首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Capric acid (C10:0), a medium chain fatty acid, was evaluated for its anti-methanogenic activity and its potential to modify the rumen biohydrogenation of linoleic (C18:2n-6) and α-linolenic acids (C18:3n-3). A standard dairy concentrate (0.5 g), supplemented with sunflower oil (10 mg) and linseed oil (10 mg) and increasing doses of capric acid (0, 10, 20 and 30 mg), was incubated with mixed rumen contents and buffer (1 : 4 v/v) for 24 h. The methane inhibitory effect of capric acid was more pronounced at the highest (30 mg) dose compared to the medium (20 mg) (-85% v. -34%), whereas the lower dose (10 mg) did not reduce rumen methanogenesis. A 23% decrease in total short-chain fatty acid (SCFA) production was observed, accompanied by shifts towards increased butyrate at 20 mg and increased propionate at 30 mg of capric acid (P < 0.001). Capric acid linearly decreased the extent of biohydrogenation of C18:2n-6 and C18:3n-3, by up to 60% and 86%, respectively. This reduction was partially due to a lower extent of lipolysis when capric acid was supplemented. Capric acid at 20 and 30 mg completely inhibited the production of C18:0 (P < 0.001), resulting in an accumulation of biohydrogenation intermediates, mainly C18:1t10 + t11 and C18:2t11c15. In contrast to effects on rumen fermentation (methane production and proportions of SCFA), 30 mg of capric acid did not induce major changes in rumen biohydrogenation as compared to the medium (20 mg) dose. This study revealed the dual action of capric acid, being inhibitory to both methane production and biohydrogenation of C18:2n-6 and C18:3n-3.  相似文献   

2.
This study describes the effect of substituting dietary linoleic acid (18:2 n-6) with α-linolenic acid (18:3 n-3) on sucrose-induced insulin resistance (IR). Wistar NIN male weanling rats were fed casein based diet containing 22 energy percent (en%) fat with ~6, 9 and 7 en% saturated fatty acids (SFA), monounsaturated fatty acids (MUFA) and polyunsaturated fatty acids (PUFA) respectively for 3 months. IR was induced by replacing starch (ST) with sucrose (SU). Blends of groundnut, palmolein, and linseed oil in different proportions furnished the following levels of 18:3 n-3 (g/100 g diet) and 18:2 n-6/18:3 n-3 ratios respectively: ST-220 (0.014, 220), SU-220 (0.014, 220), SU-50 (0.06, 50), SU-10 (0.27, 10) and SU-2 (1.1, 2). The results showed IR in the sucrose fed group (SU-220) as evidenced by increase in fasting plasma insulin and area under the curve (AUC) of insulin in response to oral glucose load. In SU-220, the increase in adipocyte plasma membrane cholesterol/phospholipid ratio was associated with a decrease in fluidity, insulin stimulated glucose transport, antilipolytic effect of insulin and increase in basal and norepinephrine stimulated lipolysis in adipocytes. In SU-50, sucrose induced alterations in adipocyte lipolysis and antilipolysis were normalized. However, in SU-2, partial corrections in plasma insulin, AUC of insulin and adipocyte insulin stimulated glucose transport were observed. Further, plasma triglycerides and cholesterol decreased in SU-2. In diaphragm phospholipids, the observed dose dependent increase in long chain (LC) n-3 PUFA was associated with a decrease in LC-n-6 PUFA but insulin stimulated glucose transport increased only in SU-2. Thus, this study shows that the substitution of one-third of dietary 18:2 n-6 with 18:3 n-3 (SU-2) results in lowered blood lipid levels and increases peripheral insulin sensitivity, possibly due to the resulting high LCn-3 PUFA levels in target tissues of insulin action. These findings suggest a role for 18:3 n-3 in the prevention of insulin resistant states. The current recommendation to increase 18:3 n-3 intake for reducing cardiovascular risk may also be beneficial for preventing IR in humans.  相似文献   

