首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previously, it was reported that conjugated linoleic acid (CLA) with exercise training potentially improved endurance capacity via the peroxisome proliferator-activated receptor δ (PPARδ)-mediated mechanism in mice. This study determined the role of exercise and/or CLA in endurance capacity and PPARδ-associated regulators. Male 129Sv/J mice were fed either control (soybean oil) or CLA (0.5%) containing diets for 4 weeks and were further divided into sedentary or training regimes. CLA supplementation significantly reduced body weight and fat mass independent of exercise during the experimental period. Endurance capacity was significantly improved by CLA supplementation, while no effect of exercise was observed. Similarly, CLA treatment significantly increased expressions of sirtuin 1 and PPARγ coactivator-1α, up-stream regulators of PPARδ, in both sedentary and trained animals. With respect to downstream markers of PPARδ, CLA up-regulated the key biomarker needed to stimulate mitochondrial biogenesis, nuclear respiratory factor 1. Moreover, CLA supplementation significantly induced overall genes associated with muscle fibers, such as type I (slow-twitch) and type II (fast twitch). Taken together, it suggests that CLA improves endurance capacity independent of mild-intensity exercise via PPARδ-mediated mechanism.  相似文献   

2.
The effect of dietary polyunsaturated fatty acids and α-tocopherol supplementation on erythrocyte lipid peroxidation and immunocompetent cells in mice was studied comparatively using seven dietary oils (15% oil/diet, w/w) including fish oil rich in eicosapentaenoic acid (EPA, 20:5, n–3) and docosahexaenoic acid (DHA, 22:6, n–3). A 43% increase in spleen weight, about twice as many spleen cells and no change in the subpopulations of spleen cells, as well as a significant depression of mitogen-induced blastogenesis of both T and B cells in the spleen were observed in mice fed fish oil for 30 days in comparison with soybean oil diet-fed mice. In the fish oil diet-fed mice, membranous lipid hydroperoxide (hydroperoxides of phosphatidylcholine and phosphatidylethanolamine) accumulation as a marker of oxidative senescence in red blood cells (RBC) was 2.7–3.5 times higher than that in mice fed soybean oil, although there was no difference in the plasma phosphatidylcholine hydroperoxide concentration. In spite of the supplementation of α-tocopherol to up to 10 times the level in the basal diet, the degeneration of spleen cells and the stimulated oxidative senescence of RBC found by the fish oil feeding could not be prevented. The results suggest that oral intake of excess polyunsaturated fatty acids, i.e. EPA and DHA, in a fish oil diet can lead to acceleration of membrane lipid peroxidation resulting in RBC senescence linked to the lowering of immune response of spleen cells, and that supplementation of α-tocopherol as antioxidant does not always effectively prevent such oxidative degeneration as observed in spleen cells and RBC in vivo.  相似文献   

3.
Effects of soybean oil supplementation as a source of linoleic and α-linolenic acids in a palm oil diet on growth and docosapentaenoic acid (22: 5n–6) levels in tissue lipids in male Sprague–Dawley rats were studied. The rats fed for two months with the diets containing soybean oil (10–50%) in palm oil showed significantly higher weight gain than that in rats fed a diet containing only palm oil as a fat source. The highest weight gain was observed in rats fed 50% soybean oil blended in palm oil. Such performance was also better than those observed in rats received diets containing soybean oil alone or canola oil alone. Addition of soybean oil to the palm oil diet prevented 22: 5n–6 accumulation in plasma, red blood cells, liver, heart, and retinal lipids with a compensative increase of docosahexaenoic acid (22:6n–3). Poly-unsaturated fatty acid profiles of brain were not affected by the addition of soybean oil. Changes in arachidonic acid contents in organs were not observed. The results indicated that soybean oil supplementation increases the weight gain and prevents the accumulation of 22: 5n–6 in the tissues which were observed in the rats fed a diet containing palm oil alone.  相似文献   

