首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Bone remodeling relies on the tightly regulated interplay between bone forming osteoblasts and bone digesting osteoclasts. Several studies have now described the molecular mechanisms by which osteoblasts control osteoclastogenesis and bone degradation. It is currently unclear whether osteoclasts can influence bone rebuilding.

Methodology/Principal Findings

Using in vitro cell systems, we show here that mature osteoclasts, but not their precursors, secrete chemotactic factors recognized by both mature osteoblasts and their precursors. Several growth factors whose expression is upregulated during osteoclastogenesis were identified by DNA microarrays as candidates mediating osteoblast chemotaxis. Our subsequent functional analyses demonstrate that mature osteoclasts, whose platelet-derived growth factor bb (PDGF-bb) expression is reduced by siRNAs, exhibit a reduced capability of attracting osteoblasts. Conversely, osteoblasts whose platelet-derived growth factor receptor β (PDGFR-β) expression is reduced by siRNAs exhibit a lower capability of responding to chemotactic factors secreted by osteoclasts.

Conclusions/Significance

We conclude that, in vitro mature osteoclasts control osteoblast chemotaxis via PDGF-bb/PDGFR-β signaling. This may provide one key mechanism by which osteoclasts control bone formation in vivo.  相似文献   

2.
《Phytomedicine》2015,22(1):27-35
Osteopenic diseases, such as osteoporosis, are characterized by progressive and excessive bone resorption mediated by enhanced receptor activator of nuclear factor-κB ligand (RANKL) signaling. Therefore, downregulation of RANKL downstream signals may be a valuable approach for the treatment of bone loss-associated disorders. In this study, we investigated the effects of the naphthohydroquinone mollugin on osteoclastogenesis and its function in vitro and in vivo. Mollugin efficiently suppressed RANKL-induced osteoclast differentiation of bone marrow macrophages (BMMs) and bone resorbing activity of mature osteoclasts by inhibiting RANKL-induced c-Fos and NFATc1 expression. Mollugin reduced the phosphorylation of signaling pathways activated in the early stages of osteoclast differentiation, including the MAP kinase, Akt, and GSK3β and inhibited the expression of different genes associated with osteoclastogenesis, such as OSCAR, TRAP, DC-STAMP, OC-STAMP, integrin αν, integrin β3, cathepsin K, and ICAM-1. Furthermore, mice treated with mollugin showed significant restoration of lipopolysaccharide (LPS)-induced bone loss as indicated by micro-CT and histological analysis of femurs. Consequently, these results suggested that mollugin could be a novel therapeutic candidate for bone loss-associated disorders including osteoporosis, rheumatoid arthritis, and periodontitis.  相似文献   

3.
Ebselen is a non-toxic seleno-organic drug with anti-inflammatory and antioxidant properties that is currently being examined in clinical trials to prevent and treat various diseases, including atherosclerosis, stroke, and cancer. However, no reports are available for verifying the pharmacological effects of ebselen on major metabolic bone diseases such as osteoporosis. In this study, we observed that ebselen suppressed the formation of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells in an osteoblast/osteoclast co-culture by regulating the ratio of receptor activator of nuclear factor kappa-B ligand (RANKL)/osteoprotegerin secreted by osteoblasts. In addition, ebselen treatment in the early stage of osteoclast differentiation inhibited RANKL-dependent osteoclastogenesis by decreasing the phosphorylation of IκB, PI3K, and Akt in early signaling pathways and by subsequently inducing c-Fos and nuclear factor of activated T-cells c1. Further, ebselen induced apoptosis of osteoclasts in the late stage of osteoclast differentiation. In addition, ebselen treatment suppressed filamentous actin ring formation and bone resorption activity of mature osteoclasts. Reflecting these in vitro effects, administration of ebselen recovered bone loss and its µ-CT parameters in lipopolysaccharide-mediated mouse model. Histological analysis confirmed that ebselen prevented trabecular bone matrix degradation and osteoclast formation in the bone tissues. Finally, it was proved that the anti-osteoclastogenic action of ebselen is achieved through targeting N-methyl-D-aspartate (NMDA) receptor. These results indicate that ebselen is a potentially safe drug for treating metabolic bone diseases such as osteoporosis.  相似文献   

