首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The emergence of artemisinin‐resistant malaria in Southeast Asia is a major problem. The fact that many people become infected with malaria when they are outside has prompted the development of ‘spatial’ rather than topical repellents. The respective effects of one or four slow‐release emanators of metofluthrin, a pyrethroid, were tested in Pailin, Pursat and Koh Kong, Cambodia. Numbers of mosquitoes counted in outdoor landing catches when one or four emanators were suspended close to the collector were compared with control collections. In Pailin, the effects of emanators on catches in Furvela tent traps and Centers for Disease Control (CDC) light traps suspended underneath houses were also investigated. Rate ratios were used to determine differences. A total of 29 255 mosquitoes were collected over 2934 h of landing collections, 87 nights of tent trapping and 81 nights of light trap capture. In Pailin, landing rates were reduced by 48% by a single emanator and by 67% by four emanators (P < 0.001). Similar reductions were observed in the number of mosquitoes collected in tent traps and the number of anophelines only collected in light traps. Results were similar in Pursat, but, for unknown reasons, those in Koh Kong showed no difference between control and metofluthrin collections (P > 0.05). These findings suggest that although the product can produce a significant effect, it requires further improvement.  相似文献   

2.
ABSTRACT: BACKGROUND: Malaria is endemic on Bioko Island, Equatorial Guinea, with year-round transmission. In 2004 an intensive malaria control strategy primarily based on indoor residual spraying (IRS) was launched. The limited residual life of IRS poses particular challenges in a setting with year-round transmission, such as Bioko. Recent reports of outdoor biting by Anopheles gambiae are an additional cause for concern. In this study, the effect of the short residual life of bendiocarb insecticide and of children spending time outdoors at night, on malaria infection prevalence was examined. METHODS: Data from the 2011 annual malaria indicator survey and from standard WHO cone bioassays were used to examine the relationship between time since IRS, mosquito mortality and prevalence of infection in children. How often children spend time outside at night and the association of this behaviour with malaria infection were also examined. RESULTS: Prevalence of malaria infection in two to 14 year-olds in 2011 was 18.4 %, 21.0 % and 28.1 % in communities with median time since IRS of three, four and five months respectively. After adjusting for confounders, each extra month since IRS corresponded to an odds ratio (OR) of 1.44 (95 % CI 1.15-1.81) for infection prevalence in two to 14 year-olds. Mosquito mortality was 100 %, 96 %, 81 % and 78 %, at month 2, 3, 4 and 5 respectively after spraying. Only 4.1 % of children spent time outside the night before the survey between the hours of 22.00 and 06.00 and those who did were not at a higher risk of infection (OR 0.87, 95 % CI 0.50-1.54). Sleeping under a mosquito net provided additive protection (OR 0.68, 95 % CI 0.54-0.86). CONCLUSIONS: The results demonstrate the epidemiological impact of reduced mosquito mortality with time since IRS. The study underscores that in settings of year-round transmission there is a compelling need for longer-lasting IRS insecticides, but that in the interim, high coverage of long-lasting insecticidal nets (LLINs) may ameliorate the loss of effect of current shorterlasting IRS insecticides. Moreover, continued use of IRS and LLINs for indoor-oriented vector control is warranted given that there is no evidence that spending time outdoors at night increases infection prevalence in children.  相似文献   

