首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Adipokines in inflammation and metabolic disease   总被引:3,自引:0,他引:3  
The worldwide epidemic of obesity has brought considerable attention to research aimed at understanding the biology of adipocytes (fat cells) and the events occurring in adipose tissue (fat) and in the bodies of obese individuals. Accumulating evidence indicates that obesity causes chronic low-grade inflammation and that this contributes to systemic metabolic dysfunction that is associated with obesity-linked disorders. Adipose tissue functions as a key endocrine organ by releasing multiple bioactive substances, known as adipose-derived secreted factors or adipokines, that have pro-inflammatory or anti-inflammatory activities. Dysregulated production or secretion of these adipokines owing to adipose tissue dysfunction can contribute to the pathogenesis of obesity-linked complications. In this Review, we focus on the role of adipokines in inflammatory responses and discuss their potential as regulators of metabolic function.  相似文献   

2.
Adipose tissue plays an important role in storing excess nutrients and preventing ectopic lipid accumulation in other organs. Obesity leads to excess lipid storage in adipocytes, resulting in the generation of stress signals and the derangement of metabolic functions. SIRT1 is an important regulatory sensor of nutrient availability in many metabolic tissues. Here we report that SIRT1 functions in adipose tissue to protect from inflammation and obesity under normal feeding conditions, and to forestall the progression to metabolic dysfunction under dietary stress and aging. Genetic ablation of SIRT1 in adipose tissue leads to gene expression changes that highly overlap with changes induced by high-fat diet in wild-type mice, suggesting that dietary stress signals inhibit the activity of SIRT1. Indeed, we show that high-fat diet induces the cleavage of SIRT1 protein in adipose tissue by the inflammation-activated caspase-1, providing a link between dietary stress and predisposition to metabolic dysfunction.  相似文献   

3.
Obesity is a pandemic disorder that can be defined as a chronic excess of adipose tissue that increases the risk of suffering chronic diseases such as, diabetes, arterial hypertension, stroke and some forms of cancer. We now know that adipose tissue, aside from being an energy store, is also an important endocrine and metabolic organ. Recently, new mechanisms that control obesity have been identified, such as the equilibrium between white and brown adipose tissue, the localization of adipose mass (visceral or ventral), and the presence of adipose and mesenchymal stem cells. In this review, we describe the implication of these stem cell types in the normal physiology and dysfunction of adipose tissue. These stem cells provide a potential target for modulating the response of the body to obesity and diabetes, as well as a potential tool for regenerative medicine.  相似文献   

4.
代谢综合症是一系列代谢和心血管功能失调的临床特征,包括中心性肥胖、高血压、血脂异常、高血糖及胰岛素抵抗等,其发病机制及如何预防及控制代谢综合症正日益成为目前的学术热点。目前已经公认,脂肪不仅是能量存储器官,也是一个重要的内分泌器官。脂肪组织分泌的生物活性分子被称为脂肪因子。近年来的研究表明,脂肪因子广泛参与肥胖、2型糖尿病、高血压病及心血管疾病等一系列代谢相关性疾病的病理生理过程。脂肪因子能通过介导一系列的信号转导通路,并广泛参与机体复杂的代谢平衡网络的调节。脂肪因子的失衡能导致机体发生对胰岛素敏感性改变等一系列的生物学反应,从而在肥胖和代谢综合症的病理过程中发挥重要的作用。本文综述了脂肪因子与代谢综合征的关系的研究进展。  相似文献   

5.
肥胖与代谢综合征是传统心血管疾病的危险因素.多项临床研究表明,肥胖也会增加患血栓性疾病(如急性心肌梗死和脑卒中)的风险.脂肪组织与血小板反应性增加和高凝状态形成以及纤溶功能降低等存在着重要联系.脂肪组织还是一个高度活跃的内分泌器官,其表达和分泌具有重要功能的脂肪因子和脂质代谢物参与调控全身代谢.深入地了解脂肪组织的内分...  相似文献   

6.
The intestine is an important metabolic organ that has gained attention in recent years for the newly identified role that it plays in the pathophysiology of various metabolic diseases including obesity, insulin resistance and diabetes. Recent insights regarding the role of enteroendocrine hormones, such as GIP, GLP-1, and PYY in metabolic diseases, as well as the emerging role of the gut microbial community and gastric bypass bariatric surgeries in modulating metabolic function and dysfunction have sparked a wave of interest in understanding the mechanisms involved, in an effort to identify new therapeutics and novel regulators of metabolism. This review summarizes the current evidence that the gastrointestinal tract has a key role in the development of obesity, inflammation, insulin resistance and diabetes and discusses the possible players that can be targeted for therapeutic intervention.  相似文献   