4.
Gaucher disease is a lysosomal storage disorder caused by deficiency of glucocerebrosidase enzymatic activity leading to accumulation of its substrate glucocerebrosidase mainly in macrophages. Skeletal disorder of Gaucher disease is the major cause of morbidity and is highly refractory to enzyme replacement therapy. However, pathological mechanisms of bone alterations in Gaucher disease are still poorly understood. We hypothesized that cellular alteration in Gaucher disease produces a proinflammatory milieu leading to bone destruction through enhancement of monocyte differentiation to osteoclasts and osteoclasts resorption activity. Against this background we decided to investigate in an in vitro chemical model of Gaucher disease, the capacity of secreted soluble mediators to induce osteoclastogenesis, and the mechanism responsible for this phenomena. We demonstrated that soluble factors produced by CBE-treated PBMC induced differentiation of osteoclasts precursors into mature and active osteoclasts that express chitotriosidase and secrete proinflammatory cytokines. We also showed a role of TNF-α in promoting osteoclastogenesis in Gaucher disease chemical model. To analyze the biological relevance of T cells in osteoclastogenesis of Gaucher disease, we investigated this process in T cell-depleted PBMC cultures. The findings suggest that T cells play a role in osteoclast formation in Gaucher disease. In conclusion, our data suggests that in vitro GCASE deficiency, along with concomitant glucosylceramide accumulation, generates a state of osteoclastogenesis mediated in part by pro-resorptive cytokines, especially TNF-α. Moreover, T cells are involved in osteoclastogenesis in Gaucher disease chemical model.  相似文献   

5.
Formation of foreign body giant cells (FBGCs) occurs following implantation of medical devices such as artificial joints and is implicated in implant failure associated with inflammation or microbial infection. Two major macrophage subpopulations, M1 and M2, play different roles in inflammation and wound healing, respectively. Therefore, M1/M2 polarization is crucial for the development of various inflammation-related diseases. Here, we show that FBGCs do not resorb bone but rather express M2 macrophage-like wound healing and inflammation-terminating molecules in vitro. We also found that FBGC formation was significantly inhibited by inflammatory cytokines or infection mimetics in vitro. Interleukin-1 receptor-associated kinase-4 (IRAK4) deficiency did not alter osteoclast formation in vitro, and IRAK4-deficient mice showed normal bone mineral density in vivo. However, IRAK4-deficient mice were protected from excessive osteoclastogenesis induced by IL-1β in vitro or by LPS, an infection mimetic of Gram-negative bacteria, in vivo. Furthermore, IRAK4 deficiency restored FBGC formation and expression of M2 macrophage markers inhibited by inflammatory cytokines in vitro or by LPS in vivo. Our results demonstrate that osteoclasts and FBGCs are reciprocally regulated and identify IRAK4 as a potential therapeutic target to inhibit stimulated osteoclastogenesis and rescue inhibited FBGC formation under inflammatory and infectious conditions without altering physiological bone resorption.  相似文献   

