首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dysfunction of the intestinal barrier function occurs in hepatic injury, but the specific mechanisms responsible are largely unknown. Recently, NOD-like receptor 3 (NLRP3) inflammasome functions in impairing endothelial barrier function. In this study, we test the hypothesis that TXNIP–NLRP3 axis repression prevents against intestinal barrier function disruption in nonalcoholic steatohepatitis (NASH). First, lipopolysaccharide (LPS)-induced alterations in expression of ZO-1 and occludin, myeloperoxidase (MPO) activity, reactive oxygen species (ROS) level, and transepithelial electric resistance (TEER) in intestinal epithelial cells (IECs) isolated from C57BL/6 wild-type (WT) and TXNIP−/− mice were evaluated. The underlying regulatory mechanisms of TXNIP knockout in vivo were investigated with the detection of expressions of TXNIP, NLRP3 and ZO-1, and occludin, the interaction of TXNIP–NLRP3, MPO activity, ROS level, permeability of intestinal mucosa, levels of inflammatory factors in serum, and LPS concentration. We identified that TXNIP knockout promoted ZO-1 and occludin expression, yet reduced MPO activity, ROS level, and cell permeability in IECs, indicating restored the intestinal barrier function. However, LPS upregulated TXNIP and NLRP3 expression, as well as contributed to the interaction between TXNIP and NLRP3 in vitro. Furthermore, TXNIP was significantly upregulated in the intestinal mucosa of NASH mice and its knockout repaired the intestinal barrier disrupt, inhibited expression of inflammatory factors, and reduced LPS concentration as well as hepatic injury in vivo. Taken together, our findings demonstrated that inhibited the activation of the TXNIP–NLRP3 axis reduced MPO activity and oxidative stress and thus restoring the intestinal barrier function in NASH. TXNIP–NLRP3 axis may be a promising therapeutic strategy for the NASH treatment.  相似文献   

2.
Obesity has reached epidemic proportions worldwide and reports estimate that American children consume up to 25% of calories from snacks. Several animal models of obesity exist, but studies are lacking that compare high-fat diets (HFD) traditionally used in rodent models of diet-induced obesity (DIO) to diets consisting of food regularly consumed by humans, including high-salt, high-fat, low-fiber, energy dense foods such as cookies, chips, and processed meats. To investigate the obesogenic and inflammatory consequences of a cafeteria diet (CAF) compared to a lard-based 45% HFD in rodent models, male Wistar rats were fed HFD, CAF or chow control diets for 15 weeks. Body weight increased dramatically and remained significantly elevated in CAF-fed rats compared to all other diets. Glucose- and insulin-tolerance tests revealed that hyperinsulinemia, hyperglycemia, and glucose intolerance were exaggerated in the CAF-fed rats compared to controls and HFD-fed rats. It is well-established that macrophages infiltrate metabolic tissues at the onset of weight gain and directly contribute to inflammation, insulin resistance, and obesity. Although both high fat diets resulted in increased adiposity and hepatosteatosis, CAF-fed rats displayed remarkable inflammation in white fat, brown fat and liver compared to HFD and controls. In sum, the CAF provided a robust model of human metabolic syndrome compared to traditional lard-based HFD, creating a phenotype of exaggerated obesity with glucose intolerance and inflammation. This model provides a unique platform to study the biochemical, genomic and physiological mechanisms of obesity and obesity-related disease states that are pandemic in western civilization today.  相似文献   

