首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Herein we report the knock-on cytotoxic effect of lethal toxin (LeTx) on human umbilical vascular endothelial cells (HUVECs). HUVECs were treated either directly with LeTx or indirectly with LeTx conditioned medium (LeTxCM) prepared from RAW264.7 macrophage cells. Cytotoxicity assays were done on HUVECs and A549 cells using LeTx. HUVECs were more susceptible to LeTx (61-74% survivals) as compared to A549 cells (83-94% survivals, P < 0.005). However, LeTxCM from RAW264.7 further potentiated killing of HUVECs (37% survival) compared to the LeTxCM from A549 cells (up to 70-100% survivals). LeTxCM challenge induced an apoptotic cell death in HUVECs, and this was confirmed by reduction of BCL-2 levels to 54%. Protective antigen (PA) binding to macrophage cell line RAW264.7 > HUVECs > A549 cells. Thus, we postulate that after the initial prodormal phase of pulmonary entry, LeTx causes not only significant direct damage to macrophages and endothelial cells, but also mediates additional indirect damage to endothelial cells mediated by a knock-on effect of LeTx on macrophages that causes apoptotic cell death in endothelial cells.  相似文献   

2.
Inflammatory mechanisms are critical in the arterial response to injury. Both IL-1 and the naturally occurring inhibitor of IL-1, IL-1R antagonist (IL-1ra), are expressed in the arterial wall, and in particular in the endothelium. Previous studies suggest that endothelial cells only make the intracellular type I isoform of IL-1ra (icIL-1ra1), an isoform known to lack a secretory signal peptide. It is unclear how icIL-1ra is released from the endothelial cell to act as an antagonist on cell surface IL-1 type I receptors. IL-1beta, which also lacks a secretory signal peptide, may be released by ATP stimulation of the P2X(7)R. Therefore, we examined whether icIL-1ra1 release occurs in an analogous manner, using both the mouse macrophage cell line RAW264.7 and HUVECs. P2X(7)R activation caused icIL-1ra1 release from LPS-primed RAW264.7 macrophages and from HUVECs. This release was inhibited in the absence of extracellular calcium, and attenuated by preincubation with oxidized ATP, KN62, and apyrase. Endogenous ATP release, which also facilitated release of icIL-1ra1, was detected during LPS treatment of both RAW264.7 macrophages and HUVECs. Annexin V assays showed that ATP stimulation resulted in a rapid phosphatidylserine (PS) exposure on the cell surface of RAW264.7 macrophages, and that PS-exposed microvesicles contained icIL-1ra1. However, PS flip and microvesicle shedding was not apparent in ATP-treated HUVECs. These data support a general role for the P2X(7)R in the release of leaderless cytokines into the extracellular medium, and indicate how icIL-1ra1 may act upon its extracellular target, the IL-1R.  相似文献   

3.
It has been reported that some hypoparathyroid patients with magnesium deficiency showed altered responses to vitamin D treatment. In the same way, in vitro bone studies have demonstrated the existence of a decrease in the 1,25-dihydroxyvitamin D3-induced resorption in bone as a result of magnesium deficiency. These findings suggest some kind of alteration in the 1,25(OH)2D3 in bone in magnesium deficiency. In the present work, using a binding assay based on the 1,25(OH)2D3 and 3H-1,25(OH)2D3 competition for the hormone binding sites in rat calvaria homogenates, a significant decrease in the number of 1,25(OH)2D3 specific binding sites has been found in calvaria incubated in magnesium-deficient medium compared to magnesium-replete ones. Alterations in the hormone-receptor affinity were not found. These results suggest that an alteration in the 1,25(OH)2D3 action on magnesium-deficient bone could be due, at least in part, to a decrease in the number of available vitamin D receptors in bone cells.  相似文献   