7.
Adiponectin is a well described anti-inflammatory adipokine that is highly abundant in serum. Previous reports have found that adiponectin deficiency promotes cardiovascular and metabolic dysfunction in murine models, whereas its overexpression is protective. Two candidate adiponectin receptors, AdipoR1 and AdipoR2, are uncharacterized with regard to cardiovascular tissue homeostasis, and their in vivo metabolic functions remain controversial. Here we subjected AdipoR1- and AdipoR2-deficient mice to chronic hind limb ischemic surgery. Blood flow recovery in AdipoR1-deficient mice was similar to wild-type; however, revascularization in AdipoR2-deficient mice was severely attenuated. Treatment with adiponectin enhanced the recovery of wild-type mice but failed to rescue the impairment observed in AdipoR2-deficient mice. In view of this divergent receptor function in the hind limb ischemia model, AdipoR1- and AdipoR2-deficient mice were also evaluated in a model of diet-induced obesity. Strikingly, AdipoR1-deficient mice developed severe metabolic dysfunction compared with wild type, whereas AdipoR2-deficient mice were protected from diet-induced weight gain and metabolic perturbations. These data show that AdipoR2, but not AdipoR1, is functionally important in an in vivo model of ischemia-induced revascularization and that its expression is essential for the revascularization actions of adiponectin. These data also show that, in contrast to revascularization responses, AdipoR1, but not AdipoR2 deficiency, leads to diet-induced metabolic dysfunction, revealing that these receptors have highly divergent roles in vascular and metabolic homeostasis.  相似文献   

8.
White and brown adipose stem cells: From signaling to clinical implications   总被引:1,自引:0,他引:1  
Epidemiological studies estimate that by the year 2030, 2.16 billion people worldwide will be overweight and 1.12 billion will be obese [1]. Besides its now established function as an endocrine organ, adipose tissue plays a fundamental role as an energy storage compartment. As such, adipose tissue is capable of extensive expansion or retraction depending on the energy balance or disease state of the host, a plasticity that is unparalleled in other organs and – under conditions of excessive energy intake – significantly contributes to the afore mentioned obesity pandemic. Expansion of adipose tissue is driven by both hypertrophy and hyperplasia of adipocytes, which can renew frequently to compensate for cell death. This underlines the importance of adipocyte progenitor cells within the distinct adipose tissue depots to control both energy storage and endocrine functions of adipose tissue. Here we summarize recent findings on the identity and plasticity of adipose stem cells, the involved signaling cascades, and potential clinical implications of these cells for the treatment of metabolic dysfunction in obesity. This article is part of a Special Issue entitled Brown and White Fat: From Signaling to Disease.  相似文献   

9.
胡雨荣  陈勇  刘勇 《生理学报》2021,73(1):115-125
在真核细胞中,内质网是蛋白合成、加工及质量监控的关键细胞器,也是Ca2+储存及脂质合成的重要场所.细胞通过未折叠蛋白响应(unfolded protein response,UPR)感应外界不同刺激引发的内质网应激,在维持细胞功能稳态中发挥至关重要的作用.在哺乳动物中,三个位于内质网的跨膜蛋白——肌醇依赖酶la(ino...  相似文献   

10.
Circadian oscillators play an indispensable role in the coordination of physiological processes with the cyclic changes in the physical environment. A significant number of recent clinical and molecular studies suggest that circadian biology may play an important role in the regulation of adipose and other metabolic tissue functions. In this discussion, we present the hypothesis that circadian dysfunction may be involved in the pathogenesis of obesity, type 2 diabetes, and the metabolic syndrome.  相似文献   

11.
Adipose tissue (AT) is recognized as a complex organ involved in major home-ostatic body functions, such as food intake, energy balance, immunomodulation, development and growth, and functioning of the reproductive organs. The role of AT in tissue and organ homeostasis, repair and regeneration is increasingly recognized. Different AT compartments (white AT, brown AT and bone marrow AT) and their interrelation with bone metabolism will be presented. AT-derived stem cell populations - adipose-derived mesenchymal stem cells and pluripotent-like stem cells. Multilineage differentiating stress-enduring and dedifferentiated fat cells can be obtained in relatively high quantities compared to other sources. Their role in different strategies of bone and fracture healing tissue engineering and cell therapy will be described. The current use of AT- or AT-derived stem cell populations for fracture healing and bone regenerative strategies will be presented, as well as major challenges in furthering bone regenerative strategies to clinical settings.  相似文献   