3.
BackgroundInsecticide treated bed nets have been recommended and proven efficient as a measure to protect African populations from malaria mosquito vector Anopheles spp. This study evaluates the consequences of bed nets use on vectors resistance to insecticides, their feeding behavior and malaria transmission in Dielmo village, Senegal, were LLINs were offered to all villagers in July 2008.MethodsAdult mosquitoes were collected monthly from January 2006 to December 2011 by human landing catches (HLC) and by pyrethroid spray catches (PCS). A randomly selected sub-sample of 15–20% of An. gambiae s.l. collected each month was used to investigate the molecular forms of the An. gambiae complex, kdr mutations, and Plasmodium falciparum circumsporozoite (CSP) rate. Malaria prevalence and gametocytaemia in Dielmo villagers were measured quarterly.ResultsInsecticide susceptible mosquitoes (wild kdr genotype) presented a reduced lifespan after LLINs implementation but they rapidly adapted their feeding behavior, becoming more exophageous and zoophilic, and biting earlier during the night. In the meantime, insecticide-resistant specimens (kdr L1014F genotype) increased in frequency in the population, with an unchanged lifespan and feeding behaviour. P. falciparum prevalence and gametocyte rate in villagers decreased dramatically after LLINs deployment. Malaria infection rate tended to zero in susceptible mosquitoes whereas the infection rate increased markedly in the kdr homozygote mosquitoes.ConclusionDramatic changes in vector populations and their behavior occurred after the deployment of LLINs due to the extraordinary adaptative skills of An. gambiae s. l. mosquitoes. However, despite the increasing proportion of insecticide resistant mosquitoes and their almost exclusive responsibility in malaria transmission, the P. falciparum gametocyte reservoir continued to decrease three years after the deployment of LLINs.  相似文献   

4.
Yakob L 《Biology letters》2011,7(6):947-949
A cryptic subgroup of Anopheles gambiae sensu stricto mosquitoes was recently discovered in West Africa. This 'GOUNDRY' subgroup has increased susceptibility to Plasmodium falciparum, the most deadly form of malaria. Unusual for this major malaria vector, GOUNDRY mosquitoes also seem to bite exclusively outdoors. A mathematical model is developed to assess the epidemiological implications of current vector control tools, bednets and indoor residual spray, preferentially suppressing the more typical indoor biting mosquitoes. It is demonstrated that even if the GOUNDRY mosquitoes have a decreased preference for human blood, vector controls which select for increased GOUNDRY abundance relative to their indoor biting counterparts risks intensifying malaria transmission. Given the widely observed phenomenon of outdoor biting by major malaria vectors, this behaviour should not be ignored in future modelling efforts and warrants serious consideration in control programme strategy.  相似文献   

5.

Background

The opportunity to integrate vector management across multiple vector-borne diseases is particularly plausible for malaria and lymphatic filariasis (LF) control where both diseases are transmitted by the same vector. To date most examples of integrated control targeting these diseases have been unanticipated consequences of malaria vector control, rather than planned strategies that aim to maximize the efficacy and take the complex ecological and biological interactions between the two diseases into account.

Methodology/Principal Findings

We developed a general model of malaria and LF transmission and derived expressions for the basic reproductive number (R0) for each disease. Transmission of both diseases was most sensitive to vector mortality and biting rate. Simulating different levels of coverage of long lasting-insecticidal nets (LLINs) and larval control confirms the effectiveness of these interventions for the control of both diseases. When LF was maintained near the critical density of mosquitoes, minor levels of vector control (8% coverage of LLINs or treatment of 20% of larval sites) were sufficient to eliminate the disease. Malaria had a far greater R0 and required a 90% population coverage of LLINs in order to eliminate it. When the mosquito density was doubled, 36% and 58% coverage of LLINs and larval control, respectively, were required for LF elimination; and malaria elimination was possible with a combined coverage of 78% of LLINs and larval control.

Conclusions/Significance

Despite the low level of vector control required to eliminate LF, simulations suggest that prevalence of LF will decrease at a slower rate than malaria, even at high levels of coverage. If representative of field situations, integrated management should take into account not only how malaria control can facilitate filariasis elimination, but strike a balance between the high levels of coverage of (multiple) interventions required for malaria with the long duration predicted to be required for filariasis elimination.  相似文献   