6.
7.
8.
BackgroundOsteoporosis is a threat to aged people who have excessive osteoclast activation and bone resorption, subsequently causing fracture and even disability. Inhibiting osteoclast differentiation and absorptive functions has become an efficient approach to treat osteoporosis, but osteoclast-targeting inhibitors available clinically remain rare. Kirenol (Kir), a bioactive diterpenoid derived from an antirheumatic Chinese herbal medicine Herba Siegesbeckiae, can treat collagen-induced arthritis in vivo and promote osteoblast differentiation in vitro, while the effects of Kir on osteoclasts are still unclear.PurposeWe explore the role of Kir on RANKL-induced osteoclastogenesis in vitro and bone loss in vivo.MethodsThe in vitro effects of Kir on osteoclast differentiation, bone resorption and the underlying mechanisms were evaluated with bone marrow-derived macrophages (BMMs). In vivo experiments were performed using an ovariectomy (OVX)-induced osteoporosis model.ResultsWe found that Kir remarkably inhibited osteoclast generation and bone resorption in vitro. Mechanistically, Kir significantly inhibited F-actinring formation and repressed RANKL-induced NF-κB p65 activation and p-p38, p-ERK and c-Fos expression. Moreover, Kir inhibited both the expression and nuclear translocation of NFATc1. Ca2+ oscillation and caveolin-1 (Cav-1) were also reduced by Kir during osteoclastogenesis in vitro. Consistent with these findings, 2–10 mg/kg Kir attenuated OVX-induced osteoporosis in vivo as evidenced by decreased osteoclast numbers and downregulated Cav-1 and NFATc1 expression.ConclusionsKir suppresses osteoclastogenesis and the Cav-1/NFATc1 signaling pathway both in vitro and in vivo and protects against OVX-induced osteoporosis. Our findings reveal Kir as a potential safe oral treatment for osteoporosis.  相似文献   

9.
Effect of ormeloxifene, a multifunctional selective estrogen receptor modulator, on prevention of ovariectomy-induced bone resorption in retired breeder female rats, osteoclastogenesis using bone marrow cells from adult Balb/c mice cultured in presence of M-CSF and RANKL, osteoclast apoptosis using terminal deoxynucleotidyl transferase fragment end labeling and TGF beta-3 expression were investigated. Raloxifene, a benzothiophene reported to mimic effects of estrogen in bone, and estradiol were used for comparison. Ormeloxifene (10−6 and 10−8 M) significantly inhibited osteoclastogenesis (P < 0.001 versus vehicle control) as evidenced by lower number of TRAP-positive osteoclasts in bone marrow cultures and caused apoptosis of osteoclasts. The effect was almost equivalent to that observed in presence of estradiol-17 beta, except that significant number of cells undergoing apoptosis was evident even at 10−9 M concentration of estradiol-17 beta (P < 0.001). Raloxifene, though inhibited osteoclastogenesis at much lower concentrations (10−8 to 10−12 M; P < 0.001), failed to cause apoptosis of osteoclasts at any of the concentrations used. While ormeloxifene, raloxifene and ethynylestradiol significantly prevented ovariectomy-induced bone loss in vivo in retired breeder female rats, prevention of ovariectomy-induced decrease in BMD and trabecular network of proximal tibia, calcium and phosphorus levels in femur and tibia and prevention of ovariectomy-induced down-regulation of TGF beta-3 expression in lumbar vertebrae was of lower order in raloxifene- than ormeloxifene- or ethynylestradiol-supplemented females. Both the SERMs, however, produced considerable estrogenic effects at the uterine level as evidenced by increase in weight, total and endometrial area and luminal epithelial cell height; the effect being generally greater in raloxifene- than ormeloxifene-treated rats. Findings demonstrate that inhibition of estrogen-deficiency osteoporosis by ormeloxifene, as in case of estradiol, was mediated via inhibition of osteoclastogenesis, apoptosis of osteoclasts and up-regulation of TGF beta-3 expression. Raloxifene, though effective in inhibiting osteoclastogenesis in vitro at much lower concentrations, was not only less potent in preventing ovariectomy-induced bone loss in retired breeder female rats in vivo but also appeared to have a different mechanism of action than ormeloxifene and estradiol.  相似文献   

