首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Naringin has antioxidant properties that could improve redox-sensitive myocardial ischemia reperfusion (IR) injury. This study was designed to investigate whether naringin restores the myocardial damage and dysfunction in vivo after IR and the mechanisms underlying its cardioprotective effects. Naringin (20–80 mg/kg/day, p.o.) or saline were administered to rats for 14 days and the myocardial IR injury was induced on 15th day by occluding the left anterior descending coronary artery for 45 min and subsequent reperfusion for 60 min. Post-IR rats exhibited pronounced cardiac dysfunction as evidenced by significantly decreased mean arterial pressure, heart rate, +LVdP/dt max (inotropic state), -LVdP/dt max (lusitropic state) and increased left ventricular end diastolic pressure as compared to sham group, which was improved by naringin. Further, on histopathological and ultrastructural assessments myocardium and myocytes appeared more normal in structure and the infarct size was reduced significantly in naringin 40 and 80 mg/kg/day group. This amelioration of post-IR-associated cardiac injury by naringin was accompanied by increased nitric oxide (NO) bioavailability, decreased NO inactivation to nitrotyrosine, amplified protein expressions of Hsp27, Hsp70, β-catenin and increased p-eNOS/eNOS, p-Akt/Akt, and p-ERK/ERK ratio. In addition, IR-induced TNF-α/IKK-β/NF-κB upregulation and JNK phosphorylation were significantly attenuated by naringin. Moreover, western blotting and immunohistochemistry analysis of apoptotic signaling pathway further established naringin cardioprotective potential as it upregulated Bcl-2 expression and downregulated Bax and Caspase-3 expression with reduced TUNEL positivity. Naringin also normalized the cardiac injury markers (lactate dehydrogenase and creatine kinase-MB), endogenous antioxidant activities (superoxide dismutase, reduced glutathione and glutathione peroxidase) and lipid peroxidation levels. Thus, naringin restored IR injury by preserving myocardial structural integrity and regulating Hsp27, Hsp70, p-eNOS/p-Akt/p-ERK signaling and inflammatory response.  相似文献   

2.
《Free radical research》2013,47(12):1437-1445
The objective was to investigate the molecular mechanism of mitochondrial reactive oxygen species (ROS) signaling regulation of pulmonary artery endothelial cell (HPAEC) secretion in the condition of oxidative stress. Acrolein (40 μM) induced HPAEC mitochondrial generation of ROS, rotenone (2 μmol/L) blocked mitochondrial respiratory chain complex I, cesium chloride (CsCl, 40 mmol/L)blocked K+channels, and saline (0.9 g/dl) were used as control. The generations of NOS, ET-1 and VEGF were determined with ELISA in the condition of different treatment reagents namely acrolein, acrolein plus rotenone, acrolein plus CsCl and saline. In the different reagent treatment of HPAECs, acrolein increased mitochondrial ROS, membrane potential, Kv1.5 mRNA and protein expression, intracellular calcium and the generation of NOS (determining NO production), ET-1 and VEGF, and those were reduced by rotenone. CsCl decreased the increment of membrane potential, the elevation of intracellular calcium and the upregulation of NOS, E-1 and VEGF expressions, which were induced by acrolein. The present study demonstrated that mitochondrial ROS-K+channel regulated HPAEC secretion of NO, ET-1 and VEGF in the condition of oxidative stress. Kv1.5 channel may be an important component of ROS-K+ channel signaling pathway, and intracellular calcium contributed to mitochondrial ROS-K+ channel signaling modulation of HPAEC secretion.  相似文献   

3.
Naringin, the primary active compound of the traditional Chinese medicine Rhizoma drynariae, possesses many pharmacological activities. The present study is an effort to explore the anti-osteoporosis potential of naringin in vivo and in vitro. In vivo, we used ovariectomized rats to clarify the mechanisms by which naringin anti-osteoporosis. In vitro, we used osteoclasts to investigate naringin promotes osteoclasts apoptosis. Naringin was effective at enhancing BMD, trabecular thickness, bone mineralization, and mechanical strength in a dose-dependent manner. The result of RT-PCR analysis revealed that naringin down-regulated the mRNA expression levels of BCL-2 and up-regulated BAX, caspase-3 and cytochrome C. In addition, naringin significantly reduced the bone resorption area in vitro. These findings suggest that naringin promotes the apoptosis of osteoclasts by regulating the activity of the mitochondrial apoptosis pathway and prevents OVX-induced osteoporosis in rats.  相似文献   