6.
Despite the dependence of mosquito population dynamics on environmental conditions, the associated impact of climate and climate change on present and future malaria remains an area of ongoing debate and uncertainty. Here, we develop a novel integration of mosquito, transmission and economic modelling to assess whether the cost-effectiveness of indoor residual spraying (IRS) and long-lasting insecticidal nets (LLINs) against Plasmodium falciparum transmission by Anopheles gambiae s.s. mosquitoes depends on climatic conditions in low endemicity scenarios. We find that although temperature and rainfall affect the cost-effectiveness of IRS and/or LLIN scale-up, whether this is sufficient to influence policy depends on local endemicity, existing interventions, host immune response to infection and the emergence rate of insecticide resistance. For the scenarios considered, IRS is found to be more cost-effective than LLINs for the same level of scale-up, and both are more cost-effective at lower mean precipitation and higher variability in precipitation and temperature. We also find that the dependence of peak transmission on mean temperature translates into optimal temperatures for vector-based intervention cost-effectiveness. Further cost-effectiveness analysis that accounts for country-specific epidemiological and environmental heterogeneities is required to assess optimal intervention scale-up for elimination and better understand future transmission trends under climate change.  相似文献   

7.
Over the past decade the use of long‐lasting insecticidal nets (LLINs), in combination with improved drug therapies, indoor residual spraying (IRS), and better health infrastructure, has helped reduce malaria in many African countries for the first time in a generation. However, insecticide resistance in the vector is an evolving threat to these gains. We review emerging and historical data on behavioral resistance in response to LLINs and IRS. Overall the current literature suggests behavioral and species changes may be emerging, but the data are sparse and, at times unconvincing. However, preliminary modeling has demonstrated that behavioral resistance could have significant impacts on the effectiveness of malaria control. We propose seven recommendations to improve understanding of resistance in malaria vectors. Determining the public health impact of physiological and behavioral insecticide resistance is an urgent priority if we are to maintain the significant gains made in reducing malaria morbidity and mortality.  相似文献   

8.
The state of Sinaloa has one of the highest and most persistent malaria transmission levels in Mexico. Due to this situation, with resistance of the vector Anopheles pseudopunctipennis Theobald to DDT, the carbamate insecticide bendiocarb was evaluated as an alternative to DDT for residual house-spraying in village-scale trials during 1985-87. Application rates of the active ingredient per square metre of sprayable surface (ai/m2) were 0.4 g bendiocarb 80% wettable powder (80WP) and 2 g DDT 75% WP. Both insecticides failed to control mosquito populations. Human-bait mosquito densities were not altered as a result of insecticide spraying and human-bait collected mosquito mortality rates were low, suggesting little pre-biting insecticide contact due to avoidance or insufficient resting time indoors. Lower densities of indoor-resting mosquitoes were observed with DDT as opposed to bendiocarb treated houses. Anopheline mortality was higher (98-100%) when exposed for 1 h to 1% bendiocarb in standard WHO susceptibility tests and wall bioassays. Mortality-rates of 15-48% due to 1 h exposure to 4% DDT indicated that this insecticide may continue to be partially effective. House curtain and mark-recapture mosquito studies indicated that DDT produced higher excito-repellency than bendiocarb, as reflected by more mosquito landings but lower feeding rates, shorter resting period and earlier exit time from DDT sprayed houses. In the absence of insecticide, more than 50% of blood-fed An.pseudopunctipennis females exited from houses within 2-4 h of release, showing exophilic behaviour. The outdoor/indoor density ratio indicated that the majority were exophagic. These behavioural characteristics limit the usefulness of any residual insecticide against An.pseudopunctipennis.  相似文献   

9.
Residual transmission is the persistence of malaria transmission after scale-up of appropriate vector control tools and is one of the key challenges for malaria elimination today. Although long associated with outdoor biting, other mosquito behaviours such as partly feeding upon animals contribute greatly to sustaining transmission. Peri-domestic livestock can be used as decoy to protect humans from blood-seeking vectors but this approach often leads to an increased malaria risk in a phenomenon known as zoopotentiation. Treating the said livestock with drugs capable of killing intestinal parasites as well as mosquitoes that feed upon them has the potential to tackle malaria through a previously unexplored mechanism. The advantages and challenges associated with this approach are briefly discussed here. Numerous references are purposely provided.This article is part of the theme issue ‘Novel control strategies for mosquito-borne diseases’.  相似文献   

