首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Obesity is a major health problem in cats and a risk factor for diabetes. It has been postulated that cats are always gluconeogenic and that the rise in obesity might be related to high dietary carbohydrates. We examined the effect of a high-carbohydrate/low-protein (HC) and a high-protein/low-carbohydrate (HP) diet on glucose and fat metabolism during euglycemic hyperinsulinemic clamp, adipocytokines, and fat distribution in 12 lean and 16 obese cats before and after weight loss. Feeding diet HP led to greater heat production in lean but not in obese cats. Regardless of diet, obese cats had markedly decreased glucose effectiveness and insulin resistance, but greater suppression of nonesterified fatty acids during the euglycemic hyperinsulinemic clamp was seen in obese cats on diet HC compared with lean cats on either diet or obese cats on diet HP. In contrast to humans, obese cats had abdominal fat equally distributed subcutaneously and intra-abdominally. Weight loss normalized insulin sensitivity; however, increased nonesterified fatty acid suppression was maintained and fat loss was less in cats on diet HC. Adiponectin was negatively and leptin positively correlated with fat mass. Lean cats and cats during weight loss, but not obese cats, adapted to the varying dietary carbohydrate/protein content with changes in substrate oxidation. We conclude that diet HP is beneficial through maintenance of normal insulin sensitivity of fat metabolism in obese cats, facilitating the loss of fat during weight loss, and increasing heat production in lean cats. These data also show that insulin sensitivity of glucose and fat metabolism can be differentially regulated in cats.  相似文献   

2.
Energy is stored predominately as lipid in white adipose tissue (WAT) in distinct anatomical locations, with each site exerting different effects on key biological processes, including glucose homeostasis. To determine the relative contributions of subcutaneous and visceral WAT on glucose homeostasis, comparable amounts of adipose tissue from abdominal subcutaneous inguinal WAT (IWAT), intra-abdominal retroperitoneal WAT (RWAT), male gonadal epididymal WAT (EWAT), or female gonadal parametrial WAT (PWAT) were removed. Gonadal fat removal in both male and female chow-fed lean mice resulted in lowered glucose levels across glucose tolerance tests. Female lean C57BL/6J mice as well as male and female lean FVBN mice significantly improved glucose tolerance, indicated by decreased areas under glucose clearance curves. For the C57BL/6J mice maintained on a high-fat butter-based diet, glucose homeostasis was improved only in female mice with PWAT removal. Removal of IWAT or RWAT did not affect glucose tolerance in either dietary condition. We conclude that WAT contribution to glucose homeostasis is depot specific, with male gonadal EWAT contributing to glucose homeostasis in the lean state, whereas female gonadal PWAT contributes to glucose homeostasis in both lean and obese mice. These data illustrate both critical differences among various WAT depots and how they influence glucose homeostasis and highlight important differences between males and females in glucose regulation.  相似文献   

3.
With obesity rates reaching epidemic proportions, more studies concentrated on reducing the risk and treating this epidemic are vital. Redox stress is an important metabolic regulator involved in the pathophysiology of cardiovascular disease, Type 2 diabetes, and obesity. Oxygen and nitrogen-derived free radicals alter glucose and lipid homeostasis in key metabolic tissues, leading to increases in risk of developing metabolic syndrome. Oxidants derived from dietary fat differ in their metabolic regulation, with numerous studies showing benefits from a high omega 3 rich diet compared to the frequently consumed “western diet” rich in saturated fat. Omega 3 (OM3) fatty acids improve lipid profile, lower inflammation, and ameliorate insulin resistance, possibly through maintaining redox homeostasis. This study is based on the hypothesis that altering endogenous antioxidant production and/or increasing OM3 rich diet consumption will improve energy metabolism and maintain insulin sensitivity. We tested the comparative metabolic effects of a diet rich in saturated fat (HFD) and an omega 3-enriched diet (OM3) in the newly developed ‘stress-less’ mice model that overexpresses the endogenous antioxidant catalase. Eight weeks of dietary intervention showed that mice overexpressing endogenous catalase compared to their wild-type controls when fed an OM3 enriched diet, in contrast to HFD, activated GPR120-Nrf2 cross-talk to maintain balanced energy metabolism, normal circadian rhythm, and insulin sensitivity. These findings suggest that redox regulation of GPR120/FFAR4 might be an important target in reducing risk of metabolic syndrome and associated diseases.  相似文献   