4.
Acrolein is a highly reactive alpha, beta-unsaturated aldehyde, and a product of lipid peroxidation reactions. Acrolein is also an environmental pollutant and a key component of cigarette smoke, and has been implicated in multiple respiratory diseases. Lung tissue is a primary target for acrolein toxicity in smokers and may lead to chronic lung inflammation and lung cancer. Chronic inflammation, associated with expression of cyclooxygenase-2 (COX-2) and prostaglandins, are predisposing factors for malignancy. In this study, we investigated the induction of COX-2 by acrolein in rat lung epithelial cells and its related signaling cascade. Induction of COX-2 by acrolein was significant at 6 h post-treatment and was dependent upon NFκB activation. The activation of NFκB by acrolein was induced as a result of degradation of IκBα over the time of treatment. In addition, the upstream signaling cascade involved Raf-1/ERK activation by acrolein in the COX-2 induction and was inhibited by GW5074 (a Ras/Raf-1/ERK inhibitor), thereby providing evidence for the role of this cascade in this process. The results of these studies offer an explanation for the mechanism of COX-2 induction by acrolein in rat lung epithelial cells.  相似文献   

5.
Acrolein is a ubiquitous reactive aldehyde which is formed as a product of lipid peroxidation in biological systems. In this present study, we screened the complete set of viable deletion strains in Saccharomyces cerevisiae for sensitivity to acrolein to identify cell functions involved in resistance to reactive aldehydes. We identified 128 mutants whose gene products are localized throughout the cell. Acrolein-sensitive mutants were distributed among most major biological processes but particularly affected gene expression, metabolism, and cellular signaling. Surprisingly, the screen did not identify any antioxidants or similar stress-protective molecules, indicating that acrolein toxicity may not be mediated via reactive oxygen species. Most strikingly, a mutant lacking an old yellow enzyme (OYE2) was identified as being acrolein sensitive. Old yellow enzymes are known to reduce α,β-unsaturated carbonyl compounds in vitro, but their physiological roles have remained uncertain. We show that mutants lacking OYE2, but not OYE3, are sensitive to acrolein, and overexpression of both isoenzymes increases acrolein tolerance. Our data indicate that OYE2 is required for basal levels of tolerance, whereas OYE3 expression is particularly induced following acrolein stress. Despite the range of α,β-unsaturated carbonyl compounds that have been identified as substrates of old yellow enzymes in vitro, we show that old yellow enzymes specifically mediate resistance to small α,β-unsaturated carbonyl compounds, such as acrolein, in vivo.  相似文献   

6.
Trichinella spiralis represents an effective treatment for autoimmune and inflammatory diseases. The effects of recombinant T. spiralis (TS) 53-kDa protein (rTsP53) on acute lung injury (ALI) remain unclear. Here, mice were divided randomly into a control group, LPS group, and rTsP53 + LPS group. ALI was induced in BALB/c mice by LPS (10 mg/kg) injected via the tail vein. rTsP53 (200 µl; 0.4 μg/μl) was injected subcutaneously three times at an interval of 5 d before inducing ALI in the rTsP53+LPS group. Lung pathological score, the ratio and markers of classic activated macrophages (M1) and alternatively activated macrophages (M2), cytokine profiles in alveolar lavage fluid, and pyroptosis protein expression in lung tissue were investigated. RTsP53 decreased lung pathological score. Furthermore, rTsP53 suppressed inflammation by increasing IL-4, IL-10, and IL-13. There was an increase in alveolar M2 macrophage numbers, with an increase in CD206 and arginase-1-positive cells and a decrease in alveolar M1 markers such as CD197 and iNOS. In addition, the polarization of M2 macrophages induced by rTsP53 treatment could alleviate ALI by suppressing lung pyroptosis. RTsP53 was identified as a potential agent for treating LPS-induced ALI via alleviating lung pyroptosis by promoting M2 macrophage polarization.  相似文献   