10.
Since the first evidence of pyrethroids resistance in 1999 in Benin, mutations have rapidly increased in mosquitoes and it is now difficult to design a study including a control area where malaria vectors are fully susceptible. Few studies have assessed the after effect of resistance on the success of pyrethroid based prevention methods in mosquito populations. We therefore assessed the impact of resistance on the effectiveness of pyrethroids based indoor residual spraying (IRS) in semi-field conditions and long lasting insecticidal nets (LLINs) in laboratory conditions. The results observed showed low repulsion and low toxicity of pyrethroids compounds in the test populations. The toxicity of pyrethroids used in IRS was significantly low with An. gambiae s.l (< 46%) but high for other predominant species such as Mansonia africana (93% to 97%). There were significant differences in terms of the repellent effect expressed as exophily and deterrence compared to the untreated huts (P<0.001). Furthermore, mortality was 23.71% for OlyseNet® and 39.06% for PermaNet®. However, with laboratory susceptible “Kisumu”, mortality was 100% for both nets suggesting a resistance within the wild mosquito populations. Thus treatment with pyrethroids at World Health Organization recommended dose will not be effective at reducing malaria in the coming years. Therefore it is necessary to study how insecticide resistance decreases the efficacy of particular pyrethroids used in pyrethroid-based vector control so that a targeted approach can be adopted.  相似文献   

11.
Insecticide-treated bednets (ITNs) are commonly used as a means of personal protection from malaria transmission by anopheline mosquitoes (Diptera: Culicidae). Long-lasting insecticidal nets (LLINs) have special treatments intended to remain effective after many washes. The present trials assessed the efficacy and wash-resistance of several production batches of PermaNet (polyester net coated with polymer resin containing pyrethroid insecticide deltamethrin 55 mg ai/m2) against malaria vectors in Pakistan, Iran and Tanzania compared to ITNs conventionally treated with alphacypermethrin 15 or 20 mg ai/m2, or deltamethrin 25 or 50 mg ai/m2. Insecticidal efficacy of the nets before and after repeated washing (using W.H.O. recommended and traditional local washing procedures) was monitored through contact bioassays with Anopheles and by experimental hut and outdoor platform tests. Local washing regimes gradually reduced the insecticidal efficacy of conventionally treated nets, but they were not exhausted, even after 21 washes. Using a more rigorous laboratory washing method, insecticide was more readily stripped from conventionally treated nets. PermaNet retained high efficacy after 21 washes, giving more than 97% mortality of Anopheles in contact bioassays with 3-min exposure. Using the more sensitive bioassay criterion of 'median time to knockdown', PermaNet showed no loss of insecticidal activity against Anopheles after washing repeatedly in 2 out of 6 trials; whereas in a further three trials knockdown activity of PermaNet and conventional ITNs declined at comparable rates. Higher mortality levels of Anopheles in contact bioassays did not always translate to superiority in experimental hut or enclosed platform trials. In only one of four comparative field trials did PermaNet out-perform conventional ITNs after washing: this was in the trial of PermaNet 2.0--the product with improved quality assurance. Because PermaNet and conventionally treated nets were both quite tolerant of local washing procedures, it is important in field trials to compare LLINs with conventional ITNs washed an equivalent number of times. Our comparison of PermaNet 2.0 against conventionally treated deltamethrin nets (CTDN) in Pakistan demonstrated superior performance of the LLIN after 20 washes in phase I and phase II bioassays, and this was corroborated by chemical assays of residual deltamethrin. Although PermaNet 2.0 has received WHOPES interim recommendation for malaria control purposes, its performance should be monitored in everyday use throughout its lifespan in various cultural settings to assess its durability and long-term effectiveness for malaria prevention and control. As many millions of conventionally treated nets are already in routine use, and these will require regular re-treatment, programme strategies should be careful to preserve the effectiveness of ITNS before and after establishing the reliability of LLINs in long-term use.  相似文献   

12.