10.
Lysophosphatidic acid (LPA) is a natural bioactive lipid that acts through six different G protein-coupled receptors (LPA1–6) with pleiotropic activities on multiple cell types. We have previously demonstrated that LPA is necessary for successful in vitro osteoclastogenesis of bone marrow cells. Bone cells controlling bone remodeling (i.e. osteoblasts, osteoclasts, and osteocytes) express LPA1, but delineating the role of this receptor in bone remodeling is still pending. Despite Lpar1−/− mice displaying a low bone mass phenotype, we demonstrated that bone marrow cell-induced osteoclastogenesis was reduced in Lpar1−/− mice but not in Lpar2−/− and Lpar3−/− animals. Expression of LPA1 was up-regulated during osteoclastogenesis, and LPA1 antagonists (Ki16425, Debio0719, and VPC12249) inhibited osteoclast differentiation. Blocking LPA1 activity with Ki16425 inhibited expression of nuclear factor of activated T-cell cytoplasmic 1 (NFATc1) and dendritic cell-specific transmembrane protein and interfered with the fusion but not the proliferation of osteoclast precursors. Similar to wild type osteoclasts treated with Ki16425, mature Lpar1−/− osteoclasts had reduced podosome belt and sealing zone resulting in reduced mineralized matrix resorption. Additionally, LPA1 expression markedly increased in the bone of ovariectomized mice, which was blocked by bisphosphonate treatment. Conversely, systemic treatment with Debio0719 prevented ovariectomy-induced cancellous bone loss. Moreover, intravital multiphoton microscopy revealed that Debio0719 reduced the retention of CX3CR1-EGFP+ osteoclast precursors in bone by increasing their mobility in the bone marrow cavity. Overall, our results demonstrate that LPA1 is essential for in vitro and in vivo osteoclast activities. Therefore, LPA1 emerges as a new target for the treatment of diseases associated with excess bone loss.  相似文献   

11.
Obesity is associated with an increase in adipose tissue mass due to an imbalance between high dietary energy intake and low physical activity; however, the type of dietary protein may contribute to its development. The aim of the present work was to study the effect of soy protein versus casein on white adipose tissue genome profiling, and the metabolic functions of adipocytes in rats with diet-induced obesity. The results showed that rats fed a Soy Protein High-Fat (Soy HF) diet gained less weight and had lower serum leptin concentration than rats fed a Casein High-Fat (Cas HF) diet, despite similar energy intake. Histological studies indicated that rats fed the Soy HF diet had significantly smaller adipocytes than those fed the Cas HF diet, and this was associated with a lower triglyceride/DNA content. Fatty acid synthesis in isolated adipocytes was reduced by the amount of fat consumed but not by the type of protein ingested. Expression of genes of fatty acid oxidation increased in adipose tissue of rats fed Soy diets; microarray analysis revealed that Soy protein consumption modified the expression of 90 genes involved in metabolic functions and inflammatory response in adipose tissue. Network analysis showed that the expression of leptin was regulated by the type of dietary protein and it was identified as a central regulator of the expression of lipid metabolism genes in adipose tissue. Thus, soy maintains the size and metabolic functions of adipose tissue through biochemical adaptations, adipokine secretion, and global changes in gene expression.  相似文献   

12.
Inflammation of adipose tissue is believed to be a contributing factor to many chronic diseases associated with obesity. Vitamin D (VD) is now known to limit this metabolic inflammation by decreasing inflammatory marker expression and leukocyte infiltration in adipose tissue. In this study, we investigated the impact of VD on microRNA (miR) expression in inflammatory conditions in human and mouse adipocytes, using high-throughput methodology (miRNA PCR arrays). Firstly, we identified three miRs (miR-146a, miR-150, and miR-155) positively regulated by TNFα in human adipocytes. Interestingly, the expression of these miRs was strongly prevented by 1,25(OH)2D preincubation. These results were partly confirmed in 3T3-L1 adipocytes (for miR-146a and miR-150). The ability of VD to control the expression of these miRs was confirmed in diet-induced obese mice: the levels of the three miRs were increased following high fat (HF) diet in epididymal white adipose tissue and reduced in HF diet fed mice supplemented with VD. The involvement of NF-κB signaling in the induction of these miRs was confirmed in vitro and in vivo using aP2-p65 transgenic mice. Finally, the ability of VD to deactivate NF-κB signaling, via p65 and IκB phosphorylation inhibition in murine adipocyte, was observed and could constitute a driving molecular mechanism. This study demonstrated for the first time that VD modulates the expression of miRs in adipocytes in vitro and in adipose tissue in vivo through its impact on NF-κB signaling pathway, which could represent a new mechanism of regulation of inflammation by VD.  相似文献   

13.
14.
The objective of this study was to investigate the effects of dietary zinc deficiency and diet restriction on bone development in growing rats, and to determine whether any adverse effects could be reversed by dietary repletion. Weanling rats were fed either a zinc-deficient diet ad libitum (ZD; <1 mg zinc/kg) or nutritionally complete diet (30 mg zinc/kg) either ad libitum (CTL) or pair-fed to the intake of the ZD group (DR; diet-restricted) for 3 weeks (deficiency phase) and then all groups were fed the zinc-adequate diet ad libitum for 3, 7, or 23 days (repletion phase). Excised femurs were analyzed for bone mineral density (BMD) using dual-energy x-ray absorptiometry, and plasma was analyzed for markers of bone formation (osteocalcin) and resorption (Ratlaps). After the deficiency phase, ZD had lower body weight and reduced femur BMD, zinc, and phosphorus concentrations compared with DR; and these parameters were lower in DR compared with CTL. Femur calcium concentrations were unchanged among the groups. Reduced plasma osteocalcin in ZD and elevated plasma Ratlaps in DR suggested that zinc deficiency limits bone formation while diet restriction accelerates bone resorption activity. After 23 days of repletion, femur size, BMD, and zinc concentrations remained lower in ZD compared with DR and CTL. Body weight and femur phosphorus concentrations remained lower in both ZD and DR compared with CTL after repletion. There were no differences in plasma osteocalcin concentrations after the repletion phase, but the plasma Ratlaps concentrations remained elevated in DR compared with CTL. In summary, both ZD and DR lead to osteopenia during rapid growth, but the mechanisms appear to be due to reduced modeling in ZD and higher turnover in DR. Zinc deficiency was associated with a greater impairment in bone development than diet restriction, and both deficiencies limited bone recovery during repletion in growing rats.  相似文献   

15.
Excessive synovial osteoclastogenesis is a hallmark of rheumatoid arthritis (RA). Concomitantly, local synovial changes comprise neuronal components of the peripheral sympathetic nervous system. Here, we wanted to analyze if collagen-induced arthritis (CIA) alters bone marrow-derived macrophage (BMM) osteoclastogenesis and osteoclast activity, and how sympathetic neurotransmitters participate in this process. Therefore, BMMs from Dark Agouti rats at different CIA stages were differentiated into osteoclasts in vitro and osteoclast number, cathepsin K activity, matrix resorption and apoptosis were analyzed in the presence of acetylcholine (ACh), noradrenaline (NA) vasoactive intestinal peptide (VIP) and assay-dependent, adenylyl cyclase activator NKH477. We observed modulation of neurotransmitter receptor mRNA expression in CIA osteoclasts without affecting protein level. CIA stage-dependently altered marker gene expression associated with osteoclast differentiation and activity without affecting osteoclast number or activity. Neurotransmitter stimulation modulated osteoclast differentiation, apoptosis and activity. VIP, NA and adenylyl cyclase activator NKH477 inhibited cathepsin K activity and osteoclastogenesis (NKH477, 10-6M NA) whereas ACh mostly acted pro-osteoclastogenic. We conclude that CIA alone does not affect metabolism of in vitro generated osteoclasts whereas stimulation with NA, VIP plus specific activation of adenylyl cyclase induced anti-resorptive effects probably mediated via cAMP signaling. Contrary, we suggest pro-osteoclastogenic and pro-resorptive properties of ACh mediated via muscarinic receptors.  相似文献   

16.
Chronic inflammatory diseases, such as rheumatoid arthritis and periodontitis-caused bone destruction, results from an increase of bone-resorbing osteoclasts (OCs) induced by inflammation. However, the detailed mechanisms underlying this disorder remain unclear. We herein investigated that the effect of urokinase-type plasminogen activator (uPA) on inflammatory osteoclastogenesis induced by lipopolysaccharide (LPS), which is a potent stimulator of bone resorption in inflammatory diseases. We found that the uPA deficiency promoted inflammatory osteoclastogenesis and bone loss induced by LPS. We also showed that LPS induced the expression of uPA, and the uPA treatment attenuated the LPS-induced inflammatory osteoclastogenesis of RAW264.7 mouse monocyte/macrophage lineage cells. Additionally, we showed that the uPA-attenuated inflammatory osteoclastgenesis is associated with the activation of plasmin/protease-activated receptor (PAR)-1 axis by uPA. Moreover, we examined the mechanism underlying the effect of uPA on inflammatory osteoclastogenesis, and found that uPA/plasmin/PAR-1 activated the adenosine monophosphate-activated protein kinase (AMPK) pathway through Ca2+/calmodulin dependent protein kinase kinase (CaMKK) activation, and attenuated inflammatory osteoclastogenesis by inactivation of NF-κB in RAW264.7 cells. These data suggest that uPA attenuated inflammatory osteoclastogenesis through the plasmin/PAR-1/Ca2+/CaMKK/AMPK axis. Our findings may provide a novel therapeutic approach to bone loss caused by inflammatory diseases.  相似文献   

17.
Chronic inflammation associated with bone tissues often destructs bones, which is essentially performed by osteoclasts in the presence of immunoregulatory molecules. Hence, regulating osteoclastogenesis is crucial to develop therapeutics for bone-destructive inflammatory diseases. It is believed that reactive oxygen species (ROS) are involved in receptor activator of NF-κB (RANK) ligand (RANKL)-induced osteoclast differentiation, and, therefore, glutathione (GSH), the most abundant endogenous antioxidant, suppresses osteoclast differentiation and bone resorption by RANKL. Interestingly, GSH also contributes to inflammatory responses, and the effects of GSH on osteoclast differentiation and bone destruction under inflammatory conditions have not yet been determined. Here, we investigated how GSH affects inflammatory cytokine-stimulated osteoclast differentiation in vitro and in a mouse model of inflammatory bone destruction. We found that GSH significantly promoted TNFα-stimulated osteoclast formation, while an inhibitor of GSH synthesis, buthionine sulfoximine, suppressed it. GSH facilitated the nuclear localisation of the nuclear factor of activated T cells c1 (NFATc1) protein, a master regulator of osteoclastogenesis, as well as the expression of osteoclast marker genes in a dose-dependent manner. N-acetylcysteine, a substrate of GSH synthesis, also stimulated osteoclast formation and NFATc1 nuclear localisation. GSH did not suppress cell death after osteoclast differentiation. In mouse calvaria injected with lipopolysaccharide, GSH treatment resulted in a fivefold increase in the osteolytic lesion area. These results indicate that GSH accelerates osteoclast differentiation and inflammatory bone destruction, suggesting GSH appears to be an important molecule in the mechanisms responsible for inflammatory bone destruction by osteoclasts.  相似文献   

18.
Chemokines are characterized by the homing activity of leukocytes to targeted inflammation sites. Recent research indicates that chemokines play more divergent roles in various phases of pathogenesis as well as immune reactions. The chemokine receptor, CCR1, and its ligands are thought to be involved in inflammatory bone destruction, but their physiological roles in the bone metabolism in vivo have not yet been elucidated. In the present study, we investigated the roles of CCR1 in bone metabolism using CCR1-deficient mice. Ccr1−/− mice have fewer and thinner trabecular bones and low mineral bone density in cancellous bones. The lack of CCR1 affects the differentiation and function of osteoblasts. Runx2, Atf4, Osteopontin, and Osteonectin were significantly up-regulated in Ccr1−/− mice despite sustained expression of Osterix and reduced expression of Osteocalcin, suggesting a lower potential for differentiation into mature osteoblasts. In addition, mineralized nodule formation was markedly disrupted in cultured osteoblastic cells isolated from Ccr1−/− mice. Osteoclastogenesis induced from cultured Ccr1−/− bone marrow cells yielded fewer and smaller osteoclasts due to the abrogated cell-fusion. Ccr1−/− osteoclasts exerted no osteolytic activity concomitant with reduced expressions of Rank and its downstream targets, implying that the defective osteoclastogenesis is involved in the bone phenotype in Ccr1−/− mice. The co-culture of wild-type osteoclast precursors with Ccr1−/− osteoblasts failed to facilitate osteoclastogenesis. This finding is most likely due to a reduction in Rankl expression. These observations suggest that the axis of CCR1 and its ligands are likely to be involved in cross-talk between osteoclasts and osteoblasts by modulating the RANK-RANKL-mediated interaction.  相似文献   

19.
It is still unclear if an isoenergetic, sucrose-rich diet leads to health consequences.AimsTo investigate the effects of excessive sucrose within an isoenergetic diet on metabolic parameters in male C57BL/6 mice.MethodsAnimals were fed a control diet (10% fat, 8% sucrose — SC group), a high-sucrose diet (10% fat, 32% sucrose — HSu group), a high-fat diet (42% fat, 8% sucrose — HF group) or a high-fat/high-sucrose diet (42% fat, 32% sucrose — HF/HSu group) for 8 weeks.ResultsMice fed HF and HF/HSu diets gained more body mass (BM) and more body adiposity than SC- or Hsu-fed mice. Despite the unchanged BM and adiposity indices, HSu mice presented adipocyte hypertrophy, which was also observed in the HF and HF/HSu groups (P<.0001). The HF, HSu and HF/HSu mice were glucose intolerant and had elevated serum insulin levels (P<.05). The levels of leptin, resistin and monocyte chemotactic protein-1 increased, while the serum adiponectin decreased in the HF, HSu and HF/HSu groups (P<.05). In the adipose tissue, the HF, HSu and HF/HSu groups showed higher levels of leptin expression and lower levels of adiponectin expression in comparison with the SC group (P<.05). Liver steatosis was higher in the HF, HSu and HF/HSu groups than in the SC group (P<.0001). Hepatic cholesterol was higher in the HF and HF/HSu groups, while hepatic TG was higher in the HSu and HF/HSu groups (P<.05). In hepatic tissue, the sterol receptor element-binding protein-1c expression was increased in the HF, HSu and HF/HSu groups, unlike the peroxisome proliferator-activated receptor-alpha expression that decreased in the HF, HSu and HF/HSu groups in comparison with the SC group (P<.05).ConclusionA sucrose-rich diet does not lead to a state of obesity but has the potential to cause changes in the adipocytes (hypertrophy) as well as glucose intolerance, hyperinsulinemia, hyperlipidemia, hepatic steatosis and increases in the number of inflammatory cytokines. The deleterious effects of a sucrose-rich diet in an animal model, even when the sucrose replaces starch isocalorically in the feed, can have far-reaching consequences for health.  相似文献   

20.
Parathyroid hormone (PTH) induces osteoclast formation and activity by increasing the ratio of RANKL/OPG in osteoblasts. The proteasome inhibitor carfilzomib (CFZ) has been used as an effective therapy for multiple myeloma via the inhibition of pathologic bone destruction. However, the effect of combination of PTH and CFZ on osteoclastogenesis is unknown. We now report that CFZ inhibits PTH-induced RANKL expression and secretion without affecting PTH inhibition of OPG expression, and it does so by blocking HDAC4 proteasomal degradation in osteoblasts. Furthermore, we used different types of culture systems, including co-culture, indirect co-culture, and transactivation, to assess the effect of CFZ on PTH action to induce osteoclastogenesis. Our results demonstrated that CFZ blocks PTH-induced osteoclast formation and bone resorption by its additional effect to inhibit RANKL-mediated IκB degradation and NF-κB activation in osteoclasts. This study showed for the first time that CFZ targets both osteoblasts and osteoclasts to suppress PTH-induced osteoclast differentiation and bone resorption. These findings warrant further investigation of this novel combination in animal models of osteoporosis and in patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号