3.
Zeng T  Zhang L 《生理学报》2012,64(3):308-312
The aim of the present study was to investigate the effects of sodium butyrate (SB) on systemic inflammation, lung injury and survival rate of mice with endotoxemia. Balb/c mice were pre-treated with SB or vehicle, and then endotoxemia was induced by lethal dose of lipopolysaccharide (LPS, 20 mg/kg, i.p.) and the survival rate of mice was monitored. A separated set of animals were sacrificed at 18 h after LPS challenge, and blood samples were harvested for measuring TNF-α and IL-6 levels. Lung tissues were also harvested to determine the ratio of wet weight to dry weight of lung tissue and myeloperoxidase (MPO) activity in lung tissue. In addition, the formalin-fixed lung specimens were stained with HE routinely for morphologic evaluation. The results showed that pre-treatment with SB alleviated LPS-induced morphological damage in lung tissue. This was accompanied by reduced ratio of wet weight to dry weight of lung tissue and MPO activity in lung homogenates. Additionally, the up-regulation of pro-inflammatory cytokines TNF-α and IL-6 was also suppressed by SB, while the survival rate of mice with lethal endotoxemia was significantly increased by SB pre-treatment. The results suggest that SB effectively attenuates intrapulmonary inflammatory response and improves the survival of endotoxemic mice.  相似文献   

4.
Triacylglycerols (TG) in milk derive from different sources, and their composition may be influenced by both maternal diet and obesity. We used two rat models to ascertain potential changes in TG composition in milk associated to maternal intake of an obesogenic diet during lactation and to distinguish them from the effects attributable to maternal adiposity. Milk samples were obtained from dams fed a cafeteria diet during lactation (CAF) and from dams made obese by cafeteria diet feeding, with dietary normalization before gestation (PCaf). Levels of specific TG species in milk collected at different time points of lactation were determined by shotgun lipidomics. CAF and PCaf dams presented a greater adiposity than their respective controls. The principal component analysis of TG peaks showed a clear separation between milk from CAF dams and milk from control and Pcaf dams, already evident at 5 days of lactation. Milk from CAF dams was enriched with TG species with greater number of carbons and double bonds and reduced in TG with lower number of carbons. TG composition of milk from Pcaf dams was similar to controls, although specific differences were observed at day 5 of lactation. Thus, the intake of a cafeteria diet during lactation, rather than maternal adiposity, alters milk composition. This effect is avoided with dietary normalization before gestation, although the remaining fat reserves may also influence TG composition at initial stages of lactation. Therefore, normalization of maternal diet prior to pregnancy should be considered as a strategy for achieving optimal milk composition.  相似文献   

5.
The development of intestinal permeability and the penetration of microbial products are key factors associated with the onset of metabolic disease. However, the mechanisms underlying this remain unclear. Here we show that, unlike liver or adipose tissue, high fat diet (HFD)/obesity in mice does not cause monocyte/macrophage infiltration into the intestine or pro-inflammatory changes in gene expression. Rather HFD causes depletion of intestinal eosinophils associated with the onset of intestinal permeability. Intestinal eosinophil numbers were restored by returning HFD fed mice to normal chow and were unchanged in leptin-deficient (Ob/Ob) mice, indicating that eosinophil depletion is caused specifically by a high fat diet and not obesity per se. Analysis of different aspects of intestinal permeability in HFD fed and Ob/Ob mice shows an association between eosinophil depletion and ileal paracelullar permeability, as well as leakage of albumin into the feces, but not overall permeability to FITC dextran. These findings provide the first evidence that a high fat diet causes intestinal eosinophil depletion, rather than inflammation, which may contribute to defective barrier integrity and the onset of metabolic disease.  相似文献   

6.
Impairment of gut epithelial barrier function is a key predisposing factor for inflammatory bowel disease, type 1 diabetes (T1D) and related autoimmune diseases. We hypothesized that maternal obesity induces gut inflammation and impairs epithelial barrier function in the offspring of nonobese diabetic (NOD) mice. Four-week-old female NOD/ShiLtJ mice were fed with a control diet (CON; 10% energy from fat) or a high-fat diet (HFD; 60% energy from fat) for 8 weeks to induce obesity and then mated. During pregnancy and lactation, mice were maintained in their respective diets. After weaning, all offspring were fed the CON diet. At 16 weeks of age, female offspring were subjected to in vivo intestinal permeability test, and then ileum was sampled for biochemical analyses. Inflammasome mediators, activated caspase-1 and mature forms of interleukin (IL)-1β and IL-18 were enhanced in offspring of obese mothers, which was associated with elevated serum tumor necrosis factor α level and inflammatory mediators. Consistently, abundance of oxidative stress markers including catalase, peroxiredoxin-4 and superoxide dismutase 1 was heightened in offspring ileum (P<.05). Furthermore, offspring from obese mothers had a higher intestinal permeability. Morphologically, maternal obesity reduced villi/crypt ratio in the ileum of offspring gut. In conclusion, maternal obesity induced inflammation and impaired gut barrier function in offspring of NOD mice. The enhanced gut permeability in HFD offspring might predispose them to the development of T1D and other gut permeability-associated diseases.  相似文献   

