首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chitosan was N-permethylated by reaction with formaldehyde and sodium borohydride under controlled conditions (pH 4·0, 15°C, reaction times 12 and 8 h, respectively). The N-permethylated chitosan was reacted with methyl iodide at 35°C and N-trimethyl chitosan iodide with a quaternary nitrogen degree of 60% was obtained. This material may have uses as an antibiotic and an ion exchange material.  相似文献   

2.
Hyperglycemia has been assumed to be responsible for oxidative stress in diabetes. In this respect, glucose autoxidation and advanced glycation end products (AGE) may play a causal role in the etiology of diabetic complications as e.g. atherosclerosis. There is now growing evidence that the oxidative modification of LDL plays a potential role in atherogenesis. Glucose derived oxidants have been shown to peroxidise LDL. In the present study, genistein, a compound derived from soy with a flavonoid chemical structure (4', 5, 7-trihydroxyisoflavone) has been evaluated for its ability to act as an antioxidant against the atherogenic modification of LDL by glucose autoxidation radical products. Daidzein, (4', 7-dihydroxyisoflavone) an other phytoestrogen of soy, was tested in parallel. Genistein — in contrast to daidzein — effectively prevented the glucose mediated LDL oxidation as measured by thiobarbituric acid-reactive substance formation (TBARS), alteration in electrophoretic mobility, lipid hydroperoxides and fluorescence quenching of tryptophan residues of the lipoprotein. In addition the potential of glucose-oxidized LDL to increase tissue factor (TF) synthesis in human endothelial cells (HUVEC) was completely inhibited when genistein was present during LDL oxidative modification by glucose. Both phytoestrogens did not influence the nonenzymatic protein glycation reaction as measured by the in vitro formation of glycated LDL. As the protective effect of genistein on LDL atherogenic modification was found at glucose/genistein molar ratios which may occur in vivo, our findings support the suggested beneficial action of a soy diet in preventing chronic vascular diseases and early atherogenic events.  相似文献   

3.
The present study was designed to investigate the ameliorative potential of Ocimum sanctum and its saponin rich fraction in vincristine-induced peripheral neuropathic pain in rats. Peripheral neuropathy was induced in rats by administration of vincristine sulfate (50 μg/kg i.p.) for 10 consecutive days. The mechanical hyperalgesia, cold allodynia, paw heat hyperalgesia and cold tail hyperalgesia were assessed by performing the pinprick, acetone, hot plate and cold tail immersion tests, respectively. Biochemically, the tissue thio-barbituric acid reactive species (TBARS), super-oxide anion content (markers of oxidative stress) and total calcium levels were measured. Vincristine administration was associated with the development of mechanical hyperalgesia, cold allodynia, heat and cold hyperalgesia. Furthermore, vincristine administration was also associated with an increase in oxidative stress and calcium levels. However, administration of Ocimum sanctum (100 and 200 mg/kg p.o.) and its saponin rich fraction (100 and 200 mg/kg p.o.) for 14 days significantly attenuated vincristine-induced neuropathic pain along with decrease in oxidative stress and calcium levels. It may be concluded that Ocimum sanctum has ameliorative potential in attenuating chemotherapy induced-painful neuropathic state, which may be attributed to decrease in oxidative stress and calcium levels. Furthermore, saponin rich fraction of Ocimum sanctum may be responsible for its noted beneficial effect in neuropathic pain in rats.  相似文献   

4.
Dihydrofolate reductase from strain MB 1428 of Escherichia coli was shown to catalyze the oxidative cleavage of dihydrofolate at the C(9)N(10) bond. One of the products of the reaction was identified as 7,8-dihydropterin-6-carboxaldehyde through its proton magnetic resonance spectrum. The maximal enzymatic rate was 0.05 moles dihydrofolate cleaved per minute per mole enzyme at 25° and pH 7.2, and the KM for dihydrofolate was 17.5 ± 2.5 μM. The enzymatic reaction was fully inhibitable with methotrexate. The mechanism of enzyme action was proposed to be an apparent “acidification” of dihydrofolate upon binding to the enzyme. Folate underwent an analogous oxidative cleavage by enzyme with a turnover number of 0.0014, which produced pterin-6-carboxaldehyde. Methotrexate was also slowly degraded by the enzyme.  相似文献   

5.

Background

Parenteral nutrition (PN), including intravenous lipid administration, is a life-saving therapy but can be complicated by cholestasis and liver disease. The administration of intravenous soy bean oil (SO) has been associated with the development of liver disease, while the administration of intravenous fish oil (FO) has been associated with the resolution of liver disease. The biochemical mechanism of this differential effect is unclear. This study compares SO and FO lipid emulsions in a murine model of hepatic steatosis, one of the first hits in PN-associated liver disease.