4.
Studies in mice using germfree animals as controls for microbial colonization have shown that the gut microbiome mediates diet-induced obesity. Such studies use diets rich in saturated fat, however, Western diets in the United States America are enriched in soybean oil, composed of unsaturated fatty acids, either linoleic or oleic acid. Here, we addressed whether the microbiome is a variable in fat metabolism in mice on a soybean oil diet. We used conventionally-raised, low-germ, and germfree mice fed for 10 weeks diets either high or low in high-linoleic-acid soybean oil as the sole source of fat. Conventional and germfree mice gained relative fat weight and all mice consumed more calories on the high fat vs. low fat soybean oil diet. Plasma fatty acid levels were generally dependent on diet, with microbial colonization status affecting iso-C18:0, C20:3n-6, C14:0, and C15:0 levels. Colonization status, but not diet, impacted levels of liver sphingolipids including ceramides, sphingomyelins, and sphinganine. Our results confirm that absorbed fatty acids are mainly a reflection of the diet and that microbial colonization influences liver sphingolipid pools regardless of diet.  相似文献   

5.
This study investigated the long-term effects of total and partial replacement of dietary fish meal (FM) by a mixture of agricultural products on sperm quality of African catfish Clarias gariepinus. Four isonitrogenous and isoenergetic diets were formulated containing graded levels of either 50% FM and maize meal (diet 1); 25% FM mixed with crude sunflower oil cake (SFOC) and bean meal (BM) (diet 2); 12.5% FM mixed with sunflower oil cake, BM and ground nut oil cake (GOC) (diet 3) and 0% FM mixed with de-hulled sunflower oil cake (SFOCD), BM and ground nut oil cake (diet 4). Gonadosomatic index (GSI), sperm quality, plasma sex steroids (11-keto testosterone [11-KT]; testosterone [T]; estradiol-17beta [E2]) were evaluated on 10 to 24 fish fed on each diet. Sperm quality was assessed using computer-assisted sperm analysis (CASA). Total replacement of fish meal by plant products markedly increased sperm volume, spermatocrit, spermatozoa integrity, and sperm motility. Fish fed diet 3 (12.5% fish meal) provided intermediate results on sperm quality whereas the lowest values were obtained in fish fed diets 1 and 2. In fish fed 0% fish meal (diet 4), androgen levels were higher and estrogen levels were lower than in fish fed fish meal diets. Based on dietary lipid and fatty acid analyses, these results suggest a positive impact of short chain n-6 fatty acids on androgen synthesis and sperm quality. In conclusion, a combination of ground nut oil cake, bean meal and sunflower oil cake (preferably when the sunflower is dehulled) in African catfish diet improves the sperm quality.  相似文献   

6.
In this study, we administered various diets of stearidonic acid (SDA, 18:4n?3) soybean oil to rats and examined the subsequent blood and organ biochemical parameters. Male Wistar rats (seven rats/group, six groups total) were fed diets supplemented with a test oil for 4 weeks. Diets containing test oils were: FFC diet (fish-oil-free control diet), C diet (control group, assuming a Japanese diet), SDA25 diet (25% 18:4n?3 soybean oil in the C diet), SDA50 (50% 18:4n?3 soybean oil in the C diet), ALA diet (34% flaxseed oil in the C diet), and EPA+DHA diet (34% fish oil in the C diet). The intake of 18:4n?3 showed increased relative efficiency of 20:5n?3 accretions in serum and liver triacylglycerol and significantly decreased the serum triacylglycerol level in rats. The results suggested that the consumption of 18:4n?3 soybean oil may modify the lipid and fatty acid profiles of body fats, even when EPA and DHA derived from fish is consumed.  相似文献   

7.
4 种不同脂肪源对太平洋鲑生长和体组成的影响   总被引:6,自引:0,他引:6  
在日粮中添加11.5%的4 种不同来源脂肪饲养180 尾初始重约为110g 的太平洋鲑(Oncorhynchus spp.)于水泥池中56d。实验分4 组,每组3个平行池,每池15尾鱼。研究日粮中4 种不同来源脂肪对淡水养殖太平洋鲑生长性能、体组成与品质的影响。4 组脂肪源分别为鱼油(实验1 组)、大豆油(实验2 组)、大豆磷脂(实验3 组)和玉米油(实验4 组)。实验表明:(1) 实验各组太平洋鲑存活率相似,但大豆磷脂组的特定生长率显著好于鱼油组、大豆油组和玉米油组(P0.05)。大豆磷脂组、大豆油组和玉米油组的饲料效益显著好于鱼油组(P< 0.05); (2) 大豆油组、大豆磷脂组和玉米油组太平洋鲑肠系膜脂肪与肝脏脂肪含量不同程度低于鱼油组,而肌肉中脂肪含量不同程度低于鱼油组; (3) 实验各组太平洋鲑肝脏脂肪、肌肉脂肪和肠脂中总多不饱和脂肪酸组成基本相似,但玉米油组、大豆磷脂组和大豆油组太平洋鲑总n-3 多不饱和脂肪酸比例较鱼油组显著下降,而总n-6 系多不饱和脂肪酸比例显著提高(P<0.05);(4) 玉米油组、大豆磷脂组和大豆油组太平洋鲑血浆中脂肪分解酶、甘油三酯和高密度脂蛋白指标较鱼油组不同程度上升;(5) 实验各组太平洋鲑解剖组织学检查未见异常病理变化。实验结果表明,淡水养殖条件下,太平洋鲑日粮中脂肪以添加大豆磷脂的生长性能最好,大豆油、玉米油和鱼油效果相似,添加玉米油、大豆磷脂和大豆油均不影响太平洋鲑健康状况和品质。    相似文献   

8.
In this study, the effect of α-eleostearic acid (α-ESA) on the lipid peroxidation of soybean asolectin (ASO) liposomes was investigated. This effect was correlated to changes caused by the fatty acid in the membrane dynamics. The influence of α-ESA on the dynamic properties of liposomes, such as hydration, mobility and order, were followed by horizontal attenuated total reflection Fourier transform infrared spectroscopy (HATR-FTIR), nuclear magnetic resonance (NMR), differential scanning calorimetry (DSC) and UV–vis techniques. The α-ESA showed an in vitro antioxidant activity against the damage induced by hydroxyl radical (OH) in ASO liposomes. The analysis of HATR-FTIR frequency shifts and bandwidths and 1H NMR spin–lattice relaxation times, related to specific lipid groups, showed that α-ESA causes an ordering effect on the polar and interfacial regions of ASO liposomes, which may restrict the OH diffusion in the membrane. The DSC enthalpy variation analysis suggested that the fatty acid promoted a disordering effect on lipid hydrophobic regions, which may facilitate interactions between the reactive specie and α-ESA. Turbidity results showed that α-ESA induces a global disordering effect on ASO liposomes, which may be attributed to a change in the lipid geometry and shape. Results of this study may allow a more complete view of α-ESA antioxidant mode of action against OH, considering its influence on the membrane dynamics.  相似文献   

9.
Several dietary oils have been used preventatively and therapeutically in the setting of neurological disease. However, the mechanisms underlying their influence on brain function and metabolism remain unknown. It was investigated whether 3 types of dietary oils affected emotional behaviors in mice. Wild-type (WT) mice and sialyltransferase ST3Gal IV-knockout (KO) mice, which exhibit increased emotional and cognitive behaviors, were fed diets containing 20% dietary oils from post-weaning to adulthood. Mice were fed pellets made from control feed AIN93G powder containing 18% fish oil, soybean oil, or a mixture of 1-palmitoyl-2-oleoyl-3-palmitoyl glycerol (POP) and 1-stearoyl-2-oleoyl-3-stearoyl glycerol (SOS), plus 2% soybean oil. Once mice reached adulthood, they were subjected to fear conditioning test to measure cognitive anxiety and forced swim test to measure depression. WT mice fed the POP-SOS diet showed a 0.6-fold decrease in percent freezing with contextual fear compared with WT mice fed the control diet. KO mice fed the fish oil diet showed a 1.4-fold increase in percent freezing with contextual fear compared with KO mice fed the control diet. These findings indicate that response to contextual fear was improved in WT mice that consumed POP-SOS but aggravated in KO mice that consumed fish oils. Furthermore, KO mice showed a 0.4-fold decrease in percent freezing in response to tone fear when they were fed POP-SOS diet compared to a control diet. Thus, POP-SOS diet reduced tone fear level of KO mice until the same level of WT mice. Finally, KO mice fed the soybean oil diet showed a 1.7-fold increase in immobility in the forced swim test compared to KO mice fed the control diet. Taken together, oil-rich diets differentially modulate anxiety and depression in normal and anxious mice. Oils rich in saturated fatty acids may alleviate anxiety more strongly than other oils.  相似文献   

10.
High-fat diets made with different fats may have distinct effects on body weight regulation and metabolism. In the present study, the metabolic effects of high-fat (HF) diets made with fish oil, palm oil, and soybean oil were compared with a low-fat diet in female Wistar rats that were either exercised (EX, swimming) or that remained sedentary as controls. Each adult rat was exposed to the same diet that their dams consumed during pregnancy and lactation. When they were 9 weeks old, rats began an EX regimen that lasted for 6 weeks. Twenty-four hours after the last EX bout, rats were sacrificed in a fasted state. It was observed that HF feeding of soybean oil induced more body weight and fat gain, as well as insulin resistance, as indicated by insulin/glucose ratios, than other oils. Female rats fed a HF diet made with fish oil had body weight and insulin sensitivity not different from that observed in low fat fed control rats. For rats fed HF diets made with soybean oil or palm oil, EX also exerted beneficial effects by reducing body fat %, blood insulin, triglyceride and leptin levels, as well as improving insulin sensitivity.  相似文献   

11.
Acetic acid has been shown to promote glycogen replenishment in skeletal muscle during exercise training. In this study, we investigated the effects of acetic acid on endurance capacity and muscle oxidative metabolism in the exercise training using in vivo mice model. In exercised mice, acetic acid induced a significant increase in endurance capacity accompanying a reduction in visceral adipose depots. Serum levels of non-esterified fatty acid and urea nitrogen were significantly lower in acetic acid-fed mice in the exercised mice. Importantly, in the mice, acetic acid significantly increased the muscle expression of key enzymes involved in fatty acid oxidation and glycolytic-to-oxidative fiber-type transformation. Taken together, these findings suggest that acetic acid improves endurance exercise capacity by promoting muscle oxidative properties, in part through the AMPK-mediated fatty acid oxidation and provide an important basis for the application of acetic acid as a major component of novel ergogenic aids.  相似文献   

12.
The objective of this study was to evaluate the fatty acid profile and qualitative characteristics of meat from feedlot young bulls fed ground soybean or ground cottonseed, with or without supplementation of vitamin E. A total of 40 Red Norte young bulls, with an initial average age of 20 months, and an initial average BW of 339±15 kg, were allotted in a completely randomized design using a 2×2 factorial arrangement, with two oilseeds, and daily supplementation or not of 2500 IU of vitamin E. The experimental period was for 84 days, which was preceded by an adaptation period of 28 days. The treatments were ground soybean (SB), ground soybean plus vitamin E (SBE), ground cottonseed (CS) and ground cottonseed plus vitamin E (CSE). The percentage of cottonseed and soybean in the diets (dry matter basis) was 24% and 20%, respectively. Diets were isonitrogenous (13% CP) and presented similar amount of ether extract (6.5%). The animals were slaughtered at average live weight of 464±15 kg, and samples were taken from the longissimus dorsi muscle for the measurement of fatty acid concentration and the evaluation of lipid oxidation and color of the beef. Before fatty acid extraction, muscle tissue and subcutaneous fat of the longissimus dorsi were separated to analyze fatty acid profile in both tissues. Supplementation of vitamin E did not affect fatty acid concentration, lipid oxidation and color (P>0.05). Subcutaneous fat from animals fed CS diet had greater C12:0, C16:0 and C18:0 contents (P<0.03). In addition, CS diets reduced the C18:1 and C18:2 cis-9, trans-11 contents in subcutaneous fat (P<0.05). The muscle from animals fed CS tended to higher C16:0 and C18:0 contents (P<0.11), and decreased C18:1, C18:2 cis-9, trans-11 and C18:3 contents (P<0.05) compared with SB. The Δ9-desaturase index was greater in muscle from animals fed SB (P<0.01). At 42 days of age, meat from cattle fed SB had a greater lipid oxidation rate (P<0.05). Meat from animals fed SB diets had less lightness and redness indices than meat from animals fed CS diets after 14 days of age. In conclusion, the addition of ground cottonseed in the finishing diets did increase the saturated fatty acid content of the longissimus dorsi. However, animals fed cottonseed exhibited greater lightness and redness of beef. In this study, the addition of vitamin E did not affect qualitative characteristics of meat.  相似文献   

13.
The effect of feeding three semi-purified diets containing different lipid sources (anchovy oil, soybean oil and pork lard) on fecundity, hatchability and egg fatty acid composition of Chinese mitten-handed crab (Eriocheir sinensis) broodstock was compared with a fresh clam diet in a 6-month feeding trial. Broodstock crabs fed the diet containing pork lard showed poor fecundity and low hatchability. Crabs fed the diet containing soybean oil showed improved fecundity; however, no significant improvement in hatchability was observed. Broodstock fed the diet containing anchovy oil showed the highest fecundity and egg hatchability. Eggs from broodstock fed anchovy oil as sole dietary lipid had a higher n-3 polyunsaturated fatty acid (PUFA) content (33.3%) compared with those of crabs fed diets with soybean oil (20.1%) and pork lard (16.3%) as lipid sources. The results indicate a close correlation between: (1) the 20:5n-3 content of the egg lipid and fecundity; (2) the 22:6n-3 content and hatchability; and (3) fecundity, hatchability and n-3/n-6 fatty acid ratio. The results also suggest that each of these n-3 HUFAs may play different and specific roles in crab reproduction and that either must be adequate in the broodstock diet.  相似文献   

14.
15.
Monocyte chemotactic protein-1 (MCP-1) is an adipokine with demonstrated carcinogenic potential. However, there is a lack of evidence whether adipose-produced MCP-1 contributes to breast cancer. We tested the hypothesis that adipose-produced MCP-1 contributes to mammary tumorigenesis in this study. In a breast cancer model of mouse mammary tumor virus-polyomavirus middle T-antigen (MMTV-PyMT), mice with or without adipose MCP-1 knockout [designated as Mcp-1−/− or wild-type (WT)] were fed the standard AIN93G diet (16% of energy from soybean oil) or a high-fat diet (HFD, 45% of energy from soybean oil). Adipose MCP-1 knockout reduced Mcp-1 expression in adipose tissue and concentrations of MCP-1 in plasma. Mcp-1−/− mice fed the HFD had less body fat than their WT counterparts. Adipose MCP-1 knockout attenuated HFD-enhanced mammary tumorigenesis, evidenced by lower mammary tumor volume. Furthermore, Mcp-1−/− mice, regardless of diet, had a longer tumor latency and less tumor weight than WT mice. When fed the HFD, Mcp-1−/− mice, compared to WT mice, exhibited lower concentrations of insulin, leptin, resistin, vascular endothelial growth factor and hepatic growth factor in plasma. In summary, adipose MCP-1 deficiency attenuated HFD-enhanced MMTV-PyMT mammary tumorigenesis. This attenuation can be attributed to less body adiposity, improvement in insulin sensitivity and down-regulation in protumorigenic inflammation cytokines and angiogenic factors in Mcp-1−/− mice. It concludes that adipose-produced MCP-1 contributes to mammary tumorigenesis in the MMTV-PyMT mouse model.  相似文献   

16.
The effect of dietary polyunsaturated fatty acids and alpha-tocopherol supplementation on erythrocyte lipid peroxidation and immunocompetent cells in mice was studied comparatively using seven dietary oils (15% oil/diet, w/w) including fish oil rich in eicosapentaenoic acid (EPA, 20:5, n-3) and docosahexaenoic acid (DHA, 22:6, n-3). A 43% increase in spleen weight, about twice as many spleen cells and no change in the subpopulations of spleen cells, as well as a significant depression of mitogen-induced blastogenesis of both T and B cells in the spleen were observed in mice fed fish oil for 30 days in comparison with soybean oil diet-fed mice. In the fish oil diet-fed mice, membranous lipid hydroperoxide (hydroperoxides of phosphatidylcholine and phosphatidylethanolamine) accumulation as a marker of oxidative senescence in red blood cells (RBC) was 2.7-3.5 times higher than that in mice fed soybean oil, although there was no difference in the plasma phosphatidylcholine hydroperoxide concentration. In spite of the supplementation of alpha-tocopherol to up to 10 times the level in the basal diet, the degeneration of spleen cells and the stimulated oxidative senescence of RBC found by the fish oil feeding could not be prevented. The results suggest that oral intake of excess polyunsaturated fatty acids, i.e. EPA and DHA, in a fish oil diet can lead to acceleration of membrane lipid peroxidation resulting in RBC senescence linked to the lowering of immune response of spleen cells, and that supplementation of alpha-tocopherol as antioxidant does not always effectively prevent such oxidative degeneration as observed in spleen cells and RBC in vivo.  相似文献   

17.
18.
1. Virgin and lactating C(3)H mice maintained on laboratory chow were transferred to a high-fat (15% corn oil) or a fat-free diet 3 days before being killed. 2. The linoleate content of liver, mammary gland and milk was decreased in lactating mice given the fat-free diet but was increased in those fed on the high-fat diet. Changes in linoleate content and mammary gland followed a similar but much less marked trend in virgin animals. 3. Hepatic fatty acid synthesis in lactating and virgin mice fed on the fat-free diet was higher than in corresponding animals fed on either the chow or the high-fat diet. The lipogenic capacity of livers from mice fed on either the chow or the high-fat diet was greater in lactating than in virgin animals. These changes in hepatic lipogenic capacity were accompanied by alterations in the specific activities of certain enzymes involved in fat synthesis. 4. Mammary gland from virgin and lactating animals showed no such adaptation to dietary fat. Results indicate that fatty acid synthesis in neither mammary-gland parenchymal cells nor mammary-gland adipose cells can be influenced by dietary fat in the same way as in the hepatocyte.  相似文献   

19.
The physiological activity and effect on lipid metabolism of four types of structured lipids (SLs), that contain caprylic acid (C8) and either eicosapentaenoic (EPA) or docosahesaenoic acid (DHA), were evaluated in male Wistar rats fed experimental diets containing 7% (wt %) of each SL and 3% (wt %) soybean oil for 28 days. Control rats were fed a diet containing 10% (wt %) soybean oil. The relative perirenal adipose tissue weights of rats fed D-8-8 and 8-D-8 diets were significantly lower than those of other groups. We observed significantly lower serum cholesterol concentrations in rats fed SLs than those of control group over experimental period. The serum lipids concentrations in rats fed diets containing SLs were significantly lower P < 0.05) than those of soybean oil group. The fatty acid compositions of WAT did not reflect the structural differences in the triglyceride. These results suggest that the physiological effects of the SLs used in this study were due to the fatty acids rather than the structural specificity. Therefore, further study will be needed to ascertain the most desirable structural configuration.  相似文献   

20.
1. Heart microperoxisomal beta-oxidation activity, measured as cyanide-insensitive palmitoyl-CoA-dependent NAD+-reduction, was detected in a microperoxisome-enriched fraction from rat myocardium. The effect on this microperoxisomal beta-oxidation of the fatty acid composition of the dietary oils was investigated. 2. Feeding 15% (w/w) high erucic acid rapeseed oil or partially hydrogenated marine oil for 3 weeks increased the microperoxisomal beta-oxidation in the heart 4-5-fold, compared to a soybean oil diet. Increasing amounts (5-30%, w/w) of partially hydrogenated marine oil in the diet led to a 3-fold increase in the microperoxisomal beta-oxidation capacity at 20% or more of this oil in the diet. 3. The activity of the microperoxisomal marker enzyme catalase followed closely the cyanide-insensitive palmitoyl-CoA-dependent NAD+-reduction, except when feeding more than 20% (w/w) partially hydrogenated marine oil where a significant decrease in the catalase activity was observed. 4. In rapeseed oil-fed animals the extent of increase of microperoxisomal beta-oxidation was directly correlated to the amount of erucic acid (22:1, n-9 cis) in the diet. 5. Feeding partially hydrogenated rapeseed oil or partially hydrogenated soybean oil resulted in activities of microperoxisomal beta-oxidation significantly lower than in the corresponding unhydrogenated oils. No significant difference could be detected between diets containing hydrogenated or unhydrogenated marine oil. 6. Addition of 5% soybean oil to the essential fatty acid-deficient, partially hydrogenated marine oil diet did not change the effect on the microperoxisomal beta-oxidation activity. 7. Clofibrate feeding increased the heart microperoxisomal beta-oxidation capacity 2.5-fold, as compared to a standard pelleted diet. 8. These findings are discussed in relation to the transient nature of the cardiac lipidosis observed with animals fed on diets rich in C22:1 fatty acids. It is concluded that the heart plays an important part in the adaptation process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号