首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Females show lower incidences of several neurodegenerative diseases related to oxidative stress and mitochondrial dysfunction than males. In addition, female rats show more differentiated mitochondria than males in several tissues. The aim of this work was to investigate the existence of sex-dependent differences in brain mitochondrial bioenergetics and oxidative balance in aged rats. Results showed that aged female rat brain had a lower mitochondria content than aged male brain but with a greater differentiation degree given the higher mitochondrial protein content and mitochondrial complex activities in females. Female rat brain also showed a better oxidative balance than that of males, reflected by the fact that higher mitochondrial respiratory chain function is accompanied by a similar ROS production and greater antioxidant enzyme activities, which could be responsible for the lesser oxidative damage observed in proteins and lipids in this sex. Interestingly, levels of UCP4 and UCP5--proteins related to a decrease in ROS production--were also higher in females. In conclusion, aged female rat brain had more differentiated mitochondria than male brain and showed a better control of oxidative stress balance, which could be due, in part, to the neuroprotective effect of UCPs.  相似文献   

2.
Diabetes exacerbates neuronal injury induced by hyperglycemia mediated oxidative damage and mitochondrial dysfunction. The aim of the present study is to investigate the effects of curcuminoids, polyphenols of Curcuma longa (L.) on oxidative stress and mitochondrial impairment in the brain of streptozotocin (STZ)-induced diabetic rats. A marked increase in lipid peroxidation and nitrite levels with simultaneous decrease in endogenous antioxidant marker enzymes was observed in the diabetic rat brain, which was restored to normal levels on curcuminoids treatment. Down-regulation of mitochondrial complex I and IV activity caused by STZ induction was also up-regulated on oral administration of curcuminoids. Moreover, curcuminoids administration profoundly elevated the ATP level, which was earlier reduced in the diabetic brain. These results suggest that curcuminoids exhibit a protective effect by accelerating antioxidant defense mechanisms and attenuating mitochondrial dysfunction in the brain of diabetic rats. Curcuminoids thus may be used as a promising therapeutic agent in preventing and/or delaying the progression of diabetic complications in the brain.  相似文献   

3.
Ma  Yan  Zhu  Mingkun  Miao  Liping  Zhang  Xiaoyun  Dong  Xinyang  Zou  Xiaoting 《Biological trace element research》2018,186(1):185-198
Over the last decade, there has been an increased concern about the health risks from exposure to arsenic at low doses, because of their neurotoxic effects on the developing brain. The exact mechanism underlying arsenic-induced neurotoxicity during sensitive periods of brain development remains unclear, although enhanced oxidative stresses, leading to mitochondrial dysfunctions might be involved. Here, we highlight the generation of reactive oxygen species (ROS) and oxidative stress which leads to mitochondrial dysfunctions and apoptosis in arsenic-induced developmental neurotoxicity. Here, the administration of sodium arsenite at doses of 2 or 4 mg/kg body weight in female rats from gestational to lactational (GD6-PD21) resulted to increased ROS, led to oxidative stress, and increased the apoptosis in the frontal cortex, hippocampus, and corpus striatum of developing rats on PD22, compared to controls. Enhanced levels of ROS were associated with decreased mitochondrial membrane potential and the activity of mitochondrial complexes, and hampered antioxidant levels. Further, neuronal apoptosis, as measured by changes in the expression of pro-apoptotic (Bax, Caspase-3), anti-apoptotic (Bcl2), and stress marker proteins (p-p38, pJNK) in arsenic-exposed rats, was discussed. The severities of changes were found to more persist in the corpus striatum than in other brain regions of arsenic-exposed rats even after the withdrawal of exposure on PD45 as compared to controls. Therefore, our results indicate that perinatal arsenic exposure leads to abrupt changes in ROS, oxidative stress, and mitochondrial functions and that apoptotic factor in different brain regions of rats might contribute to this arsenic-induced developmental neurotoxicity.  相似文献   