Methods

We established a murine model of hepatic steatosis in which liver injury is induced by orally feeding mice a PN solution. C57BL/6J mice were randomized to receive PN alone (a high carbohydrate diet (HCD)), PN plus intravenous FO (Omegaven®; Fresenius Kabi AG, Bad Homburg VDH, Germany), PN plus intravenous SO (Intralipid®; Fresenius Kabi AG, Bad Homburg v.d.H., Germany, for Baxter Healthcare, Deerfield, IL), or a chow diet. After 19 days, liver tissue was harvested from all animals and subjected to metabolomic profiling.

Results

The administration of an oral HCD without lipid induced profound hepatic steatosis. SO was associated with macro- and microvesicular hepatic steatosis, while FO largely prevented the development of steatosis. 321 detectable compounds were identified in the metabolomic analysis. HCD induced de novo fatty acid synthesis and oxidative stress. Both FO and SO relieved some of the metabolic shift towards de novo lipogenesis, but FO offered additional advantages in terms of lipid peroxidation and the generation of inflammatory precursors.

Conclusions

Improved lipid metabolism combined with reduced oxidative stress may explain the protective effect offered by intravenous FO in vivo.  相似文献   

6.
The objective of this work was to evaluate soy protein isolate (SPI) and acylated soy protein (SPA) as spray-drying encapsulation carriers for oral pharmaceutical applications. SPI acylation was performed by the Schotten–Baumann reaction. SPA, with an acylation rate of 41%, displayed a decrease in solubility in acidic conditions, whereas its solubility was unaffected by basic conditions. The drug encapsulation capacities of both SPI and SPA were tested with ibuprofen (IBU) as a model poorly soluble drug. IBU-SPI and IBU-SPA particles were obtained by spray-drying under eco-friendly conditions. Yields of 70 to 87% and microencapsulation efficiencies exceeding 80% were attained for an IBU content of 20 to 40% w/w, confirming the excellent microencapsulation properties of SPI and the suitability of the chemical modification. The in vitro release kinetics of IBU were studied in simulated gastrointestinal conditions (pH 1.2 and pH 6.8, 37°C). pH-sensitive release patterns were observed, with an optimized low rate of release in simulated gastric fluid for SPA formulations, and a rapid and complete release in simulated intestinal fluid for both formulations, due to the optimal pattern of pH-dependent solubility for SPA and the molecular dispersion of IBU in soy protein. These results demonstrate that SPI and SPA are relevant for the development of pH-sensitive drug delivery systems for the oral route.  相似文献   

7.
Brain is highly prone to oxidative damage due to its huge lipid content and extensive energy requirements. Exogenous insult in brain via oxidative injury can lead to severe pathophysiological conditions. Age-dependent deterioration of normal brain functions is also noteworthy. Genistein, a polyphenolic isoflavonoid, obtained from the soy plant, is well known to protect against several diseased conditions. Here, in this study chronic brain toxicity model was developed using oral administration of arsenic for 90 days in adult and aged murines. We observed that intraperitoneal administration of genistein improved the arsenic induced behavioral abnormalities in the rats. It was also evident from the histopathological studies that the extent of tissue damage due to arsenic exposure was more in aged rats compared to the adults. Evaluation of different stress markers, intracellular ROS level and mitochondrial membrane potential revealed the involvement of oxidative stress and mitochondrial dysfunction in inducing brain damage in arsenic exposed murines. It was observed that genistein can significantly ameliorate the stressed condition in both the animal groups but the protective effect of genistein was more significant in the adult animals. The underlying signalling mechanism behind the cytotoxicity of arsenic was investigated and revealed that genistein exhibited neuroprotection significantly by modulating the JNK3 mediated apoptosis, ERK1/2 mediated autophagy and TNFα associated inflammatory pathways. Overall study infers that genistein has significant ameliorative effect of against age-dependent cytotoxicity of arsenic in murine brains.  相似文献   