4.
Tumor angiogenesis is a complicated process based upon a sequence of interactions between tumor and vessel endothelial cells. Tumor conditioned medium has been widely used to stimulate endothelial cells in vitro angiogenesis. This work was aimed to investigate the effects of gold nanoparticles (GNPs) on angiogenesis in hepatic carcinoma-conditioned endothelial cells. Human umbilical vein endothelial cells (HUVECs) were cultured with conditioned medium (CM) from the human hepatocarcinoma cell line HepG2 (HepG2-CM), and then treated with different concentrations of GNPs. The effects of GNPs on the viability, migration and active VEGF level of HUVECs were investigated by MTT assay, wound healing assay and transwell chamber assay, and ELISA assay, respectively. The data showed that GNPs significantly inhibited HUVECs proliferation and migration induced by HepG2-CM, and also reduced the levels of active VEGF in the co-culture system. Then, the alterations in morphology and ultrastructure of HUVECs detected by atomic force microscopy (AFM) showed that there appeared obvious pseudopodia, larger membrane particle sizes and much rougher surface in HUVECs after HepG2-CM treatment, which were all reversed after GNPs treatment. Changes in cytoskeleton of HUVECs determined by immunocytochemistry demonstrated that GNPs treatment remarkably inhibited the activation effect of HepG2-CM on HUVECs, which was associated with the disruption of actin filaments induced by GNPs. This study indicates that GNPs can significantly inhibit HepG2-CM activated endothelial cell proliferation and migration through down-regulation of VEGF activity and disruption of cell morphology, revealing the potential applications of GNPs as antiangiogenic agent for the treatment of hepatic carcinoma.  相似文献   

5.
6.
Rare earth elements can promote photosynthesis, but their mechanisms are still poorly understood under magnesium deficiency. The present study was designed to determine the role of cerium in magnesium-deficient maize plants. Maize was cultivated in Hoagland’s solution added with cerium with and without adequate quantities of magnesium. Under magnesium-deficient conditions, cerium can prevents inhibition of synthesis of photosynthetic pigment, improves light energy absorption and conversion, oxygen evolution, and the activity of photo-phosphorelation and its coupling factor Ca2+-ATPase. These results suggest that cerium could partly substitute magnesium, improving photosynthesis and plant growth.  相似文献   

7.
An important characteristic of hyperlipemia associated with magnesium deficiency in rats is the postprandial accumulation of triglyceride-rich lipoproteins. The present investigation was performed to determine the effect of serum from magnesium-deficient animals on cultured vascular smooth muscle cells (VSMC). Sera were obtained from control and magnesium-deficient rats fed adequate or deficient diets for 8 days. Magnesium-deficient animals were hypertriglyceridemic compared with control rats, but their total cholesterolemia was not significantly modified. Pooled sera from control and magnesium-deficient animals were added to the culture medium at various concentrations. The maximum of proliferation for both control and magnesium-deficient sera was reached when they were added at 6% to the culture medium and on day 4 after the begining of incubation. Medium containing serum from magnesium-deficient rats stimulated the cell proliferation as monitored by cell count and [3H]thymidine incorporation. Staining of VSMC with Oil red O and measuring lipids have shown a marked lipid accumulation (triglycerides) in cells incubated with serum obtained from magnesium-deficient animals compared with serum from control rats. These results indicate that serum from magnesium-deficient rats contains factors that stimulate proliferation of arterial medial cells and that hyperlipemia associated with magnesium-deficiency may cause lipid accumulation in vascular cells.  相似文献   