7.
Acrolein is a reactive unsaturated aldehyde that is produced during endogenous oxidative processes and is a major bioactive component of environmental pollutants such as cigarette smoke. Because in vitro studies demonstrate that acrolein can inhibit neutrophil apoptosis, we evaluated the effects of in vivo acrolein exposure on acute lung inflammation induced by LPS. Male C57BL/6J mice received 300 microg/kg intratracheal LPS and were exposed to acrolein (5 parts per million, 6 h/day), either before or after LPS challenge. Exposure to acrolein either before or after LPS challenge did not significantly affect the overall extent of LPS-induced lung inflammation, or the duration of the inflammatory response, as observed from recovered lung lavage leukocytes and histology. However, exposure to acrolein after LPS instillation markedly diminished the LPS-induced production of several inflammatory cytokines, specifically TNF-alpha, IL-12, and the Th1 cytokine IFN-gamma, which was associated with reduction in NF-kappaB activation. Our data demonstrate that acrolein exposure suppresses LPS-induced Th1 cytokine responses without affecting acute neutrophilia. Disruption of cytokine signaling by acrolein may represent a mechanism by which smoking contributes to chronic disease in chronic obstructive pulmonary disease and asthma.  相似文献   

8.
Kim HJ  Oh GT  Park YB  Lee MK  Seo HJ  Choi MS 《Life sciences》2004,74(13):1621-1634
The purpose of the current study was to evaluate the lipid lowering and antioxidant capacity of naringin in LDL receptor knockout (LDLR-KO) mice fed a cholesterol (0.1 g/100 g) diet. As such, naringin or lovastatin (0.02 g/100 g) was supplemented in a cholesterol diet for 6 weeks. The naringin and lovastatin supplementation significantly lowered the plasma total cholesterol level compared to the control group. The plasma and hepatic triglyceride level was only lowered by the lovastatin supplement, while the hepatic cholesterol content was lowered by both the naringin and lovastatin supplements compared to the control group. The hepatic HMG-CoA reductase activity was significantly lower in the naringin and lovastatin supplemented groups than in the control group, whereas the ACAT activity was unaffected. The excretion of total sterol was significantly higher in the naringin and lovastatin groups compared to the control group due to significant changes in the acidic and neutral sterol, respectively. When comparing the hepatic antioxidant enzyme activities, the superoxide dismutase, catalase, and glutathione reductase activities were all significantly higher in the naringin-supplemented group than in the control group, while only the lovastatin supplement increased the glutathione reductase activity. Accordingly, the current results confirmed that naringin lowers the plasma cholesterol level via the inhibition of hepatic HMG-CoA reductase activity and increases the excretion of fecal sterol. Naringin was also found to improve the activities of hepatic antioxidant enzymes against oxidative stress in a hypercholesterolemic animal model, i.e. cholesterol-fed LDLR-KO mice.  相似文献   

9.
Acrolein, an unsaturated aldehyde, is increased in the brain of Alzheimer''s disease (AD) patients and identified as a potential inducer of sporadic AD. Synaptic dysfunction, as a typical pathological change occurring in the early stage of AD, is most closely associated with the severity of dementia. However, there remains a lack of clarity on the mechanisms of acrolein inducing AD‐like pathology and synaptic impairment. In this study, acrolein‐treated primary cultured neurons and mice were applied to investigate the effects of acrolein on cognitive impairment and synaptic dysfunction and their signaling mechanisms. In vitro, ROCK inhibitors, Fasudil, and Y27632, could attenuate the axon ruptures and synaptic impairment caused by acrolein. Meanwhile, RNA‐seq distinct differentially expressed genes in acrolein models and initially linked activated RhoA/Rho‐kinase2 (ROCK2) to acrolein‐induced synaptic dysfunction, which could regulate neuronal cytoskeleton and neurite. The Morris water maze test and in vivo field excitatory postsynaptic potential (fEPSP) were performed to evaluate spatial memory and long‐term potential (LTP), respectively. Acrolein induced cognitive impairment and attenuated LTP. Furthermore, the protein level of Synapsin 1 and postsynaptic density 95 (PSD95) and dendritic spines density were also decreased in acrolein‐exposed mice. These changes were improved by ROCK2 inhibitor Fasudil or in ROCK2+/− mice. Together, our findings suggest that RhoA/ROCK2 signaling pathway plays a critical role in acrolein‐induced synaptic damage and cognitive dysfunction, suggesting inhibition of ROCK2 should benefit to the early AD.  相似文献   