8.
Hyperglycemia has been assumed to be responsible for oxidative stress in diabetes. In this respect, glucose autoxidation and advanced glycation end products (AGE) may play a causal role in the etiology of diabetic complications as e.g. atherosclerosis. There is now growing evidence that the oxidative modification of LDL plays a potential role in atherogenesis. Glucose derived oxidants have been shown to peroxidise LDL. In the present study, genistein, a compound derived from soy with a flavonoid chemical structure (4′, 5, 7-trihydroxyisoflavone) has been evaluated for its ability to act as an antioxidant against the atherogenic modification of LDL by glucose autoxidation radical products. Daidzein, (4′, 7-dihydroxyisoflavone) an other phytoestrogen of soy, was tested in parallel. Genistein — in contrast to daidzein — effectively prevented the glucose mediated LDL oxidation as measured by thiobarbituric acid-reactive substance formation (TBARS), alteration in electrophoretic mobility, lipid hydroperoxides and fluorescence quenching of tryptophan residues of the lipoprotein. In addition the potential of glucose-oxidized LDL to increase tissue factor (TF) synthesis in human endothelial cells (HUVEC) was completely inhibited when genistein was present during LDL oxidative modification by glucose. Both phytoestrogens did not influence the nonenzymatic protein glycation reaction as measured by the in vitro formation of glycated LDL. As the protective effect of genistein on LDL atherogenic modification was found at glucose/genistein molar ratios which may occur in vivo, our findings support the suggested beneficial action of a soy diet in preventing chronic vascular diseases and early atherogenic events.  相似文献   

9.
In order to elucidate the reason for the meager occurrence of volatile esters in soy sauce, the ester-decomposing activities of microorganisms concerned in soy sauce fermentation were examined. Soy yeasts showed at least 10 times higher esterase activity than the other yeasts used for fermented beverages. The yeast esterase was not greatly affected by the pH or NaCl concentration. Soy koji cultured with Aspergillus sojae or A. oryzae showed very high ester-splitting activity. By gel-filtration of koji esterase, the i-amylacetate (i-AmAc) decomposing fraction was obtained. This fraction showed a decrease of activity at lower pH or higher NaCl concentration. Koji esterase decreased its activity in moromi but remained over the entire moromi period. Koji esterase exhibited a higher activity than yeast esterase in fermenting moromi. These strong esterase activities are thought to be one of the causes of the low concentration of ester flavor in soy sauce.  相似文献   

10.
Diabetic nephropathy (DN) is a progressive kidney disease due to glomerular capillary damage in diabetic patients, with inflammation and oxidative stress implicated as crucial pathogenic factors. There is an urgent need to develop effective therapeutic drug. Natural medicines are rich resources for active lead compounds. They would provide new opportunities for the treatment of DN. The present study was designed to investigate the protective effects of Schisandrin B (SchB) on DN and to delineate the underlying mechanism. Oral administration of SchB in the diabetic mouse model significantly alleviated hyperglycemia-induced renal injury, which was accompanied by maintenance of urine creatinine and albumin levels at similar to those of control non-diabetic mice. Histological examination of renal tissue indicated that both development of fibrosis and renal cell apoptosis were dramatically inhibited by SchB. The protective effect of SchB on DN associated with suppression of inflammatory response and oxidative stress. These results strongly suggested that SchB could be a potential therapeutic agent for treatment of DN. Moreover, our findings provided a fuller understanding of the regulatory role of NF-κB and Nrf2 in DN, indicating that they could be important therapeutic targets.  相似文献   

11.
The polyelectrolyte complex (PEC) effect between hyaluronic acid (HA) and chitosan was explored to recover HA from fermentation broth. Chitosan was conjugated with the magnetic nanoparticles by co-precipitation method to facilitate its recovery. The magnetic chitosan particles (chitosan–magnetite) have an average size about 5 μm and point of zero charge (PZC) around 6.5. pH lower than PZC favored the HA capture. About 39 mg of HA was captured per gram of particles at pH 6. Nearly quantitative release of captured HA was achieved at pH 8. Although HA could not be directly isolated from Streptococcus zoopedemics fermentation broth by manipulating pH between 6 and 8, HA free of contaminant protein could be purified from the crude ethanol precipitate using chitosan–magnetite.  相似文献   

12.
Background

An altered lipid profile may lead to the development of inflammation and NAFLD (Non-alcoholic fatty liver disease). Although statins have a positive effect on blood lipid levels their long-term use is known to cause adverse effects, in this backdrop there is an interest in natural compounds which may affect lipid metabolism and prevent NAFLD. We have examined the effect of Chitosan on rats subjected to a high-fat diet.

Methods and results

Male Wistar middle aged rats (12–16 months) were treated with high-fat diet orally for two months for creating a NAFLD model. Rats were also supplemented with Chitosan (2% chitosan daily) for 2 months. We assessed the activity of antioxidant enzymes, the histopathological profile of the liver. Inflammatory cytokines and adiponectin levels were also measured in serum. HFD induced significant changes in liver tissue and inflammatory markers (Il-6, TNF- alpha, NF-KB). Chitosan treatment protected rats from HFD induced alterations.