12.
Recent studies identifying obesity as a significant and increasingly more common cause of morbidity and mortality have intensified research efforts aimed at increasing our understanding of adipose tissue biology. These efforts have culminated in the discovery of several adipokines, or adipose tissue-derived hormones, that have been implicated in the regulation of multiple physiological functions, as well as the realization that adipose tissue dysfunction plays an important role in the pathogenesis of diseases such as obesity and diabetes. To better understand the role of adipose tissue in these physiological/pathological events, several studies have employed transgenic strategies to eliminate adipose tissue. However, these mouse models of congenital lipoatrophy/lipodystrophy exhibit severe metabolic and somatic cell dysfunction. To circumvent this limitation, we have characterized the first inducible fatless mouse. The FAT-ATTAC mouse is a transgenic model whereby expression of a myristoylated caspase 8-FKBP fusion protein enables selective ablation of adipocytes via induction of apoptosis that occurs upon treatment with a chemical dimerizer. The FAT-ATTAC mouse model not only has the advantage that adipocyte ablation be induced at any time during development, but it is also fully reversible, as adipose tissue regenerates after cessation of dimerizer treatment. The inducibility of this fatless mouse model holds potential for revealing novel physiological roles for adipose tissue as well as its contribution to the etiology and pathogenesis of various disease states. Here we describe several ongoing areas of research employing the FAT-ATTAC mouse; in addition we describe potential uses of the targeted transgenic apoptotic approach to study other cell types of interest.  相似文献   

13.
The adipose tissue (AT) has a major role in contributing to obesity-related pathologies through regulating systemic immunometabolism. The pathogenicity of the AT is underpinned by its remarkable plasticity to be reprogrammed during obesity, in the perspectives of tissue morphology, extracellular matrix (ECM) composition, angiogenesis, immunometabolic homoeostasis and circadian rhythmicity. Dysregulation in these features escalates the pathogenesis conferred by this endometabolic organ. Intriguingly, the potential to be reprogrammed appears to be an Achilles’ heel of the obese AT that can be targeted for the management of obesity and its associated comorbidities. Here, we provide an overview of the reprogramming processes of white AT (WAT), with a focus on their dynamics and pleiotropic actions over local and systemic homoeostases, followed by a discussion of potential strategies favouring therapeutic reprogramming. The potential involvement of AT remodelling in the pathogenesis of COVID-19 is also discussed.  相似文献   

14.
There is rapidly growing interest in the human microbiome because of its implication in metabolic disorders and inflammatory diseases. Consequently, understanding the biology of short chain fatty acids and their receptors has become very important for identifying novel therapeutic avenues. GPR41 and GPR43 have been recognized as the cognate receptors for SCFAs and their roles in metabolism and inflammation have drawn much attention in recent years. GPR43 is highly expressed on immune cells and has been suggested to play a role in inflammatory diseases such as inflammatory bowel disease. Both GPR41 and GPR43 have been implicated in diabetes and obesity via the regulation of adipose tissue and gastrointestinal hormones. So far, many studies have provided contradictory results, and therefore further research is required to validate these receptors as drug targets. We will also discuss the synthetic modulators of GPR41 and GPR43 that are critical to understanding the functions of these receptors. [BMB Reports 2014; 47(3): 173-178]  相似文献   

15.
In recent decades, a dramatic rise has been observed in the prevalence of obesity in childhood and adolescence, along with an increase in fetal microsomia rates. The increased risk of obesity during this key period in development negatively affects the health of the individual later in life. Immune cells residing and recruited to white adipose tissue have been highlighted as important factors contributing to the pathogenesis of childhood obesity. Immune dysfunction in the context of obesity begins early in childhood, which is different from the pathological characteristics and influencing factors of adipose immunity in adults. Here, we explore the current understanding of the roles of childhood and early life events that result in high risks for obesity by influencing adipose tissue immune dysfunction under the pathological condition of obesity. Such knowledge will help in determining the mechanisms of childhood and early life obesity in efforts to ameliorate chronic inflammation-related metabolic diseases.  相似文献   

16.
Omentin-1 is a recently recognized adipokine primarily originating in visceral adipose tissue. We posited that circulating omentin-1 could be an early marker of metabolic dysfunction. To this end, we examined the associations between circulating omentin-1, body fat (bioelectric impedance), an endocrine-metabolic profile (homeostasis model assessment for insulin resistance (HOMA(IR)), serum lipids, high-molecular-weight (HMW) adiponectin and blood pressure (BP)) and family history of obesity and diabetes in asymptomatic prepubertal children (n = 161; 77 boys and 84 girls; age 7 ± 1 year) with a normal distribution of height and weight. Increased circulating omentin-1 was associated with a poorer metabolic profile, with relatively higher HOMA(IR), fasting triacylglycerol, BP and familial prevalence of diabetes (all P < 0.005 to P < 0.0001), and relatively lower fraction of HMW adiponectin (P < 0.005), whereas no relationship was found with body weight or fat or with family history of obesity. All these associations were independent of age, gender and fat mass. In conclusion, circulating omentin-1 may become a marker of metabolic dysfunction integrating insulin sensitivity, markers of adipose-tissue metabolism and BP as early as in prepubertal childhood.  相似文献   