3.
Oxidation products of the poly-unsaturated fatty acids (PUFAs) arachidonic acid, α-linolenic acid and docosahexaenoic acid are bioactive in plants and animals as shown for the cyclopentenones prostaglandin 15d-PGJ2 and PGA2, cis-(+)-12-oxophytodienoic acid (12-OPDA), and 14-A-4 neuroprostane. In this study an inexpensive and simple enzymatic multi-step one-pot synthesis is presented for 12-OPDA, which is derived from α-linolenic acid, and the analogous docosahexaenoic acid (DHA)-derived cyclopentenone [(4Z,7Z,10Z)-12-[[-(1S,5S)-4-oxo-5-(2Z)-pent-2-en-1yl]-cyclopent-2-en-1yl] dodeca-4,7,10-trienoic acid, OCPD]. The three enzymes utilized in this multi-step cascade were crude soybean lipoxygenase or a recombinant lipoxygenase, allene oxide synthase and allene oxide cyclase from Arabidopsis thaliana. The DHA-derived 12-OPDA analog OCPD is predicted to have medicinal potential and signaling properties in planta. With OCPD in hand, it is shown that this compound interacts with chloroplast cyclophilin 20-3 and can be metabolized by 12-oxophytodienoic acid reductase (OPR3) which is an enzyme relevant for substrate bioactivity modulation in planta.  相似文献   

4.
A coiling-inducing factor was isolated from tendrils of Bryonia dioica Jacq. and identified by infrared, 1H-, 13C-nuclear magnetic resonance and mass spectrometry as -linolenic acid. When applied to detached tendrils, exogenous -linolenic acid, but not linoleic acid or oleic acid, induced tendril coiling. Further investigations showed that metabolites of -linolenic acid, jasmonic acid and, even more so, methyljasmonate, are highly effective inducers of tendril coiling in B. dioica. Methyljasmonate was most active when administered by air and, in atmospheric concentrations as low as 40–80 nM, induced a full free-coiling response with kinetics similar to mechanical stimulation. Even atmospheric levels as low as 4–5 nM methyljasmonate were still found to be significantly active. Methyljasmonate could be one of the endogenous chemical signals produced in mechanically stimulated parts of a tendril and, being highly volatile, act as a diffusible gaseous mediator spreading through the intracellular spaces to trigger free coiling of tendrils.Abbreviations EI-MS electron impact-mass spectrometry - HPLC high-performance liquid chromatography - IAA indole-3-acetic acid - NMR nuclear magnetic resonance - TFA trifluoroacetic acid We are indebted to the Deutsche Forschungsgemeinschaft, Bonn and the Fonds der Chemischen Industrie, Frankfurt (literature provision) for their support and to Dr. C. Brückner, Halle, for jasmonic-acid determinations.  相似文献   

5.
The metabolites of linoleic (LA) and -linolenic (ALA) acids are involved in coronary heart disease. Both n-6 and n-3 essential fatty acids (EFAs) are likely to be important in prevention of atherosclerosis since the common risk factors are associated with their reduced 6-desaturation. We previously demonstrated the ability of heart tissue to desaturate LA. In this study we examined the ability of cultured cardiomyocytes to metabolize both LA and ALA in vivo, in the absence and in the presence of gamma linolenic acid (GLA), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) alone or combined together. In control conditions, about 25% of LA and about 90% of ALA were converted in PUFAs. GLA supplementation had no influence on LA conversion to more unsaturated fatty acids, while the addition of n-3 fatty acids, alone or combined together, significantly decreased the formation of interconversion products from LA. Using the combination of n-6 and n-3 PUFAs, GLA seemed to counterbalance partially the inhibitory effect of EPA and DHA on LA desaturation/elongation. The conversion of ALA to more unsaturated metabolites was greatly affected by GLA supplementation. Each supplemented fatty acid was incorporated to a significant extent into cardiomyocyte lipids, as revealed by gas chromatographic analysis. The n-6/n-3 fatty acid ratio was greatly influenced by the different supplementations; the ratio in GLA+EPA+DHA supplemented cardiomyocytes was the most similar to that recorded in control cardiomyocytes. Since important risk factors for coronary disease may be associated with reduced 6-desaturation of the parent EFAs, administration of n-6 or n-3 EFA metabolites alone could cause undesirable effects. Since they appear to have different and synergistic roles, only combined treatment with both n-6 and n-3 metabolites is likely to achieve optimum results.  相似文献   