4.
Adropin is a secreted peptide that improves hepatic steatosis and glucose homeostasis when administered to diet-induced obese mice. It is not clear if adropin is a peptide hormone regulated by signals of metabolic state. Moreover, the significance of a decline in adropin expression with obesity with respect to metabolic disease is also not clear. We investigated the regulation of serum adropin by metabolic status and diet. Serum adropin levels were high in chow-fed conditions and were suppressed by fasting and diet-induced obesity (DIO). High adropin levels were observed in mice fed a high-fat low carbohydrate diet, whereas lower levels were observed in mice fed a low-fat high carbohydrate diet. To investigate the role of adropin deficiency in metabolic homeostasis, we generated adropin knockout mice (AdrKO) on the C57BL/6J background. AdrKO displayed a 50%-increase in increase in adiposity, although food intake and energy expenditure were normal. AdrKO also exhibited dyslipidemia and impaired suppression of endogenous glucose production (EndoR(a)) in hyperinsulinemic-euglycemic clamp conditions, suggesting insulin resistance. While homo- and heterozygous carriers of the null adropin allele exhibited normal DIO relative to controls, impaired glucose tolerance associated with weight gain was more severe in both groups. In summary, adropin is a peptide hormone regulated by fasting and feeding. In fed conditions, adropin levels are regulated dietary macronutrients, and increase with dietary fat content. Adropin is not required for regulating food intake, however, its functions impact on adiposity and are involved in preventing insulin resistance, dyslipidemia, and impaired glucose tolerance.  相似文献   

5.

Background

Polyunsaturated n-3 fatty acids (n-3 PUFAs) are reported to protect against high fat diet-induced obesity and inflammation in adipose tissue. Here we aimed to investigate if the amount of sucrose in the background diet influences the ability of n-3 PUFAs to protect against diet-induced obesity, adipose tissue inflammation and glucose intolerance.

Methodology/Principal Findings

We fed C57BL/6J mice a protein- (casein) or sucrose-based high fat diet supplemented with fish oil or corn oil for 9 weeks. Irrespective of the fatty acid source, mice fed diets rich in sucrose became obese whereas mice fed high protein diets remained lean. Inclusion of sucrose in the diet also counteracted the well-known anti-inflammatory effect of fish oil in adipose tissue, but did not impair the ability of fish oil to prevent accumulation of fat in the liver. Calculation of HOMA-IR indicated that mice fed high levels of proteins remained insulin sensitive, whereas insulin sensitivity was reduced in the obese mice fed sucrose irrespectively of the fat source. We show that a high fat diet decreased glucose tolerance in the mice independently of both obesity and dietary levels of n-3 PUFAs and sucrose. Of note, increasing the protein∶sucrose ratio in high fat diets decreased energy efficiency irrespective of fat source. This was accompanied by increased expression of Ppargc1a (peroxisome proliferator-activated receptor, gamma, coactivator 1 alpha) and increased gluconeogenesis in the fed state.

Conclusions/Significance

The background diet influence the ability of n-3 PUFAs to protect against development of obesity, glucose intolerance and adipose tissue inflammation. High levels of dietary sucrose counteract the anti-inflammatory effect of fish oil in adipose tissue and increases obesity development in mice.  相似文献   

6.
Obesity is now considered a major public health concern globally as it predisposes to a number of chronic human diseases. Most developed countries have experienced a dramatic and significant rise in obesity since the 1980s, with obesity apparently accompanying, hand in hand, the adoption of "Western"-style diets and low-energy expenditure lifestyles around the world. Recent studies report an aberrant gut microbiota in obese subjects and that gut microbial metabolic activities, especially carbohydrate fermentation and bile acid metabolism, can impact on a number of mammalian physiological functions linked to obesity. The aim of this review is to present the evidence for a characteristic "obese-type" gut microbiota and to discuss studies linking microbial metabolic activities with mammalian regulation of lipid and glucose metabolism, thermogenesis, satiety, and chronic systemic inflammation. We focus in particular on short-chain fatty acids (SCFA) produced upon fiber fermentation in the colon. Although SCFA are reported to be elevated in the feces of obese individuals, they are also, in contradiction, identified as key metabolic regulators of the physiological checks and controls mammals rely upon to regulate energy metabolism. Most studies suggest that the gut microbiota differs in composition between lean and obese individuals and that diet, especially the high-fat low-fiber Western-style diet, dramatically impacts on the gut microbiota. There is currently no consensus as to whether the gut microbiota plays a causative role in obesity or is modulated in response to the obese state itself or the diet in obesity. Further studies, especially on the regulatory role of SCFA in human energy homeostasis, are needed to clarify the physiological consequences of an "obese-style" microbiota and any putative dietary modulation of associated disease risk.  相似文献   