17.
Accumulating evidence indicates that metabolic dysfunction with visceral obesity is a major medical problem associated with the development of hypertension, type 2 diabetes (T2DM) and dyslipidemia, and ultimately severe cardiovascular and renal disease. Therefore, an effective anti-obesity treatment with a concomitant improvement in metabolic profile is important for the treatment of metabolic dysfunction with visceral obesity. Bofu-tsu-shosan (BOF) is one of oriental herbal medicine and is clinically available to treat obesity in Japan. Although BOF is a candidate as a novel therapeutic strategy to improve metabolic dysfunction with obesity, the mechanism of its beneficial effect is not fully elucidated. Here, we investigated mechanism of therapeutic effects of BOF on KKAy mice, a model of human metabolic disorders with obesity. Chronic treatment of KKAy mice with BOF persistently decreased food intake, body weight gain, low-density lipoprotein cholesterol and systolic blood pressure. In addition, both tissue weight and cell size of white adipose tissue (WAT) were decreased, with concomitant increases in the expression of adiponectin and peroxisome proliferator-activated receptors genes in WAT as well as the circulating adiponectin level by BOF treatment. Furthermore, gene expression of uncoupling protein-1, a thermogenesis factor, in brown adipose tissue and rectal temperature were both elevated by BOF. Intriguingly, plasma acylated-ghrelin, an active form of orexigenic hormone, and short-term food intake were significantly decreased by single bolus administration of BOF. These results indicate that BOF exerts a combinatorial favorable metabolic modulation including antihypertensive effect, at least partially, via its beneficial effect on adipose tissue function and its appetite-inhibitory property through suppression on the ghrelin system.  相似文献   

18.
Adipose tissue is a highly vascularized endocrine organ, and its secretion profiles may vary with obesity. Adiponectin is secreted by adipocytes that make up adipose tissue. Worldwide, obesity has been designated a serious health problem among women and is associated with a variety of metabolic disorders and an increased risk of developing cancer of the cervix, ovaries, uterus (uterine/endometrial), and breast. In this review, the potential link between obesity and female-specific malignancies is comprehensively presented by discussing significant features of the intriguing and complex molecule, adiponectin, with a focus on recent findings highlighting its molecular mechanism of action in female-specific carcinogenesis.  相似文献   

19.
Adipose tissue is a critical organ for nutrient sensing, energy storage and maintaining metabolic health. The failure of adipose tissue homeostasis leads to metabolic disease that is seen during obesity or aging. Local metabolic processes are coordinated by interacting microenvironments that make up the complexity and heterogeneity of the adipose tissue. Catecholamine-induced lipolysis, a critical pathway in adipocytes that drives the release of stored triglyceride as free fatty acid after stimulation, is impaired during aging. The impairment of this pathway is associated with a failure to maintain a healthy body weight, core body-temperature during cold stress or mount an immune response. Along with impairments in aged adipocytes, aging is associated with an accumulation of inflammation, immune cell activation, and increased dysfunction in the nervous and lymphatic systems within the adipose tissue. Together these microenvironments support the initiation of stimulated lipolysis and the transport of free fatty acid under conditions of metabolic homeostasis. However, during aging, the defects in these cellular systems result in a reduction in ability to stimulate lipolysis. This review will focus on how the immune, nervous and lymphatic systems interact during tissue homeostasis, review areas that are impaired with aging and discuss areas of research that are currently unclear.  相似文献   

20.
Yu Q  Wang Y  Yu Y  Li Y  Zhao S  Chen Y  Waqar AB  Fan J  Liu E 《Molecular biology reports》2012,39(7):7583-7589
The capsaicin receptor, known as transient receptor potential vanilloid subfamily member 1 (TRPV1), is an important membrane receptor that has been implicated in obesity, diabetes, metabolic syndrome and cardiovascular diseases. The rabbit model is considered excellent for studying cardiovascular and metabolic diseases, however, the tissue expression of TRPV1 and physiological functions of its ligand capsaicin on diet-induced obesity have not been fully defined in this model. In the current study, we investigated the tissue expression of TRPV1 in normal rabbits using real-time RT-PCR and Western blot analysis. Rabbit TRPV1 mRNA was highly expressed in a variety of organs, including the kidneys, adrenal gland, spleen and brain. A phylogenetic analysis showed that the amino acid sequence of rabbit TRPV1 was closer to human TRPV1 than rodent TRPV1. To examine the effect of capsaicin (a pungent compound in hot pepper) on body weight, rabbits were fed with either a high fat diet (as control) or high fat diet containing 1% hot pepper. We found that the body weight of the hot pepper-fed rabbits was significantly lower than the control group. We conclude that the intake of capsaicin can prevent diet-induced obesity and rabbit model is useful for the study of TRPV1 function in cardiovascular and metabolic diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号