4.
The present study has been designed and carried out to investigate the protective role of taurine (2-aminoethanesulphonic acid) against NaAsO2 induced nephrotoxicity. Oral administration of arsenic increased the productions of ROS and RNS, enhanced lipid peroxidation, protein carbonylation and decreased intracellular antioxidant defence in the kidney tissue. Investigating the responsible signalling cascades, it was found that NaAsO2 administration activates mitogen-activated protein kinases (MAPKs) and NF-κB in oxidative stress mediated renal dysfunction and induced apoptotic cell death by the reciprocal regulation of Bcl-2/Bad in association with reducing mitochondrial membrane potential and increased cytosolic cytochrome C as well. Treatment with taurine prior to arsenic administration effectively ameliorated As-induced oxidative renal dysfunctions and apoptotic cell death. Histological studies also support the experimental findings. Combining, results suggest that taurine possesses the ability to ameliorate arsenic-induced oxidative insult and renal damage, probably due to its antioxidant activity and functioning via MAPKs/NF-κB and mitochondria dependent pathways.  相似文献   

5.
Increased levels of iron in specific brain regions have been reported in neurodegenerative disorders. It has been postulated that iron exerts its deleterious effects on the nervous system by inducing oxidative damage. In a previous study, we have shown that iron administered during a particular period of the neonatal life induces oxidative damage in brain regions in adult rats. The aim of the present study was to evaluate the possible protective effect of selegiline, a monoamino-oxidase B (MAO-B) inhibitor used in pharmacotherapy of Parkinson’s disease, against iron-induced oxidative stress in the brain. Results have shown that selegiline (1.0 and 10.0 mg/kg), when administered early in life was able to protect the substantia nigra as well as the hippocampus against iron-induced oxidative stress, without affecting striatum. When selegiline (10.0 mg/kg) was administered in the adult life to iron-treated rats, oxidative stress was reduced only in the substantia nigra.  相似文献   

6.
Defects in mitochondrial function have been shown to participate in the induction of neuronal cell injury. The aim of the present study was to assess the influence of the mitochondrial membrane permeability transition inhibition against the toxicity of 1-methyl-4-phenylpyridinium (MPP+) and 6-hydroxydopamine (6-OHDA) in relation to the mitochondria-mediated cell death process and role of oxidative stress. Both MPP+ and 6-OHDA induced the nuclear damage, the changes in the mitochondrial membrane permeability, leading to the cytochrome c release and caspase-3 activation, the formation of reactive oxygen species and the depletion of GSH in differentiated PC12 cells. Cyclosporin A (CsA), trifluoperazine and aristolochic acid, inhibitors of mitochondrial permeability transition, significantly attenuated the MPP+-induced mitochondrial damage leading to caspase-3 activation, increased oxidative stress and cell death. In contrast to MPP+, the cytotoxicity of 6-OHDA was not reduced by the addition of the mitochondrial permeability transition inhibitors. The results show that the cytotoxicity of MPP+ may be mediated by the mitochondrial permeability transition formation, which is associated with formation of reactive oxygen species and the depletion of GSH. In contrast, the 6-OHDA-induced cell injury appears to be mediated by increased oxidative stress without intervention of the mitochondrial membrane permeability transition.  相似文献   

7.
Mitochondrial damage and oxidative stress are known to contribute to the pathogenesis of noise-induced hearing loss (NIHL). In this study, we examined the protective effect of O2/O3 mixture (ozone/oxygen) therapy against mitochondrial induced damage and oxidative stress by noise exposure in rat brain and cochlear. For this purpose, rats were divided into four groups: 1 – control group; 2 – noise-exposed group (100?dB); 3 – noise?+?O2/O3, and 4 – O2/O3 (30 µg/ml). After 14 d, animals were anesthetised. Rat brain and cochlear tissue were removed for evaluation of the histopathological damages, oxidative stress, and mitochondrial dysfunction in both tissues. Our findings indicated that noise caused pathological damage, oxidative stress, and mitochondrial dysfunction in rat brain and cochlear. Also, daily administration of an O2/O3 therapy (30 µg/ml intravenous) efficiently increased enzymatic and non-enzymatic antioxidant in brain and cochlear that this action led to inhibition of pathological damages, oxidative stress, reactive oxygen species formation, mitochondrial membrane potential (MMP) collapse, mitochondrial swelling, and cytochrome c release resulting from noise. These findings suggest that the moderate O2/O3 therapy enhances the capacity of enzymatic and non-enzymatic antioxidant in brain and cochlear that protects against NIHL.  相似文献   