Conclusions

The findings suggest that Chitosan can effectively improve liver lipid metabolism by normalizing cholesterol, triglyceride, lowering NF-KB expression, and protecting the liver from oxidative stress by improving hepatic function. Chitosan also regulates genes related to lipidemic stress i,e leptin and adiponectin.

  相似文献   

13.
Caffeic acid (CA) is a phenolic compound widely found in coffee beans with known beneficial effects in vivo. Many studies showed that CA has anti-inflammatory, anti-mutagenic, antibacterial and anti-carcinogenic properties, which could be linked to its antioxidant activity. Taking in consideration the reported in vitro antioxidant mechanism of other polyphenols, our working hypothesis was that the CA antioxidant activity could be related to its metal-chelating property. With that in mind, we sought to investigate the chemical antioxidant mechanism of CA against in vitro iron-induced oxidative damage under different assay conditions. CA was able to prevent hydroxyl radical formation promoted by the classical Fenton reaction, as determined by 2-deoxyribose (2-DR) oxidative degradation and DMPO hydroxylation. In addition to its ability to prevent hydroxyl radical formation, CA had a great inhibition of membrane lipid peroxidation. In the lipid peroxidation assays CA acted as both metal-chelator and as hydrogen donor, preventing the deleterious action promoted by lipid-derived peroxyl and alkoxyl radicals. Our results indicate that the observed antioxidant effects were mostly due to the formation of iron-CA complexes, which are able to prevent 2-DR oxidation and DMPO hydroxylation. Noteworthy, the formation of iron-CA complexes and prevention of oxidative damage was directly related to the pH of the medium, showing better antioxidant activity at higher pH values. Moreover, in the presence of lipid membranes the antioxidant potency of CA was much higher, indicating its enhanced effectiveness in a hydrophobic environment. Overall, our results show that CA acts as an antioxidant through an iron chelating mechanism, preventing the formation of free hydroxyl radicals and, therefore, inhibiting Fenton-induced oxidative damage. The chemical properties of CA described here—in association with its reported signaling effects—could be an explanation to its beneficial effects observed in vivo.  相似文献   

14.
Shen L  Wang J  Liu K  Wang C  Wang C  Wu H  Sun Q  Sun X  Jing H 《Neurochemical research》2011,36(8):1501-1511
Deep hypothermic circulatory arrest (DHCA) has been widely used in the operations involving the aortic arch and brain aneurysm since 1950s; but prolonged DHCA contributes significantly to neurological deficit which remains a major cause of postoperative morbidity and mortality. It has been reported that hydrogen exerts a therapeutic antioxidant activity by selectively reducing hydroxyl radical. In this study, DHCA treated rats developed a significant oxidative stress, inflammatory reaction and apoptosis. The administration of HRS resulted in a significant decrease in the brain injury, together with lower production of IL-1β, TNF-α, 8-OHdG and MDA as well as decreased activity of NOS while increased activity of SOD. The apoptotic index as well as the expressions of caspase-3 in brain tissue was significantly decreased after treatment. HRS administration significantly attenuated the severity of DHCA induced brain injury by mechanisms involving amelioration of oxidative stress, down-regulation of inflammatory factors and reduction of apoptosis.  相似文献   

15.
Iron deficiency is routinely treated with oral or systemic iron supplements, which are highly reactive and could induce oxidative stress via augmenting the activity of proinflammatory enzyme myeloperoxidase (MPO). To investigate the extent to which MPO is involved in iron-induced toxicity, acute (24 h) iron toxicity was induced by intraperitoneal administration of FeSO4 (25 mg/kg body weight) to MPO-deficient (MpoKO) mice and their wild-type (WT) littermates. Acute iron toxicity was also assessed in WT mice pretreated with an MPO inhibitor, 4-aminobenzoic acid hydrazide. Systemic iron administration up-regulated circulating MPO and neutrophil elastase and elevated systemic inflammatory and organ damage markers in WT mice. However, genetic deletion of MPO or its inhibition significantly reduced iron-induced organ damage and systemic inflammatory responses. In contrast to the acute model, 8 weeks of 2% carbonyl iron diet feeding to WT mice did not change the levels of circulating MPO and neutrophil elastase but promoted their accumulation in the liver. Even though both MpoKO and WT mice displayed similar levels of diet-induced hyperferremia, MpoKO mice showed significantly reduced inflammatory response and oxidative stress than the WT mice. In addition, WT bone-marrow-derived neutrophils (BMDN) generated more reactive oxygen species than MPO-deficient BMDN upon iron stimulation. Altogether, genetic deficiency or pharmacologic inhibition of MPO substantially attenuated acute and chronic iron-induced toxicity. Our results suggest that targeting MPO during iron supplementation is a promising approach to reduce iron-induced toxicity/side effects in vulnerable population.  相似文献   