Background

Increasing incidences of insecticide resistance in malaria vectors are threatening the sustainable use of contemporary chemical vector control measures. Fungal entomopathogens provide a possible additional tool for the control of insecticide-resistant malaria mosquitoes. This study investigated the compatibility of the pyrethroid insecticide permethrin and two mosquito-pathogenic fungi, Beauveria bassiana and Metarhizium anisopliae, against a laboratory colony and field population of West African insecticide-resistant Anopheles gambiae s.s. mosquitoes.

Methodology/Findings

A range of fungus-insecticide combinations was used to test effects of timing and sequence of exposure. Both the laboratory-reared and field-collected mosquitoes were highly resistant to permethrin but susceptible to B. bassiana and M. anisopliae infection, inducing 100% mortality within nine days. Combinations of insecticide and fungus showed synergistic effects on mosquito survival. Fungal infection increased permethrin-induced mortality rates in wild An. gambiae s.s. mosquitoes and reciprocally, exposure to permethrin increased subsequent fungal-induced mortality rates in both colonies. Simultaneous co-exposure induced the highest mortality; up to 70.3±2% for a combined Beauveria and permethrin exposure within a time range of one gonotrophic cycle (4 days).

Conclusions/Significance

Combining fungi and permethrin induced a higher impact on mosquito survival than the use of these control agents alone. The observed synergism in efficacy shows the potential for integrated fungus-insecticide control measures to dramatically reduce malaria transmission and enable control at more moderate levels of coverage even in areas where insecticide resistance has rendered pyrethroids essentially ineffective.  相似文献   

13.
Glunt KD  Thomas MB  Read AF 《PloS one》2011,6(9):e24968
Chemical insecticides are critical components of malaria control programs. Their ability to eliminate huge numbers of mosquitoes allows them to swiftly interrupt disease transmission, but that lethality also imposes immense selection for insecticide resistance. Targeting control at the small portion of the mosquito population actually responsible for transmitting malaria parasites to humans would reduce selection for resistance, yet maintain effective malaria control. Here, we ask whether simply lowering the concentration of the active ingredient in insecticide formulations could preferentially kill mosquitoes infected with malaria and/or those that are potentially infectious, namely, old mosquitoes. Using modified WHO resistance-monitoring assays, we exposed uninfected Anopheles stephensi females to low concentrations of the pyrethroid permethrin at days 4, 8, 12, and 16 days post-emergence and monitored survival for at least 30 days to evaluate the immediate and long-term effects of repeated exposure as mosquitoes aged. We also exposed Plasmodium chabaudi- and P. yoelii-infected An. stephensi females. Permethrin exposure did not consistently increase mosquito susceptibility to subsequent insecticide exposure, though older mosquitoes were more susceptible. A blood meal slightly improved survival after insecticide exposure; malaria infection did not detectably increase insecticide susceptibility. Exposure to low concentrations over successive feeding cycles substantially altered cohort age-structure. Our data suggest the possibility that, where high insecticide coverage can be achieved, low concentration formulations have the capacity to reduce disease transmission without the massive selection for resistance imposed by current practice.  相似文献   

14.

Background

Mosquitoes commute between blood-meal hosts and water. Thus, heterogeneity in human biting reflects underlying spatial heterogeneity in the distribution and suitability of larval habitat as well as inherent differences in the attractiveness, suitability and distribution of blood-meal hosts. One of the possible strategies of malaria control is to identify local vector species and then attack water bodies that contain their larvae.

Methods

Biting and host seeking, not oviposition, have been the focus of most previous studies of mosquitoes and malaria transmission. This study presents a mathematical model that incorporates mosquito oviposition behaviour.

Results

The model demonstrates that oviposition is one potential factor explaining heterogeneous biting and vector distribution in a landscape with a heterogeneous distribution of larval habitat. Adult female mosquitoes tend to aggregate around places where they oviposit, thereby increasing the risk of malaria, regardless of the suitability of the habitat for larval development. Thus, a water body may be unsuitable for adult mosquito emergence, but simultaneously, be a source for human malaria.

Conclusion

Larval density may be a misleading indicator of a habitat's importance for malaria control. Even if mosquitoes could be lured to oviposit in sprayed larval habitats, this would not necessarily mitigate – and might aggravate – the risk of malaria transmission. Forcing mosquitoes to fly away from humans in search of larval habitat may be a more efficient way to reduce the risk of malaria than killing larvae. Thus, draining, fouling, or filling standing water where mosquitoes oviposit can be more effective than applying larvicide.  相似文献   

15.
Vector control interventions have resulted in considerable reductions in malaria morbidity and mortality. When universal coverage cannot be achieved for financial or logistical reasons, the spatial arrangement of vector control is potentially important for optimizing benefits. This study investigated the effect of spatial clustering of vector control interventions on reducing the population of biting mosquitoes. A discrete-space continuous-time mathematical model of mosquito population dynamics and dispersal was extended to incorporate vector control interventions of insecticide treated bednets (ITNs), Indoor residual Spraying (IRS), and larviciding. Simulations were run at varying levels of coverage and degree of spatial clustering. At medium to high coverage levels of each of the interventions or in combination was more effective to spatially spread these interventions than to cluster them. Suggesting that when financial resources are limited, unclustered distribution of these interventions is more effective. Although it is often stated that locally high coverage is needed to achieve a community effect of ITNs or IRS, our results suggest that if the coverage of ITNs or IRS are insufficient to achieve universal coverage, and there is no targeting of high risk areas, the overall effects on mosquito densities are much greater if they are distributed in an unclustered way, rather than clustered in specific localities. Also, given that interventions are often delivered preferentially to accessible areas, and are therefore clustered, our model results show this may be inefficient. This study provides evidence that the effectiveness of an intervention can be highly dependent on its spatial distribution. Vector control plans should consider the spatial arrangement of any intervention package to ensure effectiveness is maximized.  相似文献   

16.
Pyrethroid resistance in mosquitoes   总被引:3,自引:0,他引:3  
Repeated blood feedings throughout their life span have made mosquitoes ideal transmitters of a wide variety of disease agents. Vector control is a very important part of the current global strategy for the control of mosquito-associated diseases and insecticide application is the most important component in this effort. Pyrethroids, which account for 25% of the world insecticide market, are currently the most widely used insecticides for the indoor control of mosquitoes and are the only chemical recommended for the treatment of mosquito nets, the main tool for preventing malaria in Africa. However, mosquito-borne diseases are now resurgent, largely because of insecticide resistance that has developed in mosquito vectors and the anti-parasite drug resistance of parasites. This paper reviews our current knowledge of the molecular mechanisms governing metabolic detoxification and the development of target site insensitivity that leads to pyrethroid resistance in mosquitoes.  相似文献   

17.

Introduction

High coverage of conventional and long-lasting insecticide treated nets (ITNs and LLINs) in parts of E Africa are associated with reductions in local malaria burdens. Shifts in malaria vector species ratio have coincided with the scale-up suggesting that some species are being controlled by ITNs/LLINs better than others.

Methods

Between 2005–2006 six experimental hut trials of ITNs and LLINs were conducted in parallel at two field stations in northeastern Tanzania; the first station was in Lower Moshi Rice Irrigation Zone, an area where An. arabiensis predominates, and the second was in coastal Muheza, where An. gambiae and An. funestus predominate. Five pyrethroids and one carbamate insecticide were evaluated on nets in terms of insecticide-induced mortality, blood-feeding inhibition and exiting rates.

Results

In the experimental hut trials mortality of An. arabiensis was consistently lower than that of An. gambiae and An. funestus. The mortality rates in trials with pyrethroid-treated nets ranged from 25–52% for An. arabiensis, 63–88% for An. gambiae s.s. and 53–78% for An. funestus. All pyrethroid-treated nets provided considerable protection for the occupants, despite being deliberately holed, with blood-feeding inhibition (percentage reduction in biting rates) being consistent between species. Veranda exiting rates did not differ between species. Percentage mortality of mosquitoes tested in cone bioassays on netting was similar for An. gambiae and An. arabiensis.