8.
Oxidative damage has been implicated to be a major causative factor in the decline in physiological functions that occur during the ageing process. Mitochondria are known to be a rich source for the production of free radicals and, consequently, mitochondrial components are susceptible to lipid peroxidation (LPO) that decreases respiratory activity. In the present investigation, we have evaluated mitochondrial LPO, 8-oxo-dG, oxidized glutathione, reduced glutathione, ATP, lipoic acid, TCA cycle enzymes and electron transport chain (ETC) complex activities in the brain of young versus aged rats. In aged rats, the contents of LPO, oxidized glutathione and 8-oxo-dG were high whereas reduced glutathione, ATP, lipoic acid, TCA cycle enzymes and ETC complex activities were found to be low. Lipoic acid administration to aged rats reduced the levels of mitochondrial LPO, 8-oxo-dG and oxidized glutathione and enhanced reduced glutathione, ATP, lipoic acid and ETC complex activities. In young rats lipoic acid administration showed only minimal lowering the levels of LPO, 8-oxo-dG and oxidized glutathione and slight increase in the levels of reduced glutathione, ATP, lipoic acid, TCA cycle enzymes and ETC complex activities. These findings suggest that the dithiol, lipoic acid, provides protection against age-related oxidative damage in the mitochondria of aged rats.  相似文献   

9.
The level of lipid peroxidation reflects the degree of free radical-induced oxidative damage in brain tissue of the elderly. We examined the effects of Manda, a product prepared by yeast fermentation of several fruits and black sugar, on lipid peroxidation in the senescent rat brain as model of aging. Senescent rats were provided with a diet containing 50 g/100 g Manda for 8 days, supplemented on day 8 with an intragastric administration of Manda (6.0 g/kg body wt.) twice daily. The hydroxyl radical scavenging activity was generated by the FeSO4-H2O2 system and analyzed by electron spin resonance spectrometry. Using this method, the addition of Manda (2.88 mg/ml) to brain homogenates of adult rats (0.06 mg/ml) had an additive inhibitory effect on lipid peroxidation compared with control adult rats not treated with Manda. Incubation of brain homogenates with Manda for 2 h and 3 h, significantly inhibited the increase in lipid peroxides (malondialdehydes and 4-hydroxyalkenals) levels in aged rats due to auto-oxidation. In addition, oral administration of Manda significantly suppressed the age-related increase in lipid peroxidation in the hippocampus and striatum, although such change was not observed in the cerebral cortex. Although Manda contains trace level of -tocopherol, the level of -tocopherol in Manda did no correlate with its antioxidant effect. Our results suggest that Manda protects against age-dependent oxidative neuronal damage caused by oxidative stress and that this protective effect may be due, in part, to its scavenging activity against free radicals.  相似文献   

10.
Yang ES  Lee JH  Park JW 《Biochimie》2008,90(9):1316-1324
It has been reported that chronic alcohol administration increases peroxynitrite hepatotoxicity by enhancing concomitant production of nitric oxide and superoxide. Several studies have shown the importance of superoxide dismutase (SOD) in protecting cells against ethanol-induced oxidative stress. Recently, we demonstrated that the control of cytosolic and mitochondrial redox balance and the cellular defense against oxidative damage is one of the primary functions of NADP(+)-dependent isocitrate dehydrogenase (ICDH) through to supply NADPH for antioxidant systems. In this report, we demonstrate that ethanol induces the peroxynitrite-mediated cytotoxicity in HepG2 cells through inactivation of antioxidant enzymes such as ICDH and SOD. Upon exposure to 100mM ethanol for 3days to HepG2 cells, a significant decrease in the viability and activities of ICDH and SOD was observed. The ethanol-induced inactivation of antioxidant enzymes resulted in the cellular oxidative damage and modulation of redox status as well as mitochondrial dysfunction in HepG2 cells. The cytoxicity of ethanol and inactivation of antioxidant enzymes were effectively protected by manganeses(III) tetrakis(N-methyl-2-pyridyl) porphyrin, a manganese SOD mimetic, and N'-monomethyl-l-arginine, a nitric oxide synthase inhibitor. These results indicate that ethanol toxicity is mediated by peroxynitrite and the peroxynitrite-mediated damage to ICDH and SOD may be resulted in the perturbation of the cellular antioxidant defense systems and subsequently lead to a pro-oxidant condition.  相似文献   

