulin resistance, diabetes, homeostasis model assessment, insulin secretion, vitamin D, and related terms. Publications were also identified from review articles and references in the found articles. Abstracts, conference proceedings, case reports, and letters were excluded. Articles concerning only type 1 and type 2 diabetes, hemodialysis, or hyperparathyroidism and studies in children were also excluded.ResultsVitamin D insufficiency is defined by a circulating 25-hydroxyvitamin D concentration less than 30 ng/mL, and it is prevalent in the United States (77% of the population). Most cross-sectional and prospective studies in various populations show inverse association between circulating 25-hydroxyvitamin D and fasting plasma glucose, impaired glucose tolerance, hemoglobin A1c, metabolic syndrome, and incidence of prediabetes. A few clinical trials suggest beneficial effect of vitamin D supplementation in prediabetes, including improved insulin secretion, basal fasting insulin sensitivity, and postprandial peripheral insulin resistance. The limitations of the studies are small sample size, short duration of follow-up, lack of control groups, and inability to achieve vitamin D sufficiency with treatment.ConclusionAvailable data suggest that achieving vitamin D sufficiency may be beneficial in patients with prediabetes, although clinical trials are needed to provide evidence-based recommendations. (Endocr Pract. 2010;16:476-485)  相似文献   

12.
Chronic Inflammation is a key link between obesity and insulin resistance. We previously showed that two nutrient sensors AMP-activated protein kinase (AMPK) and SIRT1 interact to regulate macrophage inflammation. AMPK is also a molecular target of 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR), which has been shown to reduce insulin resistance in various animal models. Here we aim to determine whether the therapeutic effects of AICAR against insulin resistance involve its anti-inflammatory function, which requires macrophage SIRT1. Long-term administration of low-dose AICAR significantly suppressed adipose inflammation in established diet-induced obese mice. This was associated with improved glucose homeostasis and insulin sensitivity without changes of body weight. In contrast, SIRT1 deletion in myeloid SIRT1 knockout (MSKO) mice increased infiltration of classically activated M1 macrophages and decreased alternatively activated M2 macrophages in adipose tissue. As a result, MSKO mice on high fat (HF) diets exhibited impaired insulin signaling in skeletal muscle, fat, and liver, and developed systemic insulin resistance in glucose tolerance tests, insulin tolerance tests, and hyperinsulinemic-euglycemic clamp experiments. Interestingly, the beneficial effects of AICAR on adipose inflammation and insulin sensitivity were absent in MSKO mice fed HF diets, suggesting that the full capacity of AICAR to antagonize obesity-induced inflammation and insulin resistance requires myeloid SIRT1. In summary, AICAR negatively regulates HF diet-induced inflammation, which requires myeloid SIRT1, thereby contributing to the protection against insulin resistance. Myeloid SIRT1 is a therapeutic target of the anti-inflammatory and insulin-sensitizing effects of AICAR.  相似文献   

13.
Glucocorticoid excess induces marked insulin resistance and glucose intolerance. A recent study has shown that antioxidants prevent dexamethasone (DEX)-induced insulin resistance in cultured adipocytes. The purpose of this investigation was to examine the effects of dietary vitamin E and C (Vit E/C) supplementation on DEX-induced glucose intolerance in rats. We hypothesized that feeding rats a diet supplemented with Vit E/C would improve glucose tolerance and restore insulin signaling in skeletal muscle, adipose, and liver and prevent alterations in AMPK signaling in these tissues. Male Wistar rats received either a control or Vit E/C-supplemented diet (0.5 g/kg diet each of L-ascorbate and DL-all rac-alpha-tocopherol) for 9 days prior to, and during, 5 days of daily DEX treatment (subcutaneous injections 0.8 mg/g body wt). DEX treatment resulted in increases in the glucose and insulin area under the curve (AUC) during an intraperitoneal glucose tolerance test. The glucose, but not insulin, AUC was lowered with Vit E/C supplementation. Improvements in glucose tolerance occurred independent of a restoration of PKB phosphorylation in tissues of rats stimulated with an intraperitoneal injection of insulin but were associated with increases in AMPK signaling in muscle and reductions in AMPK signaling and the expression of fatty acid oxidation enzymes in liver. There were no differences in mitochondrial enzymes in triceps muscles between groups. This study is the first to report that dietary Vit E/C supplementation can partially prevent DEX-induced glucose intolerance in rats.  相似文献   