6.
7.
The intake of the essential fatty acid precursor α-linolenic acid (ALA) contributes to ensure adequate n-3 long-chain polyunsaturated fatty acid (LC-PUFA) bioavailability. Conversely, linoleic acid (LA) intake may compromise tissue n-3 PUFA status as its conversion to n-6 LC-PUFA shares a common enzymatic pathway with the n-3 family. This study aimed to measure dietary ALA and LA contribution to LC-PUFA biosynthesis and tissue composition. Rats were fed with control or experimental diets moderately enriched in ALA or LA for 8 weeks. Liver Δ6- and Δ5-desaturases were analyzed and FA composition was determined in tissues (red blood cells, liver, brain and heart). Hepatic Δ6-desaturase activity was activated with both diets, and Δ5-desaturase activity only with the ALA diet. The ALA diet led to higher n-3 LC-PUFA composition, including DHA in brain and heart. The LA diet reduced n-3 content in blood, liver and heart, without impacting n-6 LC-PUFA composition. At levels relevant with human nutrition, increasing dietary ALA and reducing LA intake were both beneficial in increasing n-3 LC-PUFA bioavailability in tissues.  相似文献   

8.
The synthetic DOX–LNA conjugate was characterized by proton nuclear magnetic resonance and mass spectrometry. In addition, the purity of the conjugate was analyzed by reverse-phase high-performance liquid chromatography. The cellular uptake, intracellular distribution, and cytotoxicity of DOX–LNA were assessed by flow cytometry, fluorescence microscopy, liquid chromatography/electrospray ionization tandem mass spectrometry, and the tetrazolium dye assay using the in vitro cell models. The DOX–LNA conjugate showed substantially higher tumor-specific cytotoxicity compared with DOX.  相似文献   

9.
AIMS: To identify the dominant micro-organisms involved in the production of gowé, a fermented beverage, and to select the most appropriate species for starter culture development. METHODS AND RESULTS: Samples of sorghum gowé produced twice at three different production sites were taken at different fermentation times. DNA amplification by internal transcribed spacer-polymerase chain reaction of 288 lactic acid bacteria (LAB) isolates and 16S rRNA gene sequencing of selected strains revealed that the dominant LAB responsible for gowé fermentation were Lactobacillus fermentum, Weissella confusa, Lactobacillus mucosae, Pediococcus acidilactici, Pediococcus pentosaceus and Weissella kimchii. DNA from 200 strains of yeasts was amplified and the D1/D2 domain of the 26S rRNA gene was sequenced for selected isolates, revealing that the yeasts species were Kluyveromyces marxianus, Pichia anomala, Candida krusei and Candida tropicalis. CONCLUSIONS: Gowé processing is characterized by a mixed fermentation dominated by Lact. fermentum, W. confusa and Ped. acidilactici for the LAB and by K. marxianus, P. anomala and C. krusei for the yeasts. SIGNIFICANCE AND IMPACT OF THE STUDY: The diversity of the LAB and yeasts identified offers new opportunities for technology upgrading and products development in gowé production. The identified species can be used as possible starter for a controlled fermentation of gowé.  相似文献   

10.
We investigated the effects of various cyclodextrins (CDs) on the aqueous solubility and thermal stability of α-lipoic acid, a compound with low water solubility. α-CD, β-CD, and γ-CD had little effect on the aqueous solubility of α-lipoic acid. In contrast, 6-O-α-maltosyl-CDs increased it in a concentration-dependent manner, 6-O-α-maltosyl-β-CD enhancing solubility the most. The thermal stability of α-lipoic acid in the solid state was improved by the addition of G2-β-CD(?), a commercial product of 6-O-α-maltosyl-β-CD. The thermal stability of α-lipoic acid was also improved by the addition of β-CD. Analysis by differential scanning calorimetry showed that G2-β-CD(?), a mixture of maltosyl-β-CDs, and β-CD efficiently formed complexes with α-lipoic acid. These results suggest that the sizes and shapes of these β-CD compounds are compatible with complexation with α-lipoic acid. Moreover, both the formation of an aqueous complex with G2-β-CD(?) and an insoluble complex with β-CD increased the thermal stability of α-lipoic acid.  相似文献   