10.
11.
The present study was designed to evaluate the effect of Naringin on memory of unstressed and stressed Swiss young albino mice. Naringin (80?mg/kg, i.p.) and donepezil (10?mg/kg) were administered for 21 successive days to separate groups of unstressed and stressed mice. The nootropic activity was evaluated using elevated plus maze and Hebbs Williams Maze. Brain acetylcholinesterase (AChE), brain nitrite and plasma corticosterone levels were also estimated. unpredictable chronic mild stress was produced by using different stressors. Naringin (80?mg/kg) and donepezil significantly showed memory enhancing activity in both unstressed and stressed mice. Naringin significantly reduced brain AChE activity and brain nitrite levels in both unstressed and stressed mice. Naringin (80?mg/kg) significantly reversed scopolamine-induced amnesia in unstressed and stressed mice. 7-Nitroindazole [a neuronal nitric oxide synthase (NOS) inhibitor] and aminoguanidine (an inducible NOS inhibitor) significantly enhanced memory improving activity and brain nitrite decreasing effect of naringin in unstressed and stressed mice respectively. Plasma corticosterone levels were significantly decreased by naringin (80?mg/kg) in stressed mice as compared to its control. Thus, naringin showed memory enhancing activity in unstressed mice probably by decreasing brain AChE activity and by inhibition of neuronal NOS. The memory enhancing activity of naringin in stressed mice might be due to decrease in brain AChE activity, inhibition of inducible NOS and also by decreasing the elevated plasma corticosterone levels.  相似文献   

12.
The primary objective of this investigation was to assess the neuroprotective efficacy of lithium in an acrylamide (ACR)-induced neuropathy model in mice. In this study, Kunming male mice were administered ACR (25 mg/kg bw, i.p. once a day) with or without lithium (25 mg/kg bw, i.p. once a day) for 2 weeks. All ACR-administered mice exhibited severe symptoms of neuropathy. We found that treatment with lithium effectively alleviated behavioral deficits in animals elicited by acrylamide. Interestingly, the reduction of hippocampal neurogenesis resulting from ACR injection was promoted by administration of lithium. Further, lithium treatment significantly offset ACR-induced depletion in p-GSK-3β (Ser9) levels in hippocampus. Collectively our findings suggest the propensity of lithium to attenuate ACR-induced neuropathy. Further studies are necessary to understand the precise molecular mechanism by which the lithium attenuates neuropathy. Nevertheless, our data clearly demonstrate the beneficial effects of lithium on ACR-induced neuropathy in mice and suggest its possible therapeutic application as an adjuvant in the management of other forms of neuropathy in humans.  相似文献   

13.

Background

Acrolein (allyl Aldehyde) as one of smoke irritant exacerbates chronic airway diseases and increased in sputum of patients with asthma and chronic obstructive lung disease. But underlying mechanism remains unresolved. The aim of study was to identify protein expression in human lung microvascular endothelial cells (HMVEC-L) exposed to acrolein.

Methods

A proteomic approach was used to determine the different expression of proteins at 8 h and 24 h after treatment of acrolein 30 nM and 300 nM to HMVEC-L. Treatment of HMVEC-L with acrolein 30 nM and 300 nM altered 21 protein spots on the two-dimensional gel, and these were then analyzed by MALDI-TOF MS.

Results

These proteins included antioxidant, signal transduction, cytoskeleton, protein transduction, catalytic reduction. The proteins were classified into four groups according to the time course of their expression patterns such as continually increasing, transient increasing, transient decreasing, and continually decreasing. For validation immunohistochemical staining and Western blotting was performed on lung tissues from acrolein exposed mice. Moesin was expressed in endothelium, epithelium, and inflammatory cells and increased in lung tissues of acrolein exposed mice compared with sham treated mice.