8.
Recent years have seen a proliferation of methods leading to successful organ decellularization. In this experiment we examine the feasibility of a decellularized liver construct to support growth of functional multilineage cells. Bio-chamber systems were used to perfuse adult rat livers with 0.1% SDS for 24 hours yielding decellularized liver scaffolds. Initially, we recellularized liver scaffolds using a human tumor cell line (HepG2, introduced via the bile duct). Subsequent studies were performed using either human tumor cells co-cultured with human umbilical vein endothelial cells (HUVECs, introduced via the portal vein) or rat neonatal cell slurry (introduced via the bile duct). Bio-chambers were used to circulate oxygenated growth medium via the portal vein at 37C for 5-7 days. Human HepG2 cells grew readily on the scaffold (n = 20). HepG2 cells co-cultured with HUVECs demonstrated viable human endothelial lining with concurrent hepatocyte growth (n = 10). In the series of neonatal cell slurry infusion (n = 10), distinct foci of neonatal hepatocytes were observed to repopulate the parenchyma of the scaffold. The presence of cholangiocytes was verified by CK-7 positivity. Quantitative albumin measurement from the grafts showed increasing albumin levels after seven days of perfusion. Graft albumin production was higher than that observed in traditional cell culture. This data shows that rat liver scaffolds support human cell ingrowth. The scaffold likewise supported the engraftment and survival of neonatal rat liver cell slurry. Recellularization of liver scaffolds thus presents a promising model for functional liver engineering.  相似文献   

9.
Expression of adhesion molecules may play an important role in the interaction of tumor cells with vascular endothelial cells during tumor invasion and metastasis. In this study, the adhesive force of human hepatoma HepG2 cells to human umbilical vein endothelial cells (HUVECs) was investigated using a micropipette aspiration technique. Expression of an adhesion molecule, E-selectin, was also observed by immunofluorescence microscopy. In particular, the adhesive force after stimulation of HUVECs with recombinant human interleukin-1beta (rhIL-1beta) was examined. The results demonstrated that the adhesive force of HepG2 cells to stimulated HUVECs is significantly higher than that of unstimulated control cells, and that immunofluorescence of E-selectin in stimulated HUVECs showed a higher fluorescent intensity compared to control cells. Moreover, addition of monoclonal anti-human E-selectin decreased the adhesive force of HepG2 cells to stimulated HUVECs by 50%. These results suggest that endothelial E-selectin may be a main mediator of carcinoma metastasis of malignant tumor through blood circulation, possibly increasing the adhesive force of human hepatoma HepG2 cells to HUVECs in the early stage of metastases.  相似文献   

10.
The effect of dietary deficiency during pregnancy of zinc or magnesium on maternal and fetal chromosomes was studied. Pregnant rats were given a zinc-deficient or a magnesium-deficient diet from the beginning of pregnancy and maternal bone marrow and fetal liver were removed on day 19 of gestation. Chromosome spreads were prepared and metaphases examined for abnormalities. Both magnesium- and zinc-deficient maternal bone-marrow and fetal liver cells showed significantly more chromosomal abnormalities than did those of controls. The chromosomal aberrations occurring in highest incidence in magnesium-deficient animals were terminal deletions and fragments. A higher than normal incidence of "stickiness" was also observed in cells from magnesium-deficient animals. In zinc-deficient animals, on the other hand, the chromosomal aberrations with the highest incidence were gaps and terminal deletions.  相似文献   

11.

Background

AMP-activated protein kinase (AMPK) is an important enzyme in regulation of cellular energy homeostasis. We have previously shown that AMPK activation by 5-aminoimidazole-4-carboxamide (AICAR) results in suppression of immune responses, indicating the pivotal role of AMPK in immune regulation. However, the cellular mechanism underpinning AMPK inhibition on immune response remains largely to be elucidated. The study aimed to investigate the effects of AMPK inhibition on reactive oxygen species (ROS)-nuclear factor κB (NFκB) signaling and endotoxemia-induced liver injury.

Methodology/Principal Findings

RAW 264.7 cells were pretreated with AMPK activator or inhibitor, followed by LPS challenge. In addition, LPS was injected intraperitoneally into mice to induce systemic inflammation. The parameters of liver injury and immune responses were determined, and survival of mice was monitored respectively. LPS challenge in RAW 264.7 cells resulted in AMPK activation which was then inhibited by compound C treatment. Both AMPK activation by AICAR or inhibition by compound C diminished LPS-induced ROS generation, inhibited phosphorylation of IKK, IκB, and NFκB p65, and consequently, decreased TNF production of RAW 264.7 cells. AICAR or compound C treatment decreased ALT, AST, and TNF levels in serum, reduced CD68 expression and MPO activity in liver tissue of mice with endotoxemia. Moreover, AICAR or compound C treatment improved survival of endotoxemic mice.

Conclusions

AICAR or compound C treatment attenuates LPS-induced ROS-NFκB signaling, immune responses and liver injury. Strategies to activate or inhibit AMPK signaling may provide alternatives to the current clinical approaches to inhibit immune responses of endotoxemia.  相似文献   

12.
The role of magnesium ions in the differentiation of human promyelocytic leukemia HL-60 cells was investigated. When HL-60 extracellular magnesium was deficient (less than 0.01 mM), the total intracellular magnesium content and [3H] leucine incorporation rates decreased to 61 and 28%, respectively, on day 3. When the cells were treated with various inducers (100 nM 1 alpha, 25 dihydroxyitamine D3 (1,25(OH)2D3), 100 nM beta-all-trans retinoic acid (RA), 20 nM 12-o-tetradecanoyl phorbol-13-acetate (TPA), 1.25% dimethylsulfoxide (DMSO) and 30 nM aclacinomycin (AcM] in magnesium-deficient medium, the expression of differentiation-related phenotypes (nitroblue tetrazolium (NBT) reducing ability, nonspecific esterase (NSE) activity and monoclonal antibody, OKM1 binding activity) was almost completely inhibited. After a 2-day treatment with 100 nM 1,25(OH)2D3 in magnesium-deficient medium, the expression of differentiation-related phenotypes was restored by further incubation in the absence of inducer in standard magnesium medium (0.4 mM). These results suggested that magnesium deprivation inhibited the expression of HL-60 differentiation-related phenotypes but not their commitment to differentiation. These phenotypes were expressed without inducer in standard magnesium medium after a 2-day simultaneous treatment with 1,25(OH)2D3 and cyclohexamide (protein synthesis inhibitor) in magnesium-deficient medium, but not after simultaneous pretreatment with 1,25(OH)2D3 and alpha-amanitin (RNA synthesis inhibitor). Thus, it was suggested that the magnesium-requiring step in HL-60 cell differentiation is in protein but not mRNA synthesis. This conclusion is supported by the findings that changes in c-myc and c-fms mRNA levels in HL-60 cells treated with 100 nM 1,25(OH)2D3 in magnesium-deficient medium and those in standard magnesium medium were the same. In addition, dibutyryl cyclic adenosine monophosphate (dbc AMP) could restore expression of differentiation-related phenotypes inhibited by magnesium deprivation but not those inhibited by cyclohexamide, even though magnesium deprivation inhibited protein synthesis as much as did cyclohexamide. This suggests that magnesium-requiring step in HL-60 cell differentiation is different from that inhibited by cyclohexamide.  相似文献   

13.
14.
Mechanical unloading conditions result in decreases in bone mineral density and quantity, which may be partly attributed to an imbalance in bone formation and resorption. To investigate the effect of mechanical unloading on osteoblast and osteoclast differentiation, and the expression of RANKL and OPG genes in osteoblasts, we used a three-dimensional (3D) clinostat system simulating microgravity to culture MC3T3-E1 and RAW264.7 cells. Long-term exposure (7 days) of MC3T3-E1 cells to microgravity in the 3D clinostat inhibited the expression of Runx2, Osterix, type I collagen alphaI chain, RANKL and OPG genes. Similarly, 3D clinostat exposure inhibited the enhancement of beta3-integrin gene expression, which normally induced by sRANKL stimulation in RAW264.7 cells. These results, taken together, demonstrate that long-term 3D clinostat exposure inhibits the differentiation of MC3T3-E1 cells together with suppression of RANKL and OPG gene expression, as well as the RANKL-dependent cellular fusion of RAW264.7 cells, suggesting that long-term mechanical unloading suppresses bone formation and resorption.  相似文献   

15.
Conjugated linoleic acids (CLAs) have anti-atherogenic effects in both in vitro and animal models. Most studies on CLAs were performed with either a CLA mixture or purified 9cis (Z),11trans (E)-CLA or 10E,12Z-CLA isomers. However, the 9E,11E isomer has superior anti-carcinogenic and anti-inflammatory effects compared with the more abundant CLAs. The 9E,11E-CLA isomer specifically increases interleukin-1 receptor antagonist (IL-1Ra), an important anti-inflammatory mediator that is associated with decreased risk of coronary heart disease. The purpose of this present study was to determine if 9E,11E-CLA affects markers of atherogenesis via regulation of IL-1Ra. In human umbilical vein endothelial cells (HUVECs), 9E,11E-CLA decreased such atherogenesis-related genes as intercellular adhesion molecule-1, vascular cell adhesion molecule-1, monocyte chemoattractant protein-1, E-selectin, P-selectin and C–C motif chemokine receptor-2. Treatment of RAW 264.7 cells with 9E,11E-CLA decreased their adhesion to HUVECs. This effect was reversed by inhibiting the phosphoinositide 3-kinase or mouse target of rapamycin pathways. IL-1Ra-deficient RAW 264.7 cells (siIL-1Ra RAW) bind more efficiently to HUVECs compared with the control stable cells (si-control RAW). In addition, HUVECs treated with siIL-1Ra RAW-conditioned media induce significantly higher levels of intercellular adhesion molecule-1, vascular cell adhesion molecule-1, monocyte chemoattractant protein-1 and E-selectin than HUVECs treated with si-control RAW-conditioned media. Taken together, the data show that 9E,11E-CLA decreases the atherogenesis-related genes in HUVECs and alters adhesion of macrophages. In addition, the induction of IL-1Ra by 9E,11E-CLA is partially responsible for the anti-atherogenic properties of this particular CLA isomer.  相似文献   

16.
Vasorin (VASN) is a type I transmembrane protein that plays important roles in tumor development and vasculogenesis. In this paper, we showed that VASN could be a key mediator of communication between tumor cells and endothelial cells. We confirmed for the first time that HepG2-derived VASN can be transferred to human umbilical vein endothelial cells (HUVECs) via receptor mediated endocytosis of exosomes, at least in part through HSPGs. The HepG2-derived VASN containing exosomes promote migration of recipient HUVECs cells. Our results identify a novel pathway by which a functional protein expressed in tumor cells affects the biological fate of endothelial cells via exosomes.  相似文献   

17.
[摘 要] 目的:靶向血凝素样氧化型低密度脂蛋白受体-1基因的发卡样siRNA(shRNA)表达载体及其对巨噬细胞源性泡沫细胞形成的影响。方法:(1)采用DNA重组技术,将LOX-1 shRNA双链与线性化pGenesil-1质粒表达载体连接,脂质体法转染小鼠单核巨噬细胞(RAW264.7),半定量逆转录聚合酶链反应法检测LOX-1 mRNA的表达,Western blot法检测LOX-1蛋白的表达。(2) Ox-LDL诱导巨噬细胞建立泡沫细胞模型, LOX-1-shRNA进行干预,干预组使用脂质体法进行细胞转染,转染24小时后,再加入Ox-LDL作用24小时,用油红O染色法及细胞内游离胆固醇及总胆固醇测定法观察对泡沫细胞形成的影响,倒置荧光显微镜观察转染LOX-1 shRNA后RAW264.7细胞对Dil-ox-LDL的摄取率。结果:测序鉴定发现插入的发卡样序列正确,成功合成了发卡样LOX-1基因RNA干扰表达载体;靶向LOX-1基因的发卡样shRNA表达载体转染RAW264.7细胞后,其LOX-1基因和蛋白表达显著下调, 同时可抑制巨噬细胞源性泡沫细胞形成及对Dil-ox-LDL的摄取。结论:成功构建了能有效抑制LOX-1 mRNA表达的发卡样LOX-1基因RNA干扰表达载体,并在一定程度上能抑制巨噬细胞源性泡沫细胞的形成,为进一步利用RNA干扰技术防治动脉粥样硬化提供理论基础。  相似文献   