7.
Mannan-oligosaccharides (MOSs) are mannose-rich substrates with several intestinal health-promoting properties. The aim of this study was to investigate the potential capacity of Salmosan (S-βGM), a β-galactomannan-rich MOS product, to restore epithelial barrier function independently from its capacity to reduce bacterial invasion. In addition, the combination of S-βGM with the proven probiotic Lactobacillus plantarum (LP) was also tested. Paracellular permeability was assessed by transepithelial electrical resistance (TER) in co-cultures of Caco-2 cells and macrophages (differentiated from THP-1 cells) stimulated with LPS of Salmonella Enteritidis and in Caco-2 cell cultures stimulated with TNF-α in the absence or presence of 500 μg/ml S-βGM, LP (MOI 10) or a combination of both. In both culture models, TER was significantly reduced up to 25% by LPS or TNF-α stimulation, and the addition of S-βGM or LP alone did not modify TER, whereas the combination of both restored TER to values of nonstimulated cells. Under LPS stimulation, TNF-α production was significantly increased by 10-fold, whereas IL-10 and IL-6 levels were not modified. The combination of S-βGM and LP reduced TNF-α production to nonstimulated cell values and significantly increased IL-10 and IL-6 levels (5- and 7.5-fold, respectively). Moreover, S-βGM has the capacity to induce an increase of fivefold in LP growth. In conclusion, we have demonstrated that S-βGM in combination with LP protects epithelial barrier function by modulation of cytokine secretion, thus giving an additional value to this MOS as a potential symbiotic.  相似文献   

8.
Liu H  Li M  Wang P  Wang F 《Cytokine》2011,56(3):581-588
Proinflammatory cytokines play vital roles in intestinal barrier function disruption. YC-1 has been reported to have potent anti-inflammatory properties, and to be a potential agent for sepsis treatment. Here, we investigated the protective effect of YC-1 against intestinal barrier dysfunction caused by interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α). To assess the protective effect of YC-1 on intestinal barrier function, Caco-2 monolayers treated with simultaneous IFN-γ and TNF-α were used to measure transepithelial electrical resistance (TER) and paracellular permeability. To determine the mechanisms involved in the protective action of YC-1, expression and distribution of tight junction proteins ZO-1 and occludin in Caco-2 monolayers challenged with simultaneous IFN-γ and TNF-α were analyzed by Western blot and immunofluorescence, respectively. Expressions of phosphorylated myosin light chain (MLC), MLC kinase (MLCK) and hypoxia-inducible factor-1α (HIF-1α) were analyzed by Western blot in IFN-γ and TNF-α-treated Caco-2 monolayers. It was found that YC-1 attenuated barrier dysfunction caused by IFN-γ and TNF-α, and also prevented IFN-γ and TNF-α-induced morphological redistribution of tight junction proteins ZO-1 and occludin in Caco-2 monolayers. In addition, YC-1 suppressed IFN-γ and TNF-α-induced upregulation of MLC phosphorylation and MLCK protein expression. Furthermore, enhanced expression of HIF-1α in Caco-2 monolayers treated with IFN-γ and TNF-α was also suppressed by YC-1. It is suggested that YC-1, by downregulating MLCK expression, attenuates intestinal barrier dysfunction induced by IFN-γ and TNF-α, in which HIF-1α inhibition, at least in part, might by involved. YC-1 may be a potential agent for treatment of intestinal barrier disruption in inflammation.  相似文献   

9.
Chronic low-level inflammation is associated with obesity and a sedentary lifestyle, causing metabolic disturbances such as insulin resistance. Exercise training has been shown to decrease chronic low-level systemic inflammation in high-fat diet (HFD)-induced obesity. However, the molecular mechanisms mediating its beneficial effects are not fully understood. Ghrelin is a peptide hormone predominantly produced in the stomach that stimulates appetite and induces growth hormone release. In addition to these well-known functions, recent studies suggest that ghrelin localizes to immune cells and exerts an anti-inflammatory effect. The purpose of the current study was to investigate the role of ghrelin expressed in macrophages in the anti-inflammatory effects of voluntary exercise training. Expression of tumor necrosis factor-α (TNF-α), monocyte chemotactic protein (MCP)-1 and F4/80 was increased in adipose tissue from mice fed a HFD (HFD mice) compared with mice fed a standard diet (SD mice), whereas the expression of these inflammatory cytokines was markedly decreased in mice performing voluntary wheel running during the feeding of a HFD (HFEx mice). The expression of TNF-α was also increased in peritoneal macrophages by a HFD and exercise training inhibited the increase of TNF-α expression. Interestingly, expression of ghrelin in peritoneal macrophages was decreased by a HFD and recovered by exercise training. Suppression of ghrelin expression by siRNA increased TNF-α expression and LPS-stimulated NF-κB activation in RAW264 cells, which is a macrophage cell line. TNF-α expression by stimulation with LPS was significantly suppressed in RAW264 cells cultured in the presence of ghrelin. These results suggest that ghrelin exerts potent anti-inflammatory effects in macrophages and functions as a mediator of the beneficial effects of exercise training.  相似文献   

10.

Background and Aim

Increasing evidence has indicated a close association of host-gut flora metabolic interaction with obesity. Flos Lonicera, a traditional herbal medicine, is used widely in eastern Asia for the treatment of various disorders. The aim of this study was to evaluate whether unfermented or fermented formulations of Flos Lonicera could exert a beneficial impact to combat obesity and related metabolic endotoxemia.

Methods

Obesity and metabolic endotoxemia were induced separately or together in rats through feeding a eight-week high fat diet either alone (HFD control group) or in combination with a single LPS stimulation (intraperitoneal injection, 0.75 mg/kg) (LPS control group). While, the mechanism of action of the Lonicera formulations was explored in vitro using RAW 264.7 and HCT 116 cell lines as models.

Results

In cell-based studies, treatment with both unfermented Flos Lonicera (UFL) and fermented Flos Lonicera (FFL) formulations resulted in suppression of LPS-induced NO production and gene expression of vital proinflammatory cytokines (TNF-α, COX-2, and IL-6) in RAW 264.7 cells, reduced the gene expression of zonula occludens (ZO)-1 and claudin-1, and normalized trans epithelial electric resistance (TEER) and horseradish peroxidase (HRP) flux in LPS-treated HCT-116 cells. In an animal study, treatment of HFD as well as HFD+LPS groups with UFL or FFL resulted in a notable decrease in body and adipose tissue weights, ameliorated total cholesterol, HDL, triglyceride, aspartate transaminase and endotoxin levels in serum, reduced the urinary lactulose/mannitol ratio, and markedly alleviated lipid accumulation in liver. In addition, exposure of HFD as well as HFD+LPS groups with UFL or FFL resulted in significant alteration of the distribution of intestinal flora, especially affecting the population of Akkermansia spp. and ratio of Bacteroidetes and Firmicutes.

Conclusion

This evidence collectively demonstrates that Flos Lonicera ameliorates obesity and related metabolic endotoxemia via regulating distribution of gut flora and gut permeability.  相似文献   

11.
Protein restriction during the suckling phase can malprogram rat offspring to a lean phenotype associated with metabolic dysfunctions later in life. We tested whether protein-caloric restriction during lactation can exacerbate the effect of a high-fat (HF) diet at adulthood. To test this hypothesis, we fed lactating Wistar dams with a low-protein (LP; 4% protein) diet during the first 2 weeks of lactation or a normal-protein (NP; 23% protein) diet throughout lactation. Rat offspring from NP and LP mothers received a normal-protein diet until 60 days old. At this time, a batch of animals from both groups was fed an HF (35% fat) diet, while another received an NF (7% fat) diet. Maternal protein-caloric restriction provoked lower body weight and fat pad stores, hypoinsulinemia, glucose intolerance, higher insulin sensitivity, reduced insulin secretion and altered autonomic nervous system (ANS) function in adult rat offspring. At 90 days old, NP rats fed an HF diet in adulthood displayed obesity, impaired glucose homeostasis and altered insulin secretion and ANS activity. Interestingly, the LP/HF group also presented fat pad and body weight gain, altered glucose homeostasis, hyperleptinemia and impaired insulin secretion but at a smaller magnitude than the NP-HF group. In addition, LP/HF rats displayed elevated insulin sensitivity. We concluded that protein-caloric restriction during the first 14 days of life programs the rat metabolism against obesity and insulin resistance exacerbation induced by an obesogenic HF diet.  相似文献   

12.
Zhang W  Xu Y  Chen Z  Xu Z  Xu H 《FEBS letters》2011,585(19):3113-3119
AQP3 is a water/glycerol transporter expressed at the basolateral membrane of colonic epithelial cells. Although AQPs are expressed in the gastrointestinal tract, their effect on intestinal barrier has not been clear. Here, we showed that knockdown of AQP3 caused a dramatic, dose-dependent increase in E. coli C25 translocation, with the reduction of TEER and increasing LY permeability. Western blots revealed that expression of Claudin-1 and Occludin were significantly decreased in the AQP3 knockdown group, demonstrating that this treatment enhances paracellular permeability via an opening of the tight junction complex. These data not only describe the correlation between transcellular and paracellular pathways in human intestines, but also show that targeted knockdown of AQP3 might impair the intestinal barrier integrity.  相似文献   

13.
14.
In the present study, we used tumor necrosis factor-R1 knock out mice (TNF-αR1KO) to understand the roles of TNF-α on epithelial function in models of carrageenan-induced acute lung inflammation. In order to elucidate whether the observed anti-inflammatory status is related to the inhibition of TNF-α, we also investigated the effect of etanercept, a TNF-α soluble receptor construct, on lung TJ function. Pharmacological and genetic TNF-α inhibition significantly reduced the degree of (1) TNF-α production in pleural exudates and in the lung tissues, (2) the inflammatory cell infiltration in the pleural cavity as well as in the lung tissues (evaluated by MPO activity), (3) the alteration of ZO-1, Claudin-2, Claudin-4, Claudin-5 and β-catenin (immunohistochemistry) and (4) apoptosis (TUNEL staining, Bax, Bcl-2 expression). Taken together, our results demonstrate that inhibition of TNF-α reduces the tight junction permeability in the lung tissues associated with acute lung inflammation, suggesting a possible role of TNF-α on lung barrier dysfunction.  相似文献   

15.
目的研究大肠埃希菌脂多糖对高脂饮食兔血脂和炎性反应的影响。方法给含0.5%胆固醇的饲料,3周后,分别在第4、8、12周采用耳动脉内、颈部、腹股沟处肌肉注射大肠埃希菌脂多糖(LPS),并设立正常组和单纯高脂组。16周后观察兔的一般状态,取血清检查血脂六项、C-反应蛋白和TNF—α,取耳动脉、颈动脉、主动脉弓、胸主动脉、腹主动脉、髂动脉、肝脏,放置4%多聚甲醛中过夜,常规行HE染色,检查血管病变和相关脏器病变情况。结果单纯高脂组血清中胆固醇和LDL-C较正常组增加,复合模型组动物血清中胆固醇和LDL-C均明显高于单纯高脂组,单纯高脂组TNF-α较正常组高,复合模型组TNF-α比单纯高脂组高。病理显示主动脉弓变化明显,复合模型组内膜斑块弥漫,而单纯高脂组内膜只出现单个小斑块,单纯高脂组和复合模型组心脏病变区别不大,均见轻度水肿和小脂肪滴;单纯模型组肝脏细胞轻度水肿,而复合模型组肝脏脂肪滴明显。结论大肠埃希菌脂多糖加重了内膜斑块的形成,加剧了血脂代谢的紊乱和炎性反应。  相似文献   

16.
Among adolescents, overweight, obesity and metabolic syndrome are rapidly increasing in recent years as a consequence of unhealthy palatable diets. Animal models of diet-induced obesity have been developed, but little is known about the behavioural patterns produced by the consumption of such diets. The aim of the present study was to determine the behavioural and biochemical effects of a cafeteria diet fed to juvenile male and female rats, as well as to evaluate the possible recovery from these effects by administering standard feeding during the last week of the study. Two groups of male and female rats were fed with either a standard chow diet (ST) or a cafeteria (CAF) diet from weaning and for 8 weeks. A third group of males (CAF withdrawal) was fed with the CAF diet for 7 weeks and the ST in the 8th week. Both males and females developed metabolic syndrome as a consequence of the CAF feeding, showing overweight, higher adiposity and liver weight, increased plasma levels of glucose, insulin and triglycerides, as well as insulin resistance, in comparison with their respective controls. The CAF diet reduced motor activity in all behavioural tests, enhanced exploration, reduced anxiety-like behaviour and increased social interaction; this last effect was more pronounced in females than in males. When compared to animals only fed with a CAF diet, CAF withdrawal increased anxiety in the open field, slightly decreased body weight, and completely recovered the liver weight, insulin sensitivity and the standard levels of glucose, insulin and triglycerides in plasma. In conclusion, a CAF diet fed to young animals for 8 weeks induced obesity and metabolic syndrome, and produced robust behavioural changes in young adult rats, whereas CAF withdrawal in the last week modestly increased anxiety, reversed the metabolic alterations and partially reduced overweight.  相似文献   

17.
Maternal obesity has been shown to impact the offspring health during childhood and adult life. This study aimed to evaluate whether maternal obesity combined with postnatal exposure to an obesogenic diet could induce metabolic alterations in offspring. Female CD1 mice were fed a control diet (CD, 11.1% of energy from fat) or with a high-fat diet (HFD, 44.3% of energy from fat) for 3 months. After weaning, pups born from control and obese mothers were fed with CD or HFD for 3 months. Both mothers and offspring were weighted weekly and several blood metabolic parameters levels were evaluated. Here, we present evidence that the offspring from mothers exposed to a HFD showed increased acetylation levels of histone 3 on lysine 9 (H3K9) in the liver at postnatal Day 1, whereas the levels of acetylation of H4K16, dimethylation of H3K27, and trimethylation of H3K9 showed no change. We also observed a higher perinatal weight and increased blood cholesterol levels when compared to the offspring on postnatal Day 1 born from CD-fed mothers. When mice born from obese mothers were fed with HFD, we observed that they gained more weight, presented higher blood cholesterol levels, and abdominal adipose tissue than mice born to the same mothers but fed with CD. Collectively, our results point toward maternal obesity and HFD consumption as a risk factor for epigenetic changes in the liver of the offspring, higher perinatal weight, increased weight gain, and altered blood cholesterol levels.  相似文献   