Conclusions

These results indicate that some of proteins may be an important role for airway disease exacerbation caused by acrolein exposure.
  相似文献   

14.
BackgroundHypoglycemic effects of grapefruit juice are well known but the effects of naringin, its main flavonoid on glucose intolerance and metabolic complications in type 1 diabetes are not known.ObjectivesTo investigate the effects of naringin on glucose intolerance, oxidative stress and ketonemia in type 1 diabetic rats.MethodsSprague-Dawley rats divided into 5 groups (n = 7) were orally treated daily with 3.0 ml/kg body weight (BW)/day of distilled water (group 1) or 50 mg/kg BW of naringin (groups 2 and 4, respectively). Groups 3, 4 and 5 were given a single intra-peritoneal injection of 60 mg/kg BW of streptozotocin to induce diabetes. Group 3 was further treated with subcutaneous insulin (4.0 IU/kg BW) twice daily, respectively.ResultsStretozotocin (STZ) only-treated groups exhibited hyperglycemia, polydipsia, polyuria, weight loss, glucose intolerance, low fasting plasma insulin and reduced hepatic glycogen content compared to the control group. Furthermore they had significantly elevated Malondialdehyde (MDA), acetoacetate, β-hydroxybutyrate, anion gap and significantly reduced blood pH and plasma bicarbonate compared to the control group. Naringin treatment significantly improved Fasting Plasma Insulin (FPI), hepatic glycogen content, malondialdehyde, β-hydroxybutyrate, acetoacetate, bicarbonate, blood pH and anion gap but not Fasting Blood Glucose (FBG) compared to the STZ only-treated group.ConclusionsNaringin is not hypoglycemic but ameliorates ketoacidosis and oxidative stress. Naringin supplements could therefore mitigate complications of diabetic ketoacidosis.  相似文献   

15.
Acrolein, a reactive aldehyde found in cigarette smoke, is thought to induce its biological effects primarily by irreversible adduction to cellular nucleophiles such as cysteine thiols. Here, we demonstrate that acrolein rapidly inactivates the seleno-enzyme thioredoxin reductase (TrxR) in human bronchiolar epithelial HBE1 cells, which recovered over 4–8 h by a mechanism depending on the presence of cellular GSH and thioredoxin 1 (Trx1), and corresponding with reversal of protein–acrolein adduction. Our findings indicate that acrolein-induced protein alkylation is not necessarily a feature of irreversible protein damage, but may reflect a reversible signaling mechanism that is regulated by GSH and Trx1.  相似文献   

16.

Background

Effective treatments for fibrotic diseases such as idiopathic pulmonary fibrosis are largely lacking. Transforming growth factor beta (TGFβ) plays a central role in the pathophysiology of fibrosis. We hypothesized that bone morphogenetic proteins (BMP), another family within the TGFβ superfamily of growth factors, modulate fibrogenesis driven by TGFβ. We therefore studied the role of endogenous BMP signaling in bleomycin induced lung fibrosis.

Methods

Lung fibrosis was induced in wild-type or noggin haploinsufficient (Nog+/LacZ) mice by intratracheal instillation of bleomycin, or phosphate buffered saline as a control. Invasive pulmonary function tests were performed using the flexiVent® SCIREQ system. The mice were sacrificed and lung tissue was collected for analysis using histopathology, collagen quantification, immunohistochemistry and gene expression analysis.

Results

Nog+/LacZ mice are a known model of increased BMP signaling and were partially protected from bleomycin-induced lung fibrosis with reduced Ashcroft score, reduced collagen content and preservation of pulmonary compliance. In bleomycin-induced lung fibrosis, TGFβ and BMP signaling followed an inverse course, with dynamic activation of TGFβ signaling and repression of BMP signaling activity.