7.
Insulin binding to the plasma membrane is known to be altered by modifying the membrane composition through dietary treatment. As insulin binding receptors are also present on nuclear membrane, this study was undertaken to investigate if specific binding of insulin to the liver nuclei is altered by diet. 8-wk-old female C57 B 6J lean and ob/ob mice were fed semipurified diets containing 20% (w/w) fat of either high or low polyunsaturated-to-saturated (P/S) fatty acid ratio for 4 wk. Liver nuclei were prepared, insulin binding was measured and nuclear phospholipids were isolated for lipid analysis. Insulin binding was highest in nuclei prepared from lean mice fed a high P/S diet. Specific binding of insulin to nuclei prepared from obese mice was also increased by the high P/S diet, but to a lesser extent compared to lean mice. Feeding a high P/S diet increased polyunsaturated fatty acid content of membrane phospholipids from both lean and ob/ob mice. Obese mice were characterized by higher levels of arachidonic acid and lower levels of linoleic acid in phosphatidylcholine. The present study establishes that insulin binding to liver nuclei is increased by feeding a high P/S diet, and that insulin binding to liver nuclei from obese mice is lower than from lean mice.  相似文献   

8.
Sucrose polyester, a fat substitute, has shown promise in reducing blood cholesterol and body weight of obese individuals. Effects of this compound in the Zucker rat, a genetic model of obesity, are unknown. Thus, we examined food intake, body weight, body composition, and several metabolic parameters in sera of lean and obese female Zucker rats. Eight-week-old lean and obese animals were given a choice between a control diet (15% corn oil) and fat substitute diet (5% corn oil and 10% sucrose polyester) for 2 days. Next, one-half of the lean and obese groups received control diet; the remaining lean and obese rats received fat substitute diet for 18 days. Cumulative food intake was depressed in fat substitute groups relative to control-fed animals; however, this effect was more predominant in obese animals. Obese rats consuming fat substitute diet (O-FS) gained less weight as compared to obese control-fed animals (O-C). Lean rats given fat substitute (L-FS) did not have significantly different body weights as compared to the L-C group. Fat substitute groups, combined, had lower body fat and higher body water as compared to controls. The O-FS group had lower serum glucose and insulin and higher fatty acid levels compared to the O-C group. There were no differences in serum cholesterol, HDL, or triglyceride levels due to fat substitute diet. These data suggest that the obese Zucker rat is unable to defend its body weight when dietary fat is replaced with sucrose polyester.  相似文献   

9.
Environmental factors, such as the macronutrient composition of the diet, can have a profound impact on risk of diabetes and metabolic syndrome. In the present study we demonstrate how a single, simple dietary factor--leucine--can modify insulin resistance by acting on multiple tissues and at multiple levels of metabolism. Mice were placed on a normal or high fat diet (HFD). Dietary leucine was doubled by addition to the drinking water. mRNA, protein and complete metabolomic profiles were assessed in the major insulin sensitive tissues and serum, and correlated with changes in glucose homeostasis and insulin signaling. After 8 weeks on HFD, mice developed obesity, fatty liver, inflammatory changes in adipose tissue and insulin resistance at the level of IRS-1 phosphorylation, as well as alterations in metabolomic profile of amino acid metabolites, TCA cycle intermediates, glucose and cholesterol metabolites, and fatty acids in liver, muscle, fat and serum. Doubling dietary leucine reversed many of the metabolite abnormalities and caused a marked improvement in glucose tolerance and insulin signaling without altering food intake or weight gain. Increased dietary leucine was also associated with a decrease in hepatic steatosis and a decrease in inflammation in adipose tissue. These changes occurred despite an increase in insulin-stimulated phosphorylation of p70S6 kinase indicating enhanced activation of mTOR, a phenomenon normally associated with insulin resistance. These data indicate that modest changes in a single environmental/nutrient factor can modify multiple metabolic and signaling pathways and modify HFD induced metabolic syndrome by acting at a systemic level on multiple tissues. These data also suggest that increasing dietary leucine may provide an adjunct in the management of obesity-related insulin resistance.  相似文献   