11.
Free radicals mediated oxidative stress has been implicated in the pathogenesis of smoking-related diseases and antioxidant nutrients are reported to prevent the oxidative damage induced by smoking. Therefore, the present study was conducted to evaluate the antioxidant role of bacoside A (triterpenoid saponin isolated from Bacopa monniera) against chronic cigarette smoking induced oxidative damage in rat brain. Adult male albino rats were exposed to cigarette smoke for a period of 12 weeks and simultaneously administered with bacoside A (10 mg/kg b.w./day, p.o.). Antioxidant status of the brain was assessed from the levels of reduced glutathione, vitamin C, vitamin E, and vitamin A and the activities of superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase. The levels of copper, iron, zinc and selenium in brain and serum ceruloplasmin activity were also measured. Oxidative stress was evident from the diminished levels of both enzymatic and non-enzymatic antioxidants. Alterations in the levels of trace elements with accumulation of copper and iron, and depletion of zinc and selenium were also observed. Bacoside A administration improved the antioxidant status and maintained the levels of trace elements. These results suggest that chronic cigarette smoke exposure enhances oxidative stress, thereby disturbing the tissue defense system and bacoside A protects the brain from the oxidative damage through its antioxidant potential.  相似文献   

12.
Kamboj SS  Sandhir R 《Mitochondrion》2011,11(1):214-222
Diabetic encephalopathy, characterized by cognitive deficits involves hyperglycemia-induced oxidative stress. Impaired mitochondrial functions might play an important role in accelerated oxidative damage observed in diabetic brain. The aim of the present study was to examine the role of mitochondrial oxidative stress and dysfunctions in the development of diabetic encephalopathy along with the neuroprotective potential of N-acetylcysteine (NAC). Chronic hyperglycemia accentuated mitochondrial oxidative stress in terms of increased ROS production and lipid peroxidation. Significant decrease in Mn-SOD activity along with protein and non-protein thiols was observed in the mitochondria from diabetic brain. The activities of mitochondrial enzymes; NADH dehydrogenase, succinate dehydrogenase and cytochrome oxidase were decreased in the diabetic brain. Increased mitochondrial oxidative stress and dysfunctions were associated with increased cytochrome c and active caspase-3 levels in cytosol. Electron microscopy revealed mitochondrial swelling and chromatin condensation in neurons of diabetic animals. NAC administration, on the other hand was found to significantly improve diabetes-induced biochemical and morphological changes, bringing them closer to the controls. The results from the study provide evidence for the role of mitochondrial oxidative stress and dysfunctions in the development of diabetic encephalopathy and point towards the clinical potential of NAC as an adjuvant therapy to conventional anti-hyperglycemic regimens for the prevention and/or delaying the progression of CNS complications.  相似文献   

13.
Oxidative stress has been implicated in the etiology of Parkinson's disease (PD). The important biochemical features of PD, being profound deficit in dopamine (DA) content, reduced glutathione (GSH), and enhanced lipid peroxidation (LPO) in dopaminergic (DA-ergic) neurons resulting in oxidative stress, mitochondrial dysfunction and apoptosis. Rotenone-induced neurotoxicity is a well acknowledged preclinical model for studying PD in rodents as it produces selective DA-ergic neuronal degeneration. In our previous study, we have shown that chronic administration of rotenone to rats is able to produce motor dysfunction, which increases progressively with rotenone treatment and centrophenoxine (CPH) co-treatment is able to attenuate these motor defects. The present study was carried out to evaluate the antioxidant potential of CPH against rotenone-induced oxidative stress. Chronic administration of rotenone to SD rats resulted in marked oxidative damage in the midbrain region compared to other regions of the brain and CPH co-treatment successfully attenuated most of these changes. CPH significantly attenuated rotenone-induced depletion in DA, GSH and increase in LPO levels. In addition, the drug prevented the increase in nitric oxide (NO) and citrulline levels and also enhanced the activity of catalase and superoxide dismutase (SOD). Histological analysis carried out using hematoxylin and eosin staining has indicated severe damage to mid brain in comparison to cortex and cerebellum and this damage is attenuated by CPH co-treatment. Our results strongly indicate the possible therapeutic potential of centrophenoxine as an antioxidant in Parkinson's disease and other movement disorders where oxidative stress is a key player in the disease process.  相似文献   