14.
15.
In Prader-Willi syndrome (PWS) growth hormone therapy (GHT) improves height, body composition, agility and muscular strength. In such patients it is necessary to consider the potential diabetogenic effect of GHT, since they tend to develop type 2 diabetes, particularly after the pubertal age. The aim of our study was to investigate the effects of GHT on glucose and insulin homeostasis in PWS children. An oral glucose tolerance test (OGTT) was performed in 24 prepubertal PWS children (15 male, 9 female, age: 5.8 +/- 2.8 years), 16 were obese (group A) and 8 had normal weight (group B), before and after 2.7 +/- 1.3 years GHT (0.22 +/- 0.03 mg/kg/week) and, only at baseline, in 35 prepubertal children with simple obesity (19 male, 16 female) (group C). Fasting glucose and insulin, glucose tolerance, insulin sensitivity index (ISI), homeostasis model assessment of insulin resistance (HOMA-IR), quick insulin check index (QUICKI), area under the curves (AUC) of glucose and insulin were estimated. At the start of GHT, all PWS children were normoglycaemic and normotolerant but two developed impaired glucose tolerance after 2.2 and 1.9 years of therapy, respectively. At baseline, group A showed lower fasting insulin levels, HOMA-IR and AUC of insulin, higher ISI, QUICKI and AUC of glucose than group C. Comparing groups A and B, AUC of insulin was higher and ISI lower in group A. During GHT, a significant increase of fasting insulin and glucose, a worsening of insulin resistance (HOMA-IR) and insulin sensitivity (QUICKI) was found only in group A while ISI did not change. The AUC of glucose decreased in both groups instead AUC of insulin did not change. BMI-SDS decreased in group A and increased in group B. The increased insulin resistance and decreased insulin sensitivity in obese PWS patients, as well as the occurrence of impaired glucose tolerance during GHT, suggest that a close monitoring of glucose and insulin homeostasis is mandatory, especially in treated obese PWS children.  相似文献   

16.
Nicotinic acid (NA) and nicotinamide (NAM) are major forms of niacin and exert their physiological functions as precursors of nicotinamide adenine dinucleotide (NAD). Sirtuins, which are NAD-dependent deacetylases, regulate glucose and lipid metabolism and are implicated in the pathophysiology of aging, diabetes, and hepatic steatosis. The aim of this study was to investigate the effects of two NAD donors, NA and NAM, on glucose metabolism and the hepatic NAD-sirtuin pathway. The effects were investigated in OLETF rats, a rodent model of obesity and type 2 diabetes. OLETF rats were divided into five groups: (1) high fat (HF) diet, (2) HF diet and 10 mg NA/kg body weight (BW)/day (NA 10), (3) HF diet and 100 mg NA/kg BW/day (NA 100), (4) HF diet and 10 mg NAM/kg BW/day (NAM 10), and (5) HF diet and 100 mg NAM/kg BW/day (NAM 100). NA and NAM were delivered via drinking water for four weeks. NAM 100 treatment affected glucose control significantly, as shown by lower levels of accumulative area under the curve during oral glucose tolerance test, serum fasting glucose, serum fasting insulin, and homeostasis model assessment of insulin resistance, and higher levels of serum adiponectin. With regard to NAD-sirtuin pathway, intracellular nicotinamide phosphoribosyltransferase, NAD, the NAD/NADH ratio, Sirt1, 2, 3, and 6 mRNA expressions, and Sirt1 activity all increased in livers of NAM 100-treated rats. These alterations were accompanied by the increased levels of proliferator-activated receptor gamma, coactivator 1 alpha and mitochondrial DNA. The effect of NA treatment was less evident than that of NAM 100. These results demonstrate that NAM is more effective than NA on the regulation of glucose metabolism and the NAD-sirtuin pathway, which may relate to the altered mitochondrial biogenesis.  相似文献   

17.
Accelerated glucose metabolism leads to oxidative stress and DNA damage in cells; these effects are related to glucose toxicity. The precise mechanisms of glucose toxicity are still unclear. The aim of this work was to investigate the mechanism of poly(ADP‐ribose) polymerase 1 (PARP1), which is a DNA repair enzyme activated by high‐glucose‐induced oxidative stress, and its effect on glucose toxicity in HepG2 hepatocytes. HepG2 cells were cultured under normal (5.5 mM) or high (30 mM) glucose conditions for 4 days. PJ34, which is an inhibitor of PARP1, was used to determine the downstream effects of PARP1 activation. PARP1 activity in 30 mM‐glucose‐treated cells was more than that in 5.5 mM‐glucose‐treated cells, and the activity correlated with the increase in ROS generation and DNA damage. PJ34 suppressed PARP1 activation and prevented the high‐glucose‐induced suppression of SIRT1 and AMP‐activated protein kinase (AMPK) activity, which was similar to its effect on the restoration of intracellular nicotinamide adenine dinucleotide (NAD) content. Further, the phosphorylation of insulin receptor was attenuated in response to insulin stimulation under high glucose conditions, and PJ34 could reverse this effect. The results of transfection of HepG2 cells with PARP1 small interfering RNA were similar to those obtained by treatment of the cells with PARP1 inhibitor PJ34. These data suggest that high‐glucose‐induced PARP1 activation might play a role in glucose toxicity by down‐regulating SIRT1 and AMPK activity through NAD depletion and resulting in insulin insensitivity. J. Cell. Biochem. 112: 299–306, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

18.
《Phytomedicine》2015,22(9):837-846
PurposeThe current study investigated the efficacy of Cyclocarya paliurus chloroform extract (CPEC) and its two specific triterpenoids (cyclocaric acid B and cyclocarioside H) on the regulation of glucose disposal and the underlying mechanisms in 3T3-L1 adipocytes.MethodsMice and adipocytes were stimulated by macrophages-derived conditioned medium (Mac-CM) to induce insulin resistance. CPEC was evaluated in mice for its ability by oral glucose tolerance test (OGTT) and insulin tolerance test (ITT). To investigate the hypoglycemic mechanisms of CPEC and its two triterpenoids, glucose uptake, AMP-activated protein kinase (AMPK) activation, inhibitor of NF-κB kinase β (IKKβ) phosphorylation and insulin signaling transduction were detected in 3T3-L1 adipocytes using 2-NBDG uptake assay and Western blot analysis.ResultsMac-CM, an inflammatory stimulus which induced the glucose and insulin intolerance, increased phosphorylation of IKKβ, reduced glucose uptake and impaired insulin sensitivity. CPEC and two triterpenoids improved glucose consumption and increased AMPK phosphorylation under basal and inflammatory conditions. Moreover, CPEC and its two triterpenoids not only enhanced glucose uptake in an insulin-independent manner, but also restored insulin-mediated protein kinase B (Akt) phosphorylation by reducing the activation of IKKβ and regulating insulin receptor substrate-1 (IRS-1) serine/tyrosine phosphorylation. These beneficial effects were attenuated by AMPK inhibitor compound C, implying that the effects may be associated with AMPK activation.ConclusionsCPEC and its two triterpenoids promoted glucose uptake in the absence of insulin, as well as ameliorated IRS-1/PI3K/Akt pathway by inhibiting inflammation. These effects were related to the regulation of AMPK activity.  相似文献   

19.
Background

High N-terminal pro-brain-type natriuretic peptide levels have been associated with a lower risk of type 2 diabetes mellitus (T2D). However, less is known about other cardiac stress biomarkers in this context. Here we evaluated the association of mid-regional pro-atrial natriuretic peptide (MR-proANP), C-terminal pro-arginine vasopressin (copeptin), C-terminal pro-endothelin-1 (CT-proET-1) and mid-regional pro-adrenomedullin (MR-proADM) with incident T2D and changes in glucose metabolism.

Methods

We performed a prospective cohort study using data from the population-based KORA F4/FF4 study. 1773 participants (52.3% women) with MR-proANP measurements and 960 (52.7% women) with copeptin, CT-proET-1 and MR-proADM measurements were included. We examined associations of circulating plasma levels of MR-proANP, copeptin, CT-proET-1 and MR-proADM with incident T2D, the combined endpoint of incident prediabetes/T2D and with fasting and 2 h-glucose, fasting insulin, HOMA-IR, HOMA-B and HbA1c at follow-up. Logistic and linear regression models adjusted for age, sex, waist circumference, height, hypertension, total/HDL cholesterol ratio, triglycerides, smoking, physical activity and parental history of diabetes were used to compute effect estimates.

Results

During a median follow-up time of 6.4 years (25th and 75th percentiles: 6.0 and 6.6, respectively), 119 out of the 1773 participants and 72 out of the 960 participants developed T2D. MR-proANP was inversely associated with incident T2D (odds ratio [95% confidence interval]: 0.75 [0.58; 0.96] per 1-SD increase of log MR-proANP). Copeptin was positively associated with incident prediabetes/T2D (1.29 [1.02; 1.63] per 1-SD increase of log copeptin). Elevated levels of CT-proET-1 were associated with increased HOMA-B at follow-up, while elevated MR-proADM levels were associated with increased fasting insulin, HOMA-IR and HOMA-B at follow-up. These associations were independent of previously described diabetes risk factors.

Conclusions

High plasma concentrations of MR-proANP contributed to a lower risk of incident T2D, whereas high plasma concentrations of copeptin were associated with an increased risk of incident prediabetes/T2D. Furthermore, high plasma concentrations of CT-proET-1 and MR-proADM were associated with increased insulin resistance. Our study provides evidence that biomarkers implicated in cardiac stress are associated with incident T2D and changes in glucose metabolism.

  相似文献   

20.
The K121Q polymorphism of the ectoenzyme nucleotide pyrophosphate phosphodiesterase 1 (ENPP1) gene has been variably associated with insulin resistance and type 2 diabetes (T2D) in several populations. However, this association has not been studied in Iranian subjects and we hypothesized that the K121Q variant might be associated with T2D and related metabolic traits in this population. The K121Q genotypes were determined by PCR-restriction fragment length polymorphism in 377 normoglycemic controls and 155 T2D patients. T2D patients had significantly higher values for systolic and diastolic blood pressure, BMI, glucose, cholesterol, triglyceride, LDL, apoB, insulin, and HOMA-IR, and lower levels of HDL than the normoglycemic subjects. The frequency of the Q allele did not differ between T2D and normoglycemic subjects (OR 0.96, 95% CI 0.90-2.00, P?=?0.70). The Q allele frequency was 16.5% in T2D and 15.2% in normoglycemic subjects. The ENPP1 genotype (KQ?+?QQ) was not associated with the systolic and diastolic blood pressure, glucose, triglyceride, cholesterol, LDL-C and HDL-C, apo B, BMI, HOMA-IR, and insulin levels in both normoglycemic and T2D groups. Our results suggest that the ENPP1 121Q allele might not be associated with T2D and related metabolic traits among Iranian subjects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号