10.
In Sprague-Dawley rats, fatty acid synthase (FAS) activity is suppressed by dietary fat. To test the hypothesis that a defect in regulation of de novo fatty acid synthesis exists in massive obesity, we investigated the effect of diet on FAS mRNA levels in genetically obese JCR:LA-corpulent (cp) rats. We also determined levels of mRNA encoding adipsin, a fat cell-derived protein possibly associated with lipid metabolism. Hepatic FAS mRNA levels were elevated five-fold in obese compared to lean cp rats and were unsuppressed by dietary fat. Dietary sucrose increased FAS mRNA levels in lean cp rats, but, in contrast to Sprague-Dawley rats, little deposition of lipid resulted. Adipsin mRNA levels were fivefold lower in obese cp and Sprague-Dawley rats than in lean cp rats and were unaffected by diet. We conclude that exaggerated de novo fatty acid synthesis may play a major role in the pathogenesis of obesity in obese JCR:LA-corpulent rats.  相似文献   

11.
Peroxisome proliferator-activated receptors (PPARs) participate in the molecular mechanism of pathologies with altered lipid homeostasis such as type 2 diabetes or obesity. The insulin sensitizer drug, rosiglitazone, has been shown to bind and activate PPAR-gamma1 in adipocytes and PPAR-gamma2 in hepatocytes. The identification of new molecular targets associated with fatty acid oxidation and PPAR-gamma nuclear receptor regulation in insulin resistance tissues is a key research goal. In the present study, we have used a proteomic approach to identify such targets. Lean and obese C57 Bl/6J lep/lep mice were given BRL49653, rosiglitazone, 10 mg/kg diet, by dietary admixture for 7 days. Rosiglitazone normalized the impaired glucose tolerance and dyslipidemia in lep/lep mice but had no significant effect in the lean mice. Samples of liver, white and brown adipose tissue, and muscle proteins were obtained and 100 microg of proteins was arrayed by two-dimensional gel electrophoresis. Thirty-four polypeptides were differentially expressed (p < 0.05) between lep/lep and lean mice and eleven were significantly (p < 0.05) modulated by rosiglitazone treatment of the obese mice. None of the proteins was modulated by rosiglitazone treatment of the lean mice. The identity of these differentially expressed proteins was made using tandem mass spectrometric analysis and revealed components of fatty acid and carbohydrate metabolism as well as proteins with unknown function.  相似文献   

12.
Mammalian sirtuin 6 (SIRT6) is involved in the regulation of many essential processes, especially metabolic homeostasis. SIRT6 knockout mice undergo premature aging and die at age ~4 weeks. Severe glycometabolic disorders have been found in SIRT6 knockout mice, and whether a dietary intervention can rescue SIRT6 knockout mice remains unknown. In our study, we found that at the same calorie intake, a high‐fat diet dramatically increased the lifespan of SIRT6 knockout mice to 26 weeks (males) and 37 weeks (females), reversed multi‐organ atrophy, and reduced body weight, hypoglycemia, and premature aging. Furthermore, the high‐fat diet partially but significantly normalized the global gene expression profile in SIRT6 knockout mice. Regarding the mechanism, excessive glucose uptake and glycolysis induced by the SIRT6 deficiency were attenuated in skeletal muscle through inhibition of insulin and IGF1 signaling by the high‐fat diet. Similarly, fatty acids but not ketone bodies inhibited glucose uptake, glycolysis, and senescence in SIRT6 knockout fibroblasts, whereas PI3K inhibition antagonized the effects of a high‐fatty‐acid medium in vitro. Overall, the high‐fat diet dramatically reverses numerous consequences of SIRT6 deficiency through modulation of insulin and IGF1 signaling, providing a new basis for elucidation of SIRT6 and fatty‐acid functions and supporting novel therapeutic approaches against metabolic disorders and aging‐related diseases.  相似文献   

13.
The n‐3 polyunsaturated fatty acids, especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), exert hypolipidemic effects and prevent development of obesity and insulin resistance in animals fed high‐fat diets. We sought to determine the efficacy of α‐substituted DHA derivatives as lipid‐lowering, antiobesity, and antