首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dehydroepiandrosterone (DHEA) is known to improve hyperglycemia in diabetic db/db mice that are obese and insulin resistant. In a previous study, we reported that DHEA suppresses the elevated hepatic gluconeogenic glucose-6-phosphatase (G6Pase) activity and gene expression in C57BL/KsJ-db/db mice. In the present study, we evaluated the total amount of gluconeogenesis using NaH[(14)C]CO(3) and hepatic glucose production using fructose as a substrate in primary cultured hepatocytes. Despite hyperinsulinemia, the glucose production of db/db mice in the total body and hepatocytes was elevated as compared to their heterozygote littermate C57BL/KsJ-db/+m mice. Administration of DHEA significantly decreased the blood glucose level and increased the plasma insulin level in db/db mice. Administration of DHEA decreased the elevated total body and hepatic glucose production in db/db mice. In addition, the glucose production in the primary cultured hepatocytes of db/db mice was decreased significantly by the direct addition of DHEA or DHEA-S to the medium. These results suggest that administration of DHEA suppresses the elevated total body and hepatic glucose production in db/db mice, and this effect on the liver is considered to result from increased plasma insulin and DHEA or DHEA-S itself.  相似文献   

2.
Linagliptin (TRADJENTA?) is a selective dipeptidyl peptidase-4 (DPP-4) inhibitor. DPP-4 inhibition attenuates insulin resistance and improves peripheral glucose utilization in humans. However, the effects of chronic DPP-4 inhibition on insulin sensitivity are not known. The effects of long-term treatment (3-4 weeks) with 3 mg/kg/day or 30 mg/kg/day linagliptin on insulin sensitivity and liver fat content were determined in diet-induced obese C57BL/6 mice. Chow-fed animals served as controls. DPP-4 activity was significantly inhibited (67-89%) by linagliptin (P<0.001). Following an oral glucose tolerance test, blood glucose concentrations (measured as area under the curve) were significantly suppressed after treatment with 3 mg/kg/day (-16.5% to -20.3%; P<0.01) or 30 mg/kg/day (-14.5% to -26.4%; P<0.05) linagliptin (both P<0.01). Liver fat content was significantly reduced by linagliptin in a dose-dependent manner (both doses P<0.001). Diet-induced obese mice treated for 4 weeks with 3 mg/kg/day or 30 mg/kg/day linagliptin had significantly improved glycated hemoglobin compared with vehicle (both P<0.001). Significant dose-dependent improvements in glucose disposal rates were observed during the steady state of the euglycemic-hyperinsulinemic clamp: 27.3 mg/kg/minute and 32.2 mg/kg/minute in the 3 mg/kg/day and 30 mg/kg/day linagliptin groups, respectively; compared with 20.9 mg/kg/minute with vehicle (P<0.001). Hepatic glucose production was significantly suppressed during the clamp: 4.7 mg/kg/minute and 2.1 mg/kg/minute in the 3 mg/kg/day and 30 mg/kg/day linagliptin groups, respectively; compared with 12.5 mg/kg/minute with vehicle (P<0.001). In addition, 30 mg/kg/day linagliptin treatment resulted in a significantly reduced number of macrophages infiltrating adipose tissue (P<0.05). Linagliptin treatment also decreased liver expression of PTP1B, SOCS3, SREBP1c, SCD-1 and FAS (P<0.05). Other tissues like muscle, heart and kidney were not significantly affected by the insulin sensitizing effect of linagliptin. Long-term linagliptin treatment reduced liver fat content in animals with diet-induced hepatic steatosis and insulin resistance, and may account for improved insulin sensitivity.  相似文献   

3.
Insulin resistance (IR) is a hallmark of pregnancy. Because increased visceral fat (VF) is associated with IR in nonpregnant states, we reasoned that fat accretion might be important in the development of IR during pregnancy. To determine whether VF depots increase in pregnancy and whether VF contributes to IR, we studied three groups of 6-mo-old female Sprague-Dawley rats: 1) nonpregnant sham-operated rats (Nonpreg; n = 6), 2) pregnant sham-operated rats (Preg; n = 6), and 3) pregnant rats in which VF was surgically removed 1 mo before mating (PVF-; n = 6). VF doubled by day 19 of pregnancy (Nonpreg 5.1 +/- 0.3, Preg 10.0 +/- 1.0 g, P < 0.01), and PVF- had similar amounts of VF compared with Nonpreg (PVF- 4.6 +/- 0.8 g). Insulin sensitivity was measured by hyperinsulinemic-euglycemic clamp in late gestation in chronically catheterized unstressed rats. Glucose IR (mg.kg(-1).min(-1)) was highest in Nonpreg (19.4 +/- 2.0), lowest in Preg (11.1 +/- 1.4), and intermediate in PVF- (14.7 +/- 0.6; P < 0.001 between all groups). During the clamp, Nonpreg had greater hepatic insulin sensitivity than Preg [hepatic glucose production (HGP): Nonpreg 4.5 +/- 1.3, Preg 9.3 +/- 0.5 mg.kg(-1).min(-1); P < 0.001]. With decreased VF, hepatic insulin sensitivity was similar to nonpregnant levels in PVF- (HGP 4.9 +/- 0.8 mg.kg(-1).min(-1)). Both pregnant groups had lower peripheral glucose uptake compared with Nonpreg. In parallel with hepatic insulin sensitivity, hepatic triglyceride content was increased in pregnancy (Nonpreg 1.9 +/- 0.4 vs. Preg 3.2 +/- 0.3 mg/g) and decreased with removal of VF (PVF- 1.3 +/- 0.4 mg/g; P < 0.05). Accretion of visceral fat is an important component in the development of hepatic IR in pregnancy, and accumulation of hepatic triglycerides is a mechanism by which visceral fat may modulate insulin action in pregnancy.  相似文献   

4.
5.
In this study, we tested the hypothesis that human neutrophil alpha-defensins (HNPs) inhibit hepatic glucose production through a signaling pathway distinct from insulin. The effect of HNP-1 on fasting blood glucose levels and the expression of hepatic gluconeogenic genes was first examined. Using hyperinsulinemic-euglycemic clamps, we determined the effect of HNP-1 on endogenous glucose production, hepatic expression of key gluconeogenic genes and glucose uptake in skeletal muscle in Zucker diabetic fatty rats. In isolated primary hepatocytes, we studied the effect of HNP-1 and -2 on glucose production, expression of gluconeogenic genes, and phosphorylation of Akt, c-Src, and FoxO1. Our results show that HNP-1 reduced blood glucose levels of both normal mice and Zucker diabetic fatty rats predominantly through suppression of hepatic glucose production. HNPs inhibited glycogenolysis and gluconeogenesis in isolated hepatocytes. HNPs also suppressed expression of key gluconeogenic genes including phosphoenoylpyruvate carboxyl kinase and glucose-6-phosphatase. To investigate the mechanism, we found that HNPs stimulated phosphorylation of Akt and FoxO1 without activating IRS1. Nevertheless, HNPs activated c-Src. Blockade of c-Src activity with either a chemical inhibitor PP2 or an alternative inhibitor CSK prevented the inhibitory effect of HNPs on gluconeogenesis. Together, our results support the hypothesis that HNPs can suppress hepatic glucose production through an intracellular mechanism distinct from the classical insulin signaling pathway.  相似文献   

6.
Excessive intake of fructose increases lipogenesis in the liver, leading to hepatic lipid accumulation and development of fatty liver disease. Metabolic alterations in the liver due to fructose intake have been reported in many studies, but the effect of fructose administration on hepatic gluconeogenesis is not fully understood. The aim of this study was to evaluate the acute effects of fructose administration on fasting-induced hepatic gluconeogenesis. C57BL/6J mice were administered fructose solution after 14 h of fasting and plasma insulin, glucose, free fatty acids, and ketone bodies were analysed. We also measured phosphorylated AKT and forkhead box O (FoxO) 1 protein levels and gene expression related to gluconeogenesis in the liver. Furthermore, we measured glucose production from pyruvate after fructose administration. Glucose-administered mice were used as controls. Fructose administration enhanced phosphorylation of AKT in the liver, without increase of blood insulin levels. Blood free fatty acids and ketone bodies concentrations were as high as those in the fasting group after fructose administration, suggesting that insulin-induced inhibition of lipolysis did not occur in mice administered with fructose. Fructose also enhanced phosphorylation of FoxO1 and suppressed gluconeogenic gene expression, glucose-6-phosphatase activity, and glucose production from pyruvate. The present study suggests that acute fructose administration suppresses fasting-induced hepatic gluconeogenesis in an insulin-independent manner.  相似文献   

7.
Chan CB  Liu X  He K  Qi Q  Jung DY  Kim JK  Ye K 《EMBO reports》2011,12(8):847-854
Dysfunction of hepatic insulin receptor tyrosine kinase (IRTK) causes the development of type 2 diabetes. However, the molecular mechanism regulating IRTK activity in the liver remains poorly understood. Here, we show that phosphoinositide 3-kinase enhancer A (PIKE-A) is a new insulin-dependent enhancer of hepatic IRTK. Liver-specific Pike-knockout (LPKO) mice display glucose intolerance with impaired hepatic insulin sensitivity. Specifically, insulin-provoked phosphoinositide 3-kinase/Akt signalling is diminished in the liver of LPKO mice, leading to the failure of insulin-suppressed gluconeogenesis and hyperglycaemia. Thus, hepatic PIKE-A has a key role in mediating insulin signal transduction and regulating glucose homeostasis in the liver.  相似文献   

8.
9.
Fasting hyperglycemia is observed in transgenic mice which overexpress insulin-like growth factor binding protein-1. In an attempt to understand the mechanisms underlying this observation we have examined glycogenolysis and gluconeogenesis in isolated hepatocytes from wild-type and transgenic mice. Glucose production from pyruvate was significantly less responsive to inhibition by insulin in hepatocytes from transgenic mice compared to hepatocytes from wild-type mice. Serum from transgenic mice resulted in more glucose production by hepatocytes than serum from wild-type mice. Serum alanine was increased while serum lactate was significantly reduced in transgenic mice compared to wild-type mice. Serum free fatty acids and beta-hydroxybutyrate were similar in both groups of mice. These data suggest that fasting hyperglycemia is due to enhanced gluconeogenesis, hepatic insulin resistance and increased serum gluconeogenic substrate in transgenic mice.  相似文献   

10.
Ruminant animals, as a result of the fermentative nature of their digestion, ordinarily absorb little or no hexose sugar from the gut. Their glucose needs must be met by gluconeogenesis, even postprandially. The role of insulin in regulating hepatic gluconeogenesis in ruminants has not been assessed. In this study the effect of insulin on net hepatic removal of the major glucose precursors was determined. Insulin was infused with glucose matched to maintain euglycemia. The insulin concentrations attained in plasma were within the physiological range. Insulin at low concentrations reduced the hepatic removal of lactate, glutamine, and glycerol. At higher concentrations of insulin the hepatic extractions of pyruvate and alanine were also reduced. Thus, in sheep insulin at physiological concentrations may reduce hepatic glucose output by altering the uptake of glucose precursors.  相似文献   

11.
Adipose tissue-derived adipokines play important roles in controlling systemic insulin sensitivity and energy balance. Our recent efforts to identify novel metabolic mediators produced by adipose tissue have led to the discovery of a highly conserved family of secreted proteins, designated as C1q/TNF-related proteins 1-10 (CTRP1 to -10). However, physiological functions regulated by CTRPs are largely unknown. Here we provide the first in vivo functional characterization of CTRP3. We show that circulating levels of CTRP3 are inversely correlated with leptin levels; CTRP3 increases with fasting, decreases in diet-induced obese mice with high leptin levels, and increases in leptin-deficient ob/ob mice. A modest 3-fold elevation of plasma CTRP3 levels by recombinant protein administration is sufficient to lower glucose levels in normal and insulin-resistant ob/ob mice, without altering insulin or adiponectin levels. The glucose-lowering effect in mice is linked to activation of the Akt signaling pathway in liver and a marked suppression of hepatic gluconeogenic gene expression. Consistent with its effects in mice, CTRP3 acts directly and independently of insulin to regulate gluconeogenesis in cultured hepatocytes. In humans, alternative splicing generates two circulating CTRP3 isoforms differing in size and glycosylation pattern. The two human proteins form hetero-oligomers, an association that does not require interdisulfide bond formation and appears to protect the longer isoform from proteolytic cleavage. Recombinant human CTRP3 also reduces glucose output in hepatocytes by suppressing gluconeogenic enzyme expression. This study provides the first functional evidence linking CTRP3 to hepatic glucose metabolism and establishes CTRP3 as a novel adipokine.  相似文献   

12.
Fasting readily induces hepatic steatosis. Hepatic steatosis is associated with hepatic insulin resistance. The purpose of the present study was to document the effects of 16 h of fasting in wild-type mice on insulin sensitivity in liver and skeletal muscle in relation to 1) tissue accumulation of triglycerides (TGs) and 2) changes in mRNA expression of metabolically relevant genes. Sixteen hours of fasting did not show an effect on hepatic insulin sensitivity in terms of glucose production in the presence of increased hepatic TG content. In muscle, however, fasting resulted in increased insulin sensitivity, with increased muscle glucose uptake without changes in muscle TG content. In liver, fasting resulted in increased mRNA expression of genes promoting gluconeogenesis and TG synthesis but in decreased mRNA expression of genes involved in glycogenolysis and fatty acid synthesis. In muscle, increased mRNA expression of genes promoting glucose uptake, as well as lipogenesis and beta-oxidation, was found. In conclusion, 16 h of fasting does not induce hepatic insulin resistance, although it causes liver steatosis, whereas muscle insulin sensitivity increases without changes in muscle TG content. Therefore, fasting induces differential changes in tissue-specific insulin sensitivity, and liver and muscle TG contents are unlikely to be involved in these changes.  相似文献   

13.
Leptin has been shown to improve insulin sensitivity and glucose metabolism in obese diabetic ob/ob mice, yet the mechanisms remain poorly defined. We found that 2 d of leptin treatment improved fasting but not postprandial glucose homeostasis, suggesting enhanced hepatic insulin sensitivity. Consistent with this hypothesis, leptin improved in vivo insulin receptor (IR) activation in liver, but not in skeletal muscle or fat. To explore the cellular mechanism by which leptin up-regulates hepatic IR activation, we examined the expression of the protein tyrosine phosphatase PTP1B, recently implicated as an important negative regulator of insulin signaling. Unexpectedly, liver PTP1B protein abundance was increased by leptin to levels similar to lean controls, whereas levels in muscle and fat remained unchanged. The ability of leptin to augment liver IR activation and PTP1B expression was also observed in vitro in human hepatoma cells (HepG2). However, overexpression of PTP1B in HepG2 cells led to diminished insulin-induced IR phosphorylation, supporting the role of PTP1B as a negative regulator of IR activation in hepatocytes. Collectively, our results suggest that leptin acutely improves hepatic insulin sensitivity in vivo with concomitant increases in PTP1B expression possibly serving to counterregulate insulin action and to maintain insulin signaling in proper balance.  相似文献   

14.
The present study was designed to explore the mechanism of action of walnut (the seed of Juglans regia) leaf and ridge on hepatic glucose metabolism in diabetic mice. Experimental diabetes was induced by intravenous administration of streptozotocin (60 mg/kg)and confirmed with an increase of blood glucose, 90–100% of the control, 72 hours later. Isolated extracts from walnut leaf and ridges were administered in a single effective dose of 400 mg/kg orally. Firstly, blood glucose was determined every 1 hour until 5 hours post administration of extracts. In the second experiment, the liver was surgically removed, 2 hours post treatment of diabetic animals with extracts, homogenized and used for measurement of key enzymes of glycogenolysis (glycogen phosphorylase, GP) and gluconeogenesis (phosphoenolpyruvate carboxykinase, PEPCK). Treatment by both leaf and ridge extracts decreased blood glucose and liver PEPCK activity and increased blood insulin and liver GP activity. It is concluded that walnut is able to lower blood glucose through inhibition of hepatic gluconeogenesis and secretion of pancreatic insulin.  相似文献   

15.
16.
Hepatic insulin resistance is one of the characteristics of type 2 diabetes and contributes to the development of hyperglycemia. How changes in hepatic glucose flux lead to insulin resistance is not clearly defined. We determined the effects of decreasing the levels of hepatic fructose 2,6-bisphosphate (F26P(2)), a key regulator of glucose metabolism, on hepatic glucose flux in the normal 129J mice. Upon adenoviral overexpression of a kinase activity-deficient 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase, the enzyme that determines F26P(2) level, hepatic F26P(2) levels were decreased twofold compared with those of control virus-treated mice in basal state. In addition, under hyperinsulinemic conditions, hepatic F26P(2) levels were much lower than those of the control. The decrease in F26P(2) leads to the elevation of basal and insulin-suppressed hepatic glucose production. Also, the efficiency of insulin to suppress hepatic glucose production was decreased (63.3 vs. 95.5% suppression of the control). At the molecular level, a decrease in insulin-stimulated Akt phosphorylation was consistent with hepatic insulin resistance. In the low hepatic F26P(2) states, increases in both gluconeogenesis and glycogenolysis in the liver are responsible for elevations of hepatic glucose production and thereby contribute to the development of hyperglycemia. Additionally, the increased hepatic gluconeogenesis was associated with the elevated mRNA levels of peroxisome proliferator-activated receptor-gamma coactivator-1alpha and phosphoenolpyruvate carboxykinase. This study provides the first in vivo demonstration showing that decreasing hepatic F26P(2) levels leads to increased gluconeogenesis in the liver. Taken together, the present study demonstrates that perturbation of glucose flux in the liver plays a predominant role in the development of a diabetic phenotype, as characterized by hepatic insulin resistance.  相似文献   

17.
Besides its well established role in control of cellular cholesterol homeostasis, the liver X receptor (LXR) has been implicated in the regulation of hepatic gluconeogenesis. We investigated the role of the major hepatic LXR isoform in hepatic glucose metabolism during the feeding-to-fasting transition in vivo. In addition, we explored hepatic glucose sensing by LXR during carbohydrate refeeding. Lxralpha(-/-) mice and their wild-type littermates were subjected to a fasting-refeeding protocol and hepatic carbohydrate fluxes as well as whole body insulin sensitivity were determined in vivo by stable isotope procedures. Lxralpha(-/-) mice showed an impaired response to fasting in terms of hepatic glycogen depletion and triglyceride accumulation. Hepatic glucose 6-phosphate turnover was reduced in 9-h fasted Lxralpha(-/-) mice as compared with controls. Although hepatic gluconeogenic gene expression was increased in 9-h fasted Lxralpha(-/-) mice compared with wild-type controls, the actual gluconeogenic flux was not affected by Lxralpha deficiency. Hepatic and peripheral insulin sensitivity were similar in Lxralpha(-/-) and wild-type mice. Compared with wild-type controls, the induction of hepatic lipogenic gene expression was blunted in carbohydrate-refed Lxralpha(-/-) mice, which was associated with lower plasma triglyceride concentrations. Yet, expression of "classic" LXR target genes Abca1, Abcg5, and Abcg8 was not affected by Lxralpha deficiency in carbohydrate-refed mice. In summary, these studies identify LXRalpha as a physiologically relevant mediator of the hepatic response to fasting. However, the data do not support a role for LXR in hepatic glucose sensing.  相似文献   

18.
19.
Hexokinase domain containing 1, a recently discovered putative fifth hexokinase, is hypothesized to play key roles in glucose metabolism. Specifically, during pregnancy in a recent genome wide association study (GWAS), a strong correlation between HKDC1 and 2-h plasma glucose in pregnant women from different ethnic backgrounds was shown. Our earlier work also reported diminished glucose tolerance during pregnancy in our whole body HKDC1 heterozygous mice. Therefore, we hypothesized that HKDC1 plays important roles in gestational metabolism, and designed this study to assess the role of hepatic HKDC1 in whole body glucose utilization and insulin action during pregnancy. We overexpressed human HKDC1 in mouse liver by injecting a human HKDC1 adenoviral construct; whereas, for the liver-specific HKDC1 knockout model, we used AAV-Cre constructs in our HKDC1fl/fl mice. Both groups of mice were subjected to metabolic testing before and during pregnancy on gestation day 17–18. Our results indicate that hepatic HKDC1 overexpression during pregnancy leads to improved whole-body glucose tolerance and enhanced hepatic and peripheral insulin sensitivity while hepatic HKDC1 knockout results in diminished glucose tolerance. Further, we observed reduced gluconeogenesis with hepatic HKDC1 overexpression while HKDC1 knockout led to increased gluconeogenesis. These changes were associated with significantly enhanced ketone body production in HKDC1 overexpressing mice, indicating that these mice shift their metabolic needs from glucose reliance to greater fat oxidation and ketone utilization during fasting. Taken together, our results indicate that hepatic HKDC1 contributes to whole body glucose disposal, insulin sensitivity, and aspects of nutrient balance during pregnancy.  相似文献   

20.
We determined whether insulin therapy changes liver fat content (LFAT) or hepatic insulin sensitivity in type 2 diabetes. Fourteen patients with type 2 diabetes (age 51+/-2 yr, body mass index 33.1+/-1.4 kg/m2) treated with metformin alone received additional basal insulin for 7 mo. Liver fat (proton magnetic resonance spectroscopy), fat distribution (MRI), fat-free and fat mass, and whole body and hepatic insulin sensitivity (6-h euglycemic hyperinsulinemic clamp combined with infusion of [3-(3)H]glucose) were measured. The insulin dose averaged 75+/-10 IU/day (0.69+/-0.08 IU/kg, range 24-132 IU/day). Glycosylated hemoglobin A1c (Hb A1c) decreased from 8.9+/-0.3 to 7.4+/-0.2% (P<0.001). Whole body insulin sensitivity increased from 2.21+/-0.38 to 3.08+/-0.40 mg/kg fat-free mass (FFM).min (P<0.05). This improvement could be attributed to enhanced suppression of hepatic glucose production (HGP) by insulin (HGP 1.04+/-0.28 vs. 0.21+/-0.19 mg/kg FFM.min, P<0.01). The percent suppression of HGP by insulin increased from 72+/-8 to 105+/-11% (P<0.01). LFAT decreased from 17+/-3 to 14+/-3% (P<0.05). The change in LFAT was significantly correlated with that in hepatic insulin sensitivity (r=0.56, P<0.05). Body weight increased by 3.0+/-1.1 kg (P<0.05). Of this, 83% was due to an increase in fat-free mass (P<0.01). Fat distribution and serum adiponectin concentrations remained unchanged while serum free fatty acids decreased significantly. Conclusions: insulin therapy improves hepatic insulin sensitivity and slightly but significantly reduces liver fat content, independent of serum adiponectin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号