首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The human natural killer cell antigen-1 (HNK-1) is functionally important in development, synaptic activity, and regeneration after injury in the nervous system of several mammalian species. It contains a sulfated glucuronic acid which is carried by neural adhesion molecules and expressed in nonmammalian species, including zebrafish, which, as opposed to mammals, spontaneously regenerate after injury in the adult. To evaluate HNK-1’s role in recovery of function after spinal cord injury (SCI) of adult zebrafish, we assessed the effects of the two HNK-1 synthesizing enzymes, glucuronyl transferase and HNK-1 sulfotransferase. Expression of these two enzymes was increased at the messenger RNA (mRNA) level 11 days after injury in the brainstem nuclei that are capable of regrowth of severed axons, namely, the nucleus of medial longitudinal fascicle and intermediate reticular formation, but not at earlier time points after SCI. mRNA levels of glucuronyl transferase and sulfotransferase were increased in neurons, not only of these nuclei but also in the spinal cord caudal to the injury site at 11 days. Mauthner neurons which are not capable of regeneration did not show increased levels of enzyme mRNAs after injury. Reducing protein levels of the enzymes by application of anti-sense morpholinos resulted in reduction of locomotor recovery for glucuronyl transferase, but not for HNK-1 sulfotransferase. The combined results indicate that HNK-1 is upregulated in expression only in those neurons that are intrinsically capable of regeneration and contributes to regeneration after spinal cord injury in adult zebrafish in the absence of its sulfate moiety.  相似文献   

2.
3.
The mammalian target of rapamycin (mTOR) signaling pathway plays an important role in multiple cellular functions, such as cell metabolism, proliferation and survival. Many previous studies have shown that mTOR regulates both neuroprotective and neuroregenerative functions in trauma and various diseases in the central nervous system (CNS). Recently, we reported that inhibition of mTOR using rapamycin reduces neural tissue damage and locomotor impairment after spinal cord injury (SCI) in mice. Our results demonstrated that the administration of rapamycin at four hours after injury significantly increases the activity of autophagy and reduces neuronal loss and cell death in the injured spinal cord. Furthermore, rapamycin-treated mice show significantly better locomotor function in the hindlimbs following SCI than vehicle-treated mice. These findings indicate that the inhibition of mTOR signaling using rapamycin during the acute phase of SCI produces neuroprotective effects and reduces secondary damage at lesion sites. However, the role of mTOR signaling in injured spinal cords has not yet been fully elucidated. Various functions are regulated by mTOR signaling in the CNS, and multiple pathophysiological processes occur following SCI. Here, we discuss several unresolved issues and review the evidence from related articles regarding the role and mechanisms of the mTOR signaling pathway in neuroprotection and neuroregeneration after SCI.  相似文献   

4.
The mammalian target of rapamycin (mTOR) signaling pathway plays an important role in multiple cellular functions, such as cell metabolism, proliferation and survival. Many previous studies have shown that mTOR regulates both neuroprotective and neuroregenerative functions in trauma and various diseases in the central nervous system (CNS). Recently, we reported that inhibition of mTOR using rapamycin reduces neural tissue damage and locomotor impairment after spinal cord injury (SCI) in mice. Our results demonstrated that the administration of rapamycin at four hours after injury significantly increases the activity of autophagy and reduces neuronal loss and cell death in the injured spinal cord. Furthermore, rapamycin-treated mice show significantly better locomotor function in the hindlimbs following SCI than vehicle-treated mice. These findings indicate that the inhibition of mTOR signaling using rapamycin during the acute phase of SCI produces neuroprotective effects and reduces secondary damage at lesion sites. However, the role of mTOR signaling in injured spinal cords has not yet been fully elucidated. Various functions are regulated by mTOR signaling in the CNS, and multiple pathophysiological processes occur following SCI. Here, we discuss several unresolved issues and review the evidence from related articles regarding the role and mechanisms of the mTOR signaling pathway in neuroprotection and neuroregeneration after SCI.  相似文献   

5.
The oxidative mechanisms of injury-induced damage of neurons within the spinal cord are not very well understood. We used a model of T8-T9 spinal cord injury (SCI) in the rat to induce neuronal degeneration. In this spinal cord injury model, unilateral avulsion of the spinal cord causes oxidative stress of neurons. We tested the hypothesis that apurinic/apyrimidinic endonuclease (or redox effector factor-1, APE/Ref-1) regulates this neuronal oxidation mechanism in the spinal cord region caudal to the lesion, and that DNA damage is an early upstream signal. The embryonic neural stem cell therapy significantly decreased DNA-damage levels in both study groups - acutely (followed up to 7 days after SCI), and chronically (followed up to 28 days after SCI) injured animals. Meanwhile, mRNA levels of APE/Ref-1 significantly increased after embryonic neural stem cell therapy in acutely and chronically injured animals when compared to acute and chronic sham groups. Our data has demonstrated that an increase of APE/Ref-1 mRNA levels in the caudal region of spinal cord strongly correlated with DNA damage after traumatic spinal cord injury. We suggest that DNA damage can be observed both in lesional and caudal regions of the acutely and chronically injured groups, but DNA damage is reduced with embryonic neural stem cell therapy.  相似文献   

6.
Aberrant functionality of the cell cycle has been implicated in the pathology of traumatic SCI. Although it has been reported that the expressions of various cell cycle related proteins were altered significantly following SCI, detailed information on the subject remains largely unclear. The embryonic pyruvate kinase M2 (PKM2) is an important metabolic kinase in aerobic glycolysis or the warburg effect, however, its functions in central nervous system (CNS) injury remains elusive. Here we demonstrate that PKM2 was not only significantly upregulated by western blot and immunohistochemistry but certain traumatic stimuli also induced translocation of PKM2 into the nucleus in astrocytes following spinal cord injury (SCI). Furthermore, the expression levels and localization of p-β-catenin, p27, cyclin D1 and PCNA were correlated with PKM2 after SCI. In vitro, we also found that PKM2 co-immunoprecipitation with p-β-catenin and p27 respectively. Knockdown of PKM2 apparently decreased the level of PCNA, cyclinD1, p27 in primary astrocyte cells. Taken together, our findings indicate that nuclear translocation of PKM2 promotes astrocytes proliferation after SCI through modulating cell cycle signaling. These discoveries firstly uncovered the role of PKM2 in spinal cord injury and provided a potential therapeutic target for CNS injury and repair.  相似文献   

7.
Spinal cord injury frequently results in permanent loss of neurological function. It includes many complex molecular and biochemical mechanisms. G-protein-coupled receptor kinase 6 (GRK6) is an intracellular kinase that regulates the sensitivity of certain G-protein-coupled receptors. Some studies reported GRK2 and GRK5 modulate the NFκB pathway in macrophages. Additionally, GRK2 is referred to as regulating activation of spinal cord microglia and GRK6 expression is significantly elevated in most brain regions in the MPTP-lesioned parkinsonian monkeys. However, the expression and function of GRK6 in nervous system lesion and repair are not well understood. In this study, we performed an acute spinal cord injury (SCI) model in adult rats. Western blot analysis showed the expression of GRK6 was upregulated significantly at protein level in spinal cord after SCI. Immunohistochemistry and immunofluorescence revealed wide expression of GRK6 in the normal spinal cord. After injury, GRK6 expression was increased predominantly in microglia, which expressed F4/80 (marker of macrophages and activated microglia) strongly. To understand whether GRK6 played a role in microglia activation, we applied lipopolysaccharide (LPS) to induce microglia activation in vitro. Western blot analysis demonstrated up-regulation in GRK6 protein expression after LPS stimulation was time- and dose-dependent and that up-regulation in F4/80 expression was concomitant with GRK6. These data suggested that GRK6 might be involved in the pathophysiology of SCI.  相似文献   

8.
9.
Spinal cord injury (SCI) is a serious central trauma, leading to severe dysfunction of motor and sensory systems. Secondary injuries, such as apoptosis and cell autophagy, significantly impact the motor function recovery process. Metformin is a widely used oral anti-diabetic agent for type 2 diabetes in the world. It has been demonstrated to promote autophagy and inhibit apoptosis in the nervous system. However, its role in recovery following SCI is still unknown. In this study, we determined that motor function, assessed using the Basso, Beattie, and Bresnahan (BBB) locomotor assessment scale, was significantly higher in rats treated with metformin following injury. Nissl staining revealed that metformin also increased the number of surviving neurons in the spinal cord lesion. Western blot and immunofluorescent analysis revealed that mammalian target of rapamycin (mTOR) and P70S6 kinase (P70S6K) decreased, while the expression of autophagy markers increased and apoptosis markers declined in animals treated with metformin following SCI. Taken together, these findings suggest that metformin functions as a neuroprotective agent following SCI by promoting autophagy and inhibiting apoptosis by regulating the mTOR/P70S6K signaling pathway.  相似文献   

10.
Atrophy of upper motor neurons hampers axonal regeneration and functional recovery following spinal cord injury (SCI). Apart from the severity of primary injury, a series of secondary pathological damages including spinal cord edema and glial scar formation affect the fate of injured upper motor neurons. The aquaporin-4 (AQP4) water channel plays a critical role in water homeostasis and migration of astrocytes in the central nervous system, probably offering a new therapeutic target for protecting against upper motor neuron degeneration after SCI. To test this hypothesis, we examined the effect of AQP4 deficiency on atrophy of rubrospinal neurons after unilateral rubrospinal tract transection at the fourth cervical level in mice. AQP4 gene knockout (AQP4?/?) mice exhibited high extent of spinal cord edema at 72 h after lesion compared with wild-type littermates. AQP4?/? mice showed impairments in astrocyte migration toward the transected site with a greater lesion volume at 1 week after surgery and glial scar formation with a larger cyst volume at 6 weeks. More severe atrophy and loss of axotomized rubrospinal neurons as well as axonal degeneration in the rubrospinal tract rostral to the lesion were observed in AQP4?/? mice at 6 weeks after SCI. AQP4 expression was downregulated at the lesioned spinal segment at 3 days and 1 week after injury, but upregulated at 6 weeks. These results demonstrated that AQP4 not only mitigates spinal cord damage but also ameliorates retrograde degeneration of rubrospinal neurons by promoting edema clearance and glial scar formation after laceration SCI. This finding supports the notion that AQP4 may be a promising therapeutic target for SCI.  相似文献   

11.
目的:观察细胞外信号调节激酶1/2(ERK1/2)的活化在脊髓损伤引起抑郁中的作用。方法:应用Western blot和行为药理学方法,观察脊髓损伤后(SCI)大鼠内侧前额叶皮质内(mPFC)ERK1/2及磷酸化-ERK1/2(p-ERK1/2)的表达情况及ERK1/2磷酸化抑制剂U0126对抑郁样行为的影响。结果:脊髓损伤后的第2天到第8周,SCI模型大鼠的BBB评分均显著低于假手术组,差异具有统计学意义(p0.05)。脊髓损伤后8周-12周,SCI模型大鼠强迫游泳不动时间与假手术组相比明显缩短,mPFC内pERK1/2蛋白表达水平明显升高,总ERK 1/2的蛋白水平则未见组间差异,而给予U0126的大鼠的不动时间与给药之前相比明显延长增加,mPFC内pERK1/2蛋白表达水平较SCI模型大鼠明显降低,差异均具有统计学意义(P0.05)。结论:内侧前额叶皮质内ERK1/2的激活参与了脊髓损伤后引起的突触可塑性,在相关的抑郁样行为的产生中发挥了重要的作用。  相似文献   

12.
13.
Xu Z  Wang BR  Wang X  Kuang F  Duan XL  Jiao XY  Ju G 《Life sciences》2006,79(20):1895-1905
The enhanced production of nitric oxide (NO) via inducible nitric oxide synthase (iNOS) has been implicated in the pathogenesis of neuronal apoptosis after acute traumatic spinal cord injury (SCI). In the present study, to further characterize the pathways mediating the synthesis and release of NO, we examined activation of extracellular signal regulated kinase 1/2 (ERK1/2) and p38 mitogen-activated protein kinases (p38 MAPK) in microglia/macrophages in the injured area of adult rats subjected to a complete transection at the T10 vertebrae level and assessed their role in NO production and survival of neurons by using immunohistochemistry, Western blot, RT-PCR and pharmacological interventions. Results showed activation of microglia/macrophages featured by morphological changes, as visualized immunohistochemically with the marker OX-42, in the areas adjacent to the lesion epicenter 1 h after surgery. Concomitantly, iNOS mRNA and its protein in the activated microglia/macrophages were also significantly upregulated at early hours after surgery. Their levels were maximal at 6 h, persisted for at least 24 h, and returned to basal level 72 h after SCI. Furthermore, phosphorylated ERK1/2 and p38 MAPK were activated as well in microglia/macrophages in injured area with a similar time course as iNOS. With administration of L-NAME, a NOS inhibitor, the number of apoptotic neurons was clearly decreased, as assessed with TUNEL method at 24 h after SCI. In parallel, loss of neurons induced by SCI, assessed with NeuN immunohistochemistry, was also diminished. Moreover, the effect of inhibition of phosphorylation ERK1/2 and p38 MAPK by corresponding inhibitors PD98059 and SB203580 administered before and after SCI was also investigated. Inhibition of p38 effectively reduced iNOS mRNA expression and rescued neurons from apoptosis and death in the area adjacent to the lesion epicenter; whereas the inhibition of ERK1/2 had a smaller effect on decrease of iNOS mRNA and no long-term protective effect on cell loss. These results indicate the ERK1/2 and p38 MAPK signaling pathway, especially the latter, play an important role in NO-mediated degeneration of neuron in the spinal cord following SCI. Strategies directed to blocking the initiation of this cascade prove to be beneficial for the treatment of acute SCI.  相似文献   

14.
Progesterone (PROG) provides neuroprotection to the injured central and peripheral nervous system. These effects may be due to regulation of myelin synthesis in glial cells and also to direct actions on neuronal function. Both types of cells express classical intracellular PROG receptors (PR), while neurons additionally express the PROG membrane-binding site called 25-Dx. In motoneurons from rats with spinal cord injury (SCI), PROG restores to normal the deficient levels of choline acetyl-transferase and of alpha3 subunit Na,K-ATPase mRNA, while levels of the growth associated protein GAP-43 mRNA are further stimulated. Recent studies suggest that neurotrophins are possible mediators of hormone action, and in agreement with this assumption, PROG treatment of rats with SCI increases the expression of brain-derived neurotrophic factor (BDNF) at both the mRNA and protein levels in ventral horn motoneurons. In situ hybridization (ISH) has shown that SCI reduces BDNF mRNA levels by 50% in spinal motoneurons, while PROG administration to injured rats (4mg/kg/day during 3 days, s.c.) elicits a three-fold increase in grain density. In addition to enhancement of mRNA levels, PROG increases BDNF immunoreactivity in perikaryon and cell processes of motoneurons of the lesioned spinal cord, and also prevents the lesion-induced chromatolytic degeneration of spinal cord motoneurons as determined by Nissl staining. Our findings strongly indicate that motoneurons of the spinal cord are targets of PROG, as confirmed by the expression of PR and the regulation of molecular parameters. PROG enhancement of endogenous neuronal BDNF could provide a trophic environment within the lesioned spinal cord and might be part of the PROG activated-pathways to provide neuroprotection. Thus, PROG treatment constitutes a new approach to sustain neuronal function after injury.  相似文献   

15.
Protein kinases are critical signalling molecules for normal cell growth and development. CDK11p58 is a p34cdc2-related protein kinase, and plays an important role in normal cell cycle progression. However its distribution and function in the central nervous system (CNS) lesion remain unclear. In this study, we mainly investigated the protein expression and cellular localization of CDK11 during spinal cord injury (SCI). Western blot analysis revealed that CDK11p58 was not detected in normal spinal cord. It gradually increased, reached a peak at 3 day after SCI, and then decreased. The protein expression of CDK11p58 was further analyzed by immunohistochemistry. The variable immunostaining patterns of CDK11p58 were visualized at different periods of injury. Double immunofluorescence staining showed that CDK11 was co-expressed with NeuN, CNPase and GFAP. Co-localization of CDK11/active caspase-3 and CDK11/proliferating cell nuclear antigen (PCNA) were detected in some cells. Cyclin D3, which was associated with CDK11p58 and could enhance kinase activity, was detected in the normal and injured spinal cord. The cyclin D3 protein underwent a similar pattern with CDK11p58 during SCI. Double immunofluorescence staining indicated that CDK11 co-expressed with cyclin D3 in neurons and glial cells. Coimmunoprecipitation further showed that CDK11p58 and cyclin D3 interacted with each other in the damaged spinal cord. Thus, it is likely CDK11p58 and cyclin D3 could interact with each other after acute SCI. Another partner of CDK11p58 was β-1,4-galactosyltransferase 1 (β-1,4-GT 1). The co-localization of CDK11/β-1,4-GT 1 in the damaged spinal cord was revealed by immunofluorescence analysis. The cyclin D3-CDK4 complexes were also present by coimmunoprecipitation analysis. Taken together, these data suggested that both CDK11 and cyclin D3 may play important roles in spinal cord pathophysiology. The authors Yuhong Ji and Feng Xiao contributed equally to this work.  相似文献   

16.
17.
Objectives:Spinal cord injury (SCI) is an acute traumatic lesion of neurons in the spinal cord which has a high prevalence in the world, and has no effective surgical treatment. HSP70 is a molecular chaperone protein, serves a protective role in several different models of nervous system injury. The aim of the present study was to investigate the anti-inflammatory role of HSP70 in spinal cord injury and explore its mechanism.Methods:In vivo and in vitro models were constructed to mimic SCI. The Basso Mouse Scale (BMS) was applied to assess SCI degrees of the mouse model. Immunofluorescence (IF) was used for visualizing HSP70 and Iba1 in the spinal cord. Western blot assay was employed to quantify HSP70 and p65, and ELISA was for IL-1β and TNF-α.Results:The results showed that HSP70 expression decreased after SCI. HSP70 and Iba1 showed a decrease of co-localization in SCI mice. Further studies revealed that p65 was upregulated during the process of SCI. Overexpression of HSP70 inhibited the expression of p65 both in vitro and in vivo, and promoted the recovery of SCI mice.Conclusions:HSP70 was involved in the pathological process of spinal cord injury, HSP70 alleviated the spinal cord injury via inhibiting NF-κB signaling pathway.  相似文献   

18.
已知miR-144与细胞活化和增殖有关,然而其具体分子机制尚不明确。本研究发现miR-144通过靶向GRK5促进脊髓星形胶质细胞的活化。运用real-time PCR检测脊髓损伤和正常大鼠的脊髓组织及其脊髓星形胶质细胞中miR-144的表达,发现与正常的组织和细胞相比,miR-144在脊髓损伤组织和星形胶质细胞中的表达水平显著降低;Western印迹检测到脊髓损伤大鼠的星形胶质细胞中GFAP蛋白的表达显著低于正常大鼠,而GRK5蛋白的表达高于正常大鼠;MTT分析结果显示转染miR-144可显著提高脊髓损伤大鼠的星形胶质细胞活性,但对细胞增殖无明显作用;酶活性试剂盒分析发现miR-144显著提高了SOD和GSH活性;生物学信息分析和萤光素酶报告基因检测结果显示miR-144能靶向结合GRK5,并下调GRK5的表达;MiR-144 mimic转染或miR-144 mimic与pcDNA-GRK5共转染脊髓损伤的星形胶质细胞,发现miR-144转染能通过激活NF-κB通路消除pcDNA-GRK5引起的细胞活化抑制。综上所述,miR-144通过靶定结合癌基因GRK5来促进脊髓星形胶质细胞细胞的活化。  相似文献   

19.
The role of water channel aquaporin 1 (AQP-1) in uninjured or injured spinal cords is unknown. AQP-1 is weakly expressed in neurons and gray matter astrocytes, and more so in white matter astrocytes in uninjured spinal cords, a novel finding. As reported before, AQP-1 is also present in ependymal cells, but most abundantly in small diameter sensory fibers of the dorsal horn. Rat contusion spinal cord injury (SCI) induced persistent and significant four- to eightfold increases in AQP-1 levels at the site of injury (T10) persisting up to 11 months post-contusion, a novel finding. Delayed AQP-1 increases were also found in cervical and lumbar segments, suggesting the spreading of AQP-1 changes over time after SCI. Given that the antioxidant melatonin significantly decreased SCI-induced AQP-1 increases and that hypoxia inducible factor-1α was increased in acutely and chronically injured spinal cords, we propose that chronic hypoxia contributes to persistent AQP-1 increases after SCI. Interestingly; AQP-1 levels were not affected by long-lasting hypertonicity that significantly increased astrocytic AQP-4, suggesting that the primary role of AQP-1 is not regulating isotonicity in spinal cords. Based on our results we propose possible novel roles for AQP-1 in the injured spinal cords: (i) in neuronal and astrocytic swelling, as AQP-1 was increased in all surviving neurons and reactive astrocytes after SCI and (ii) in the development of the neuropathic pain after SCI. We have shown that decreased AQP-1 in melatonin-treated SCI rats correlated with decreased AQP-1 immunolabeling in the dorsal horns sensory afferents, and with significantly decreased mechanical allodynia, suggesting a possible link between AQP-1 and chronic neuropathic pain after SCI.  相似文献   

20.
The effects of mechanoreceptor stimulation and subsequent ATP release in spinal cord injured and normal bladders was examined to demonstrate if spinal cord injury (SCI) modulates the basal or evoked release of ATP from bladder urothelium and whether intravesical botulinum toxin A (BTX-A) administration inhibits urothelial ATP release, a measure of sensory nerve activation. A Ussing chamber was used to isolate and separately measure resting and mechanoreceptor evoked (e.g. hypoosmotic stimulation) ATP release from urothelial and serosal sides of the bladder. Following spinal cord injury, resting urothelial release of ATP was ninefold higher than that of normal rats. Botulinum toxin A instillation did not significantly affect the resting release of ATP after spinal cord injury. Evoked ATP release following hypoosmotic stimulation was significantly higher in chronic spinal cord injured compared to normal rat bladders. However, botulinum toxin A treatment markedly reduced ATP release in spinal cord injured bladders by 53% suggesting that ATP release by mechanoreceptor stimulation, as opposed to basal release, occurs by exocytotic mechanisms. In contrast, there was no significant difference in basal or evoked ATP release from bladder serosa following spinal cord injury. Moreover, intravesical instillation of botulinum toxin A did not affect ATP release from the serosal side after spinal cord injury, suggesting that its effects were confined to the urothelial side of the bladder preparation. In summary: (1) increased release of ATP from the urothelium of spinal cord injured bladders may contribute to the development of bladder hyperactivity and, (2) mechanoreceptor stimulated vesicular ATP release, as opposed to basal non-vesicular release of ATP, is significantly inhibited in spinal cord injured bladders by intravesical instillation of botulinum toxin A. These results may have important relevance in our understanding of the mechanisms underlying plasticity of bladder afferent pathways following SCI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号