Conclusions

LLINs and ITNs treated with pyrethroids were more effective at killing An. gambiae and An. funestus than An. arabiensis. This could be a major contributing factor to the species shifts observed in East Africa following scale up of LLINs. With continued expansion of LLIN coverage in Africa An. arabiensis is likely to remain responsible for residual malaria transmission, and species shifts might be reported over larger areas. Supplementary control measures to LLINs may be necessary to control this vector species.  相似文献   

18.
Less than a century ago on the French Mediterranean coast, mosquitoes were responsible for a high rate of mortality from malaria. Today, mosquitoes are no more than a nuisance, but mosquito control is carried out actively to protect local residents and the economically important tourist trade. Along the Mediterranean coast, mosquito control makes use of environmental management:, biological control and insecticides. However, by use of detailed ecological maps, these control activities can be accurately targeted, leading to efficient control, reduced costs and minimal likelihood of insecticide resistance. In this article, Andre Gobinoud explains these techniques.  相似文献   

19.
Malaria (Plasmodium spp.) kills nearly one million people annually and this number will likely increase as drug and insecticide resistance reduces the effectiveness of current control strategies. The most important human malaria parasite, Plasmodium falciparum, undergoes a complex developmental cycle in the mosquito that takes approximately two weeks and begins with the invasion of the mosquito midgut. Here, we demonstrate that increased Akt signaling in the mosquito midgut disrupts parasite development and concurrently reduces the duration that mosquitoes are infective to humans. Specifically, we found that increased Akt signaling in the midgut of heterozygous Anopheles stephensi reduced the number of infected mosquitoes by 60–99%. Of those mosquitoes that were infected, we observed a 75–99% reduction in parasite load. In homozygous mosquitoes with increased Akt signaling parasite infection was completely blocked. The increase in midgut-specific Akt signaling also led to an 18–20% reduction in the average mosquito lifespan. Thus, activation of Akt signaling reduced the number of infected mosquitoes, the number of malaria parasites per infected mosquito, and the duration of mosquito infectivity.  相似文献   

20.

Background

In March 2008, the Solomon Islands and Vanuatu governments raised the goal of their National Malaria Programmes from control to elimination. Vector control measures, such as indoor residual spraying (IRS) and long-lasting insecticidal bed nets (LLINs) are key integral components of this programme. Compliance with these interventions is dependent on their acceptability and on the socio-cultural context of the local population. These factors need to be investigated locally prior to programme implementation.

Method

Twelve focus group discussions (FGDs) were carried out in Malaita and Temotu Provinces, Solomon Islands in 2008. These discussions explored user perceptions of acceptability and preference for three brands of long-lasting insecticide-treated bed nets (LLINs) and identified a number of barriers to their proper and consistent use.

Results

Mosquito nuisance and perceived threat of malaria were the main determinants of bed net use. Knowledge of malaria and the means to prevent it were not sufficient to guarantee compliance with LLIN use. Factors such as climate, work and evening social activities impact on the use of bed nets, particularly in men. LLIN acceptability plays a varying role in compliance with their use in villages involved in this study. Participants in areas of reported high and year round mosquito nuisance and perceived threat of malaria reported LLIN use regardless of any reported unfavourable characteristics. Those in areas of low or seasonal mosquito nuisance were more likely to describe the unfavourable characteristics of LLINs as reasons for their intermittent or non-compliance. The main criterion for LLIN brand acceptability was effectiveness in preventing mosquito bites and malaria. Discussions highlighted considerable confusion around LLIN care and washing which may be impacting on their effectiveness and reducing their acceptability in Solomon Islands.

Conclusion

Providing LLINs that are acceptable will be more important for improving compliance in areas of low or seasonal mosquito nuisance and malaria transmission. The implications of these findings on malaria elimination in Solomon Islands are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号