18.
Tumour necrosis factor alpha (TNF-α) is one kind of cytokines which is related to inflammation and lipid metabolism. TNF-α cDNA was cloned from the liver of blunt snout bream (Megalobrama amblycephala) through real-time polymerase chain reaction (PCR) and rapid amplification of cDNA ends (RACE) methods. The full-length cDNA of TNF-α covered 1467 bp, with an open reading frame (ORF) of 723 bp, which encodes 240 amino acids. It possessed the TNF family signature IIIPDDGIYFVYSQ. After the lipopolysaccharide (LPS) challenge test, a graded tissue-specific expression pattern of TNF-α was observed and there was high expression abundance in the kidney, brain and liver. After 8 weeks feeding trial, liver samples, two groups fed with 6% and 11% lipid levels, were collected. The results showed that, for fish fed with high-fat diet, the triglyceride of serum and lipid content of liver were elevated. Furthermore, TNF-α and peroxisome proliferator-activated receptors (PPARα, β) mRNA expression of fish fed 11% lipid diet were significantly up-regulated (p?<?0.05). Lipoprotein lipase (LPL) and PPARγ mRNA expression of fish fed 11% lipid lever diet were significantly decreased compared to those of fish fed 6% (p?<?0.05). The differences between the various expression of related genes in the high and low fat groups demonstrated that TNF-α played a key role in lipid metabolism, which may have an influence on fat metabolism through reducing fat synthesis and strengthening the β-oxidation of fatty acid. These discrepancies warrant further research.  相似文献   

19.
Abstract

Twenty-four barrows were used to investigate the effects of β-glucan on immune function in weaned piglets. Pigs (8.09 ± 0.20 kg, 28 d of age) were fed a diet without or with supplemented β-glucan (50 mg/kg feed). All pigs were injected with ovalbumin (OVA) on day 14 to investigate their humoral immune response. On day 28, lymphocytes were isolated from all pigs to determine the effects of β-glucan on cellular immunity of pigs in vitro. Lymphocytes from six pigs of each group were incubated with 16 μg lipopolysaccharide (LPS) per ml culture medium, the remainder with an equivalent volume of culture medium alone. Samples were collected at 0, 3, 6, 12, 18, 24, and 48 h after LPS addition for determination of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and interleukin-10 (IL-10). On day 31, six pigs of each group were injected with either LPS (25 μg/kg BW) or an equivalent amount of sterile saline. Blood samples were collected at 3 h after LPS injection for analysis of IL-6, TNF-α, and IL-10 in plasma. The results indicated that dietary β-glucan enhanced pig antibody response to OVA only in the first week after injection. In vitro, the increases of IL-6 and TNF-α in culture medium were partially dampened in pigs supplemented with β-glucan when their lymphocytes were incubated with LPS, whereas the increase of IL-10 was potentiated. In vivo, dietary β-glucan attenuated the increase of plasma IL-6 and TNF-α, and enhanced the increase of plasma IL-10 when pigs were challenged with LPS. These results demonstrate that β-glucan can improve the humoral immunity of pigs and modulate cellular immunity of pigs by mitigating the elevation of pro-inflammatory cytokines and enhancing the increase of anti-inflammatory cytokines after an immunological challenge.  相似文献   

20.
Hepatic ischemia reperfusion (HIR) not only results in liver injury, but also leads to endotoxemia, which aggravates HIR-induced liver injury and dysfunction, or even causes liver failure. Taurine has been shown to protect organs from ischemia reperfusion or endotoxin by its anti-oxidant and anti-inflammatory activities. The aim of this study was to investigate whether taurine could attenuate endotoxin-induced acute liver injury after HIR. Wistar rats subjected to 30 min of hepatic ischemia followed by reperfusion and lipopolysaccharide (LPS) (0.5 mg/kg) administration, exhibited liver dysfunction (elevated serum levels of ALT, AST and LDH) and hepatic histopathological alteration. The serum levels of TNF-α and production of myeloperoxidase (MPO) and malondialdehyde (MDA) in liver tissues and apoptosis of hepatocytes were also increased after the combination of HIR and LPS. However, pre-administration of taurine protected livers from injury induced by the combination of HIR + LPS as the histological score, apoptotic index, MPO activity and production of MDA in liver tissues, and serum levels of AST, ALT, LDH and TNF-α, were significantly reduced. The expression of caspase-3, Fas and Fas ligand was upregulated in homogenates of livers from rats subjected to HIR and LPS, and this elevated expression could be inhibited by taurine. In summary, the results further emphasize the potential utilization of taurine in protecting livers against endotoxin-induced injury especially after HIR, by its anti-inflammatory, anti-oxidative and anti-apoptotic activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号