18.
Metabolic responses induced by thrombin in human umbilical vein endothelial cells (HUVECs) were investigated by using the cytosensor technique. Thrombin increased the extracellular acidification rate of endothelial cells, measured as an index of metabolic activity with a cytosensor microphysiometer, in a concentration-dependent fashion with an EC(50) of 1.27+/-0.59 IU/ml, which was abolished by the MAP kinase inhibitor PD98059. When intracellular Ca(2+) was chelated or PKC was inactivated, PD98059 failed to abolish the thrombin-induced acidification rate response in HUVECs. In addition, the tyrosine kinase inhibitor genistein, PKC inhibitor calphostin C, and Na(+)/H(+)exchanger antagonist MIA also partly inhibited thrombin-induced acidification rate responses. It is suggested that thrombin stimulated rapid metabolic responses via MAP kinase in HUVECs, which are calcium- and PKC-dependent.  相似文献   

19.
Pig-human xenotransplantation can trigger cell-mediated immune responses. We explored the role of gangliosides in inflammation related to immune rejection in xenotransplantation. Co-culture of xenogeneic cells (pig-MSCs and RAW264.7) was used to emulate xenotransplantation conditions. MTT assay results indicated that cell viability was significantly decreased in pADMSCs co-cultured with RAW264.7 cells. GM1 and GM3 were highly expressed in pADMSCs co-cultured with RAW264.7 cells. pADMSCs co-cultured with RAW264.7 cells strongly expressed pro-inflammatory proteins such as COX-2, iNOS, p50, p65, pIκBα, and TNF-α. GM1-knockdown pADMSCs co-cultured with RAW 264.7 cells did not show significantly altered cell viability, but pro-inflammatory proteins were markedly inhibited. Co-culture of pADMSCs with RAW264.7 cells induced significant phosphorylation (p) of JNK1/2 and pERK1/2. However, pERK1/2 and pJNK1/2 were decreased and MEK1/2 and Raf1 were suppressed in GM1-knockdown pADMSCs co-cultured with RAW264.7 cells. Thus, the Raf-1/MEK1/2/ERK1/2 and JNK1/2 pathways were significantly upregulated in response to increases of GM1 in co-cultured xenogeneic cells. However, the inflammatory response was suppressed in co-culture of GM1-knockdown pADMSCs with RAW264.7 cells via down-regulation of the Raf-1/MEK1/2/ERK1/2 and JNK1/2 pathways. Therefore, the ganglioside GM1 appears to play a major role in the inflammatory response in xenotransplantation via the Raf-1/MEK1/2/ERK1/2 and JNK1/2 pathways.  相似文献   

20.
Tumor-associated macrophages are known to influence cancer progression by modulation of immune function, angiogenesis, and cell metastasis, however, little is known about the chemokine signaling networks that regulate this process. Utilizing CT26 colon cancer cells and RAW 264.7 macrophages as a model cellular system, we demonstrate that treatment of CT26 cells with RAW 264.7 conditioned medium induces cell migration, invasion and metastasis. Inflammatory gene microarray analysis indicated CT26-stimulated RAW 264.7 macrophages upregulate SDF-1α and VEGF, and that these cytokines contribute to CT26 migration in vitro. RAW 264.7 macrophages also showed a robust chemotactic response towards CT26-derived chemokines. In particular, microarray analysis and functional testing revealed CSF-1 as the major chemoattractant for RAW 264.7 macrophages. Interestingly, in the chick CAM model of cancer progression, RAW 264.7 macrophages localized specifically to the tumor periphery where they were found to increase CT26 tumor growth, microvascular density, vascular disruption, and lung metastasis, suggesting these cells home to actively invading areas of the tumor, but not the hypoxic core of the tumor mass. In support of these findings, hypoxic conditions down regulated CSF-1 production in several tumor cell lines and decreased RAW 264.7 macrophage migration in vitro. Together our findings suggest a model where normoxic tumor cells release CSF-1 to recruit macrophages to the tumor periphery where they secrete motility and angiogenic factors that facilitate tumor cell invasion and metastasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号