Conclusions

Upon bleomycin exposure, active BMP signaling is decreased. Derepression of BMP signaling in Nog+/LacZ mice protects against bleomycin-induced pulmonary fibrosis. Modulating the balance between BMP and TGFβ, in particular increasing endogenous BMP signals, may therefore be a therapeutic target in fibrotic lung disease.  相似文献   

17.
The swimbladder is a hydrostatic organ in fish postulated as a homolog of the tetrapod lung. While lung development has been well studied, the molecular mechanism of swimbladder development is essentially uncharacterized. In the present study, swimbladder development in zebrafish was analyzed by using several molecular markers: hb9 (epithelium), fgf10a and acta2 (mesenchyme), and anxa5 (mesothelium), as well as in vivo through enhancer trap transgenic lines Et(krt4:EGFP)sq33-2 and Et(krt4:EGFP)sqet3 that showed strong EGFP expression in the swimbladder epithelium and outer mesothelium respectively. We defined three phases of swimbladder development: epithelial budding between 36 and 48 hpf, growth with the formation of two additional mesodermal layers up to 4.5 dpf, and inflation of posterior and anterior chambers at 4.5 and 21 dpf respectively. Similar to those in early lung development, conserved expression of Hedgehog (Hh) genes, shha and ihha, in the epithelia, and Hh receptor genes, ptc1 and ptc2, as well as fgf10a in mesenchyme was observed. By analyzing several mutants affecting Hh signaling and Ihha morphants, we demonstrated an essential role of Hh signaling in swimbladder development. Furthermore, time-specific Hh inhibition by cyclopamine revealed different requirements of Hh signaling in the formation and organization of all three tissue layers of swimbladder.  相似文献   

18.
Metabolic syndrome is a low-grade inflammatory state in which oxidative stress is involved. Naringin, isolated from the Citrussinensis, is a phenolic compound with anti-oxidative and anti-inflammatory activities. The aim of this study was to explore the effects of naringin on metabolic syndrome in mice. The animal models, induced by high-fat diet in C57BL/6 mice, developed obesity, dyslipidemia, fatty liver, liver dysfunction and insulin resistance. These changes were attenuated by naringin. Further investigations revealed that the inhibitory effect on inflammation and insulin resistance was mediated by blocking activation of the MAPKs pathways and by activating IRS1; the lipid-lowering effect was attributed to inhibiting the synthesis way and increasing fatty acid oxidation; the hypoglycemic effect was due to the regulation of PEPCK and G6pase. The anti-oxidative stress of naringin also participated in the improvement of insulin resistance and lipogenesis. All of these depended on the AMPK activation. To confirm the results of the animal experiment, we tested primary hepatocytes exposed to high glucose system. Naringin was protective by phosphorylating AMPKα and IRS1. Taken together, these results suggested that naringin protected mice exposed to a high-fat diet from metabolic syndrome through an AMPK-dependent mechanism involving multiple types of intracellular signaling and reduction of oxidative damage.  相似文献   

19.
Low-folate (LF) nutritional status is associated with increased risks of lung cancer. It has unexplored effects on lung cancer malignancy, a cancer stem cell (CSC) disease. We hypothesized that LF may reprogram CSC-like potential and bioenergetics metabolism to increase metastasis potential of lung cancers. Cultivation of human non-small-cell lung cancer cells (H23) in an LF medium enhanced CSC-like properties signified by increased expressions of the CSC surface marker CD44 and pluripotency markers Sox2, Oct4 and ALDH1A1, and promoted self-renewal ability of anchorage-independent oncospheroid formation. The CSC-like phenotype of LF-treated H23 cells coupled with the metabolic reprogramming to aerobic glycolysis evident by elevated lactate release and medium acidification suppressed expressions of pyruvate dehydrogenase E1-α, and elevated redox status of the NADH/NAD+ and NADPH/NADP+ ratios. The LF-induced metabostemness phenotype of H23 cells was modified by DNA methylation inhibitor 5-AdC and histone acetylation inhibitor EX. Treatment of H23 cells with mTOR siRNA or the mTOR inhibitor rapamycin abrogated LF-activated Akt-mTOR-Hif1-Foxo signaling and stemness-associated sonic hedgehog pathway, reversed Warburg metabolic switch and diminished invasion of H23 cells. Intrapleural injection of LF-induced lung oncospheres into the LF recipient mice, but not the control recipient mice, caused metastasis xenograft lung tumors. The in vitro and in vivo data corroboratively demonstrate that LF stress reprograms metabostemness signatures through activated mTOR signaling pathway to promote metastasis tumorigenicity of lung cancers.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号