14.
Cardiac ischemia/reperfusion (I/R) injury induces brain pathology. Donepezil, a well-known acetylcholine esterase (AChE) inhibitor, has been proven to exert neuroprotective effects against several neurodegenerative diseases. However, the comprehensive mechanism regarding the therapeutic potential of donepezil on the brain under cardiac I/R injury remains obscure. Here, we hypothesized that treatment with donepezil ameliorates brain pathology following cardiac I/R injury by decreasing blood brain barrier (BBB) breakdown, oxidative stress, neuroinflammation, mitochondrial dysfunction, mitochondrial dynamics imbalance, microglial activation, amyloid-beta (Aβ) accumulation, neuronal apoptosis, and dendritic spine loss. Forty-eight adult male Wistar rats were subjected to surgery for cardiac I/R injury. Then, rats were randomly divided into four groups to receive either (1) saline (vehicle group), donepezil 3 mg/kg via intravenously administered (2) before ischemia (pretreatment group), (3) during ischemia (ischemia group), or (4) at the onset of reperfusion (reperfusion group). At the end of cardiac I/R paradigm, the brains were evaluated for BBB breakdown, brain inflammation, oxidative stress, mitochondrial function, mitochondrial dynamics, microglial morphology, Aβ production, neuronal apoptosis, and dendritic spine density. Administration of donepezil at all time points equally showed an attenuation of brain damage in response to cardiac I/R injury, as indicated by increased expression of BBB junction protein, reduced brain inflammation and oxidative stress, improved mitochondrial function and mitochondrial dynamics, and alleviated Aβ accumulation and microglial activation, resulting in protection of neuronal apoptosis and preservation of dendritic spine number. These findings suggest that donepezil potentially protects brain pathology caused by cardiac I/R injury regardless the timing of treatment.  相似文献   

15.
Ascorbate, an intracellular antioxidant, has been considered critical for neuronal protection against oxidant stress, which is supported especially by in vitro studies. Besides, it has been demonstrated an age-related decrease in brain ascorbate levels. The aims of the present study were to investigate ascorbate uptake in hippocampal slices from old Wistar rats, as well as its neuroprotective effects in in vitro and in vivo assays. Hippocampal slices from male Wistar rats aged 4, 11 and 24 months were incubated with radiolabeled ascorbate and incorporated radioactivity was measured. Hippocampal slices from rats were incubated with different concentrations of ascorbate and submitted to H(2)O(2)-induced injury, cellular damage and S100B protein levels were evaluated. The effect of chronic administration of ascorbate on cellular oxidative state and astrocyte biochemical parameters in the hippocampus from 18-months-old Wistar rats was also studied. The ascorbate uptake was decreased in hippocampal slices from old-aged rats, while supplementation with ascorbate (2 weeks) did not modify any tested oxidative status in the hippocampus and the incubation was unable to protect hippocampal slices submitted to oxidative damage (H(2)O(2)) from old rats. Our data suggest that the decline of ascorbate uptake might be involved in the brain greater susceptibility to oxidative damage with advancing age and both in vitro and vivo assays suggest that ascorbate supplementation did not protect hippocampal cells.  相似文献   

16.
Mitochondrial dysfunction has been implicated in many diseases, including diabetes. It is well known that oxygen free radical species are produced endogenously by mitochondria, and also nitric oxide (NO) by nitric oxide synthases (NOS) associated to mitochondrial membranes, in consequence these organelles constitute main targets for oxidative damage. The aim of this study was to analyze mitochondrial physiology and NO production in brain cortex mitochondria of streptozotocin (STZ) diabetic rats in an early stage of diabetes and the potential effect of l-arginine administration. The diabetic condition was characterized by a clear hyperglycaemic state with loose of body weight after 4 days of STZ injection. This hyperglycaemic state was associated with mitochondrial dysfunction that was evident by an impairment of the respiratory activity, increased production of superoxide anion and a clear mitochondrial depolarization. In addition, the alteration in mitochondrial physiology was associated with a significant decrease in both NO production and nitric oxide synthase type I (NOS I) expression associated to the mitochondrial membranes. An increased level of thiobarbituric acid-reactive substances (TBARS) in brain cortex homogenates from STZ-diabetic rats indicated the presence of lipid peroxidation. l-arginine treatment to diabetic rats did not change blood glucose levels but significantly ameliorated the oxidative stress evidenced by lower TBARS and a lower level of superoxide anion. This effect was paralleled by improvement of mitochondrial respiratory function and a partial mitochondrial repolarization.In addition, the administration of l-arginine to diabetic rats prevented the decrease in NO production and NOSI expression. These results could indicate that exogenously administered l-arginine may have beneficial effects on mitochondrial function, oxidative stress and NO production in brain cortex mitochondria of STZ-diabetic rats.  相似文献   

17.
Leptin plays a pivotal role in the regulation of energy homeostasis and metabolism, primarily by acting on neurons in the hypothalamus that control food intake. However, leptin receptors are more widely expressed in the brain suggesting additional, as yet unknown, functions of leptin. Here we show that both embryonic and adult hippocampal neurons express leptin receptors coupled to activation of STAT3 and phosphatidylinositol 3-kinase-Akt signaling pathways. Leptin protects hippocampal neurons against cell death induced by neurotrophic factor withdrawal and excitotoxic and oxidative insults. The neuroprotective effect of leptin is antagonized by the JAK2-STAT3 inhibitor AG-490, STAT3 decoy DNA, and phosphatidylinositol 3-kinase/Akt inhibitors but not by an inhibitor of MAPK. Leptin induces the production of manganese superoxide dismutase and the anti-apoptotic protein Bcl-xL, and stabilizes mitochondrial membrane potential and lessens mitochondrial oxidative stress. Leptin receptor-deficient mice (db/db mice) are more vulnerable to seizure-induced hippocampal damage, and intraventricular administration of leptin protects neurons against seizures. By enhancing mitochondrial resistance to apoptosis and excitotoxicity, our findings suggest that leptin signaling serves a neurotrophic function in the developing and adult hippocampus.  相似文献   

18.
19.
20.
Chronic arsenic exposure causes oxidative stress and mitochondrial dysfunction in the liver and brain. The ideal treatment would be to chelate arsenic and prevent oxidative stress. meso-2,3-Dimercaptosuccinic acid (DMSA) is used to chelate arsenic but its hydrophilicity makes it membrane-impermeative. Conversely, quercetin (QC) is a good antioxidant with limited clinical application because of its hydrophobic nature and limited bioavailability, and it is not possible to solubilize these two compounds in a single nontoxic solvent. Nanocapsules have emerged as a potent drug delivery system and make it feasible to incorporate both hydrophilic and lipophilic compounds. Nanoencapsulated formulations with QC and DMSA either alone or coencapsulated in polylactide-co-glycolide [N(QC+DMSA)] were synthesized to explore their therapeutic application in a rat model of chronic arsenic toxicity. These treatments were compared to administration of quercetin or DMSA alone using conventional delivery methods. Both nanoencapsulated quercetin and nanoencapsulated DMSA were more effective at decreasing oxidative injury in liver or brain compared to conventional delivery methods, but coencapsulation of quercetin and DMSA into nanoparticles had a marked synergistic effect, decreasing liver and brain arsenic levels from 9.5 and 4.8μg/g to 2.2 and 1.5μg/g, respectively. Likewise, administration of coencapsulated quercetin and DMSA virtually normalized changes in mitochondrial function, formation of reactive oxygen species, and liver injury. We conclude that coencapsulation of quercetin and DMSA may provide a more effective therapeutic strategy in the management of arsenic toxicity and also presents a novel way of combining hydrophilic and hydrophobic drugs into a single delivery system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号