11.
Electronegative LDL (LDL(-)) and free fatty acids (FFAs) are circulating risk factors for cardiovascular diseases (CVDs) and have been associated with inflammation. Interleukin-1 beta (IL-1β) represents a key cytokine in the development of CVD; however, the initial trigger of IL-1β in CVD remains to be explored. In this study, we investigated the combined effects of LDL(-) from the plasma of ST-segment elevation myocardial infarction (STEMI) patients or diet-induced hypercholesterolemic rabbits and bovine serum albumin bound palmitic acid (PA-BSA) on IL-1β production in macrophages. Macrophages derived from THP-1 cells or human peripheral blood mononuclear cells were independently treated with LDL(-), PA-BSA or cotreated with LDL(-) and PA-BSA. The results showed that nLDL and/or PA-BSA had no effect on IL-1β, and LDL(-) slightly increased IL-1β; however, cotreatment with LDL(-) and PA-BSA resulted in abundant secretion of IL-1β in macrophages. Rabbit LDL(-) induced the elevation of cellular pro-IL-1β and p-Iκ-Bα, but PA-BSA had no effect on pro-IL-1β or p-Iκ-Bα. In potassium-free buffer, LDL(-)-induced IL-1β reached a level similar to that induced by cotreatment with LDL(-) and PA-BSA. Moreover, LDL(-) and PA-BSA-induced IL-1β was inhibited in lectin-type oxidized LDL receptor-1 (LOX-1) knockdown cells and by blockers of voltage-gated potassium (Kv) channels. LDL(-) from diet-induced hypercholesterolemic rabbit had a similar effect as STEMI LDL(-) on IL-1β in macrophages. These results show that PA-BSA cooperates with LDL(-) to trigger IL-1β production in macrophages via a mechanism involving the LOX-1 and Kv channel pathways, which may play crucial roles in the regulation of inflammation in CVD.  相似文献   

12.
13.

Introduction

Our objective in the present study was to determine the signaling pathway of interleukin 10 (IL-10) for modulating IL-17 expression in macrophages and the importance of this mediation in collagen-induced arthritis (CIA).

Methods

IL-10-knockout (IL-10−/−) mice and wild-type (WT) mice were immunized with chicken type II collagen (CII) to induce arthritis. The expression levels of IL-17 and retinoid-related orphan receptor γt (RORγt) in macrophages and joint tissues of IL-10−/− and WT mice were analyzed by enzyme-linked immunosorbent assay, quantitative RT-PCR (qRT-PCR) and Western blotting. The F4/80 macrophages and positive IL-17-producing macrophages in synovial tissues of the mice were determined by immunohistochemistry. The populations of classically activated macrophage (M1) and alternatively activated macrophage (M2) phenotypes were analyzed by flow cytometry. The expression of genes associated with M1 and M2 markers was analyzed by qRT-PCR.

Results

Compared to WT mice, IL-10−/− mice had exacerbated CIA development, which was associated with increased production of T helper 17 cell (Th17)/Th1 proinflammatory cytokines and CII-specific immunoglobulin G2a antibody after CII immunization. Macrophages in IL-10−/− mice had increased amounts of IL-17 and RORγt compared with the amounts in WT mice with CIA. Immunofluorescence microscopy showed that the number of IL-17-producing macrophages in synovial tissues was significantly higher in IL-10−/− mice than in WT mice. IL-10 deficiency might promote macrophage polarization toward the proinflammatory M1 phenotype, which contributes to the rheumatoid arthritis inflammation response.

Conclusion

IL-10 inhibits IL-17 and RORγt expression in macrophages and suppresses macrophages toward the proinflammatory M1 phenotype, which is important for the role of IL-10 in mediating the pathogenesis of CIA.  相似文献   

14.
The ischaemic vulnerability of the heart of spontaneously hypertensive rats (SHR) is enhanced after feeding an α-linolenic acid (LNA) enriched diet. Because oxygen radical-induced reactions (e.g. lipid peroxidation) are involved in the ischaemic damage, an increased susceptibility of the SHR heart to such damaging reactions might be the reason. As a sign of the enhanced susceptibility to lipid peroxidation of LNA-fed SHR, we found (measured as TBARS) higher plasma and heart lipid peroxide levels (3.84 ± 0.50 μmol/l vs 2.98 ± 0.78 μmol/l and 507 ± 127 nmol/g prot. vs 215 ± 80 nmol/g prot., respectively) after feeding LNA. Using Fe2+/Vit. C to induce lipid peroxidation in myocardial tissue homogenates, we demonstrated the enhanced susceptibility to lipid peroxidation of the LNA-fed SHR heart (68 ± 12 nmol/min × g prot. vs 40 ± 8 nmol/min × g prot.) also in vitro. The myocardial enrichment of n-3 polyunsaturated fatty acids (PUFA) resulting in a higher peroxidation index (Pl 227 vs. 170) and the loss in myocardial activities of the antioxidative enzymes (SOD: 76 ± 24 U × 103/g prot. vs 235 ± 150 U × 103/g prot.; GSH-Px: 32 ± 5 U/g prot. vs 110 ± 30 U/g prot.) by feeding LNA could be the cause of the increase in myocardial susceptibility to lipid peroxidation of PUFA supplemented SHR.  相似文献   

15.
The current study was conducted to determine the effect of different α-tocopherol (vitamin E) inclusion levels on trans(t)-18:1 and conjugated linoleic acid (CLA) profiles in subcutaneous and intramuscular fat of steers fed a barley-based diet. Fifty-six feedlot steers were offered a barley-based finisher diet (73% steam rolled barley, 22% barley silage and 5% supplement as-fed basis) with four levels of supplementary dl-α-tocopheryl acetate (340, 690, 1040 or 1740 IU/steer per day) for 120 days. Adding vitamin E to the diet had little effect on the overall fatty acid composition of intramuscular fat. The proportion of individual and total t,t- and cis(c),t-CLA, n-3 fatty acids, total polyunsaturated fatty acids (PUFA), mono-unsaturated fatty acids and saturated fatty acids to PUFA ratio in subcutaneous fat were not influenced (P > 0.05) by dietary vitamin E supplementation. Increasing levels of vitamin E led to linear reductions in t6-/t7-/t8-18:1 and t10-18:1 (P < 0.05), and linear increase in t11-/t10-18:1 ratio (P < 0.05) in subcutaneous fat. The content of 20:3n-6 and total n-6 in subcutaneous fat decreased (P < 0.05) linearly with increasing amounts of vitamin E. The subcutaneous fat n-6:n-3 ratio showed a quadratic (P < 0.05) response to vitamin E. In conclusion, although vitamin E supplementation has some potential to reduce t10-18:1 formation and increase t11-/t10-18:1 ratio in subcutaneous fat of cattle fed barley-based diets, the changes in the present study were limited and may not have been sufficient to impact on human health.  相似文献   

16.
The role of tumor necrosis factor (TNF)-α and its receptors in neuroautoimmune and neuroinflammatory diseases has been controversial. On the basis of our previous studies, we hereby aimed to further clarify TNF-α's mechanism of action and to explore the potential role of TNF-α receptor (TNFR)1 as a therapeutic target in experimental autoimmune neuritis (EAN). EAN was induced by immunization with P0 peptide 180-199 in TNF-α knockout (KO) mice and anti-TNFR1 antibodies were used to treat EAN. Particularly, the effects of TNF-α deficiency and TNFR1 blockade on macrophage functions were investigated. The onset of EAN in TNF-α KO mice was markedly later than that in wild type (WT) mice. From day 14 post immunization, the clinical signs of TNF-α KO mice were significantly milder than those of their WT counterparts. Further, we showed that the clinical severity of WT mice treated with anti-TNFR1 antibodies was less severe than that of the control WT mice receiving PBS. Nevertheless, no difference with regard to the clinical signs of EAN or inflammatory infiltration in cauda equina was seen between TNF-α KO and WT mice with EAN after blockade of TNFR1. Although TNF-α deficiency did not alter the proliferation of lymphocytes in response to either antigenic or mitogenic stimuli, it down-regulated the production of interleukin (IL)-12 and nitric oxide (NO), and enhanced the production of IL-10 in macrophages. Increased ratio of regulatory T cells (Tregs) and reduced production of interferon (IFN)-γ in cauda equina infiltrating cells, and elevated levels of IgG2b antibodies against P0 peptide 180-199 in sera were found in TNF-α KO mice with EAN. In conclusion, TNF-α deficiency attenuates EAN via altering the M1/M2 balance of macrophages.  相似文献   