16.
The objective of the present investigation was to establish potential of commercially available soy polysaccharide (Emcosoy®) for colon drug delivery. The soy polysaccharide–ethyl cellulose films were fabricated and characterized. The effect of the pectinase enzyme on the tensile strength and surface morphology of the film was evaluated. The permeation of chlorpheniramine maleate (CPM), a model hydrophilic drug from pectinase enzyme treated and untreated films was measured in pH 7.4 buffer. The soy polysaccharide–ethyl cellulose films were also incubated with Lactobacillus sp. culture for a specific duration, and effect on the CPM permeation was evaluated. The CPM capsules were coated with the soy polysaccharide–ethyl cellulose mixture, and Eudragit S100 was applied as a secondary coat. The coated CPM capsules were radiolabelled, and their in vivo transit was evaluated in human volunteers on oral administration. The pectinase enzyme had a significant influence on the tensile strength and surface morphology of the soy polysaccharide–ethyl cellulose films. The permeability of pectinase enzyme-treated and Lactobacillus sp.-treated films was significantly higher than that of untreated films. The CPM capsules were coated with the soy polysaccharide–ethyl cellulose mixture and Eudragit S100 and were successfully radiolabelled by a simple method. Gamma scintigraphic studies in human volunteers showed that the radiolabelled capsules maintained integrity for at least 9 h after oral administration. Thus, the soy polysaccharide has a potential in colon drug delivery.  相似文献   

17.
18.
19.
Chitosan (CS) and dextran sulfate (DS) are charged polysaccharides (glycans), which form polyelectrolyte complex-based nanoparticles when mixed under appropriate conditions. The glycan nanoparticles are useful carriers for protein factors, which facilitate the in vivo delivery of the proteins and sustain their retention in the targeted tissue. The glycan polyelectrolyte complexes are also ideal for protein delivery, as the incorporation is carried out in aqueous solution, which reduces the likelihood of inactivation of the proteins. Proteins with a heparin-binding site adhere to dextran sulfate readily, and are, in turn, stabilized by the binding. These particles are also less inflammatory and toxic when delivered in vivo. In the protocol described below, SDF-1α (Stromal cell-derived factor-1α), a stem cell homing factor, is first mixed and incubated with dextran sulfate. Chitosan is added to the mixture to form polyelectrolyte complexes, followed by zinc sulfate to stabilize the complexes with zinc bridges. The resultant SDF-1α-DS-CS particles are measured for size (diameter) and surface charge (zeta potential). The amount of the incorporated SDF-1α is determined, followed by measurements of its in vitro release rate and its chemotactic activity in a particle-bound form.  相似文献   

20.
l-Lactate oxidase (LOX) belongs to a family of flavin mononucleotide (FMN)-dependent α-hydroxy acid-oxidizing enzymes. Previously, the crystal structure of LOX (pH 8.0) from Aerococcus viridans was solved, revealing that the active site residues are located around the FMN. Here, we solved the crystal structures of the same enzyme at pH 4.5 and its complex with d-lactate at pH 4.5, in an attempt to analyze the intermediate steps. In the complex structure, the d-lactate resides in the substrate-binding site, but interestingly, an active site base, His265, flips far away from the d-lactate, as compared with its conformation in the unbound state at pH 8.0. This movement probably results from the protonation of His265 during the crystallization at pH 4.5, because the same flip is observed in the structure of the unbound state at pH 4.5. Thus, the present structure appears to mimic an intermediate after His265 abstracts a proton from the substrate. The flip of His265 triggers a large structural rearrangement, creating a new hydrogen bonding network between His265-Asp174-Lys221 and, furthermore, brings molecular oxygen in between d-lactate and His265. This mimic of the ternary complex intermediate enzyme-substrate-O2 could explain the reductive half-reaction mechanism to release pyruvate through hydride transfer. In the mechanism of the subsequent oxidative half-reaction, His265 flips back, pushing molecular oxygen into the substrate-binding site as the second substrate, and the reverse reaction takes place to produce hydrogen peroxide. During the reaction, the flip-flop action of His265 has a dual role as an active base/acid to define the major chemical steps. Our proposed reaction mechanism appears to be a common mechanistic strategy for this family of enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号