17.
ABSTRACT

Antibacterial activities against Staphylococcus aureus and Bacillus subtilis were found in an ethanol fraction of tempe, an Indonesian fermented soybean produced using Rhizopus oligosporus. The ethanol fraction contained free fatty acids, monoglycerides, and fatty acid ethyl esters. Among these substances, linoleic acid and α-linolenic acid exhibited antibacterial activities against S. aureus and B. subtilis, whereas 1-monolinolenin and 2-monolinolenin exhibited antibacterial activity against B. subtilis. The other free fatty acids, 1-monoolein, monolinoleins, ethyl linoleate, and ethyl linolenate did not exhibit bactericidal activities. These results revealed that R. oligosporus produced the long-chain polyunsaturated fatty acids and monolinolenins as antibacterial substances against the Gram-positive bacteria during the fungal growth and fermentation of heat-processed soybean.  相似文献   

18.
High intakes of linoleic acid (LA,18:2n-6) have raised concern due to possible increase in arachidonic acid (ARA, 20:4n-6) synthesis, and inhibition of alpha linolenic acid (ALA, 18:3n-3) desaturation to eicosapentaenoic (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3). In healthy men, 10.5% energy compared to 3.8% energy LA with 1% energy ALA increased plasma phospholipid LA and 20:2n-6, the elongation product of LA, and decreased EPA, with no change in ARA. However, LA was inversely related to ARA at both 10.5% energy and 3.8% energy LA, (r=?0.761, r=?0.817, p<0.001, respectively). A two-fold variability in ARA among individuals was not explained by the dietary LA, ARA, ALA, or fish intake. Our results confirm LA requirements for ARA synthesis is low, <3.8% energy, and they suggest current LA intakes saturate Δ-6 desaturation and adversely affect n-3 fatty acid metabolism. Factors other than n-6 fatty acid intake are important modifiers of plasma ARA.  相似文献   

19.
The thermal oxidation of the membranes of linoleic acid vesicles was preceded by a lag period, as long as the membranes contained low levels of preformed peroxides. Incorporation of 0.034 to 0.170 mol% of nitroxide spin label increased the length of this lag between 4.8 and 10.1 times. At the same time, the intensity of the ESR signal fell. The inclusion of as little as 0.04 mol% of butylated hydroxytoluene in the membranes also lengthened the lag period by a factor of 2.5. However, a similar molar proportion of α-tocopherol was without effect. When the linoleic acid from which vesicle membranes were formed contained between 0.45 and 1.43 mol% of peroxide, α-tocopherol produced a significant increase in the lag period, during which the antioxidant was gradually oxidized.  相似文献   

20.
The isoleucine conjugate of 12-oxo-phytodienoic acid (OPDA-Ile), a new member of the jasmonate family, was recently identified in Arabidopsis thaliana and might be a signaling molecule in plants. However, the biosynthesis and function of OPDA-Ile remains elusive. This study reports an in vitro enzymatic method for synthesizing OPDA-Ile, which is catalyzed by reactions of lipoxygenase (LOX), allene oxide synthase (AOS), and allene oxide cyclase (AOC) using isoleucine conjugates of α -linolenic acid (LA-Ile) as the substrate. A. thaliana fed LA-Ile exhibited a marked increase in the OPDA-Ile concentration. LA-Ile was also detected in A. thaliana. Furthermore, stable isotope labelled LA-Ile was incorporated into OPDA-Ile. Thus, OPDA-Ile is biosynthesized via the cyclization of LA-Ile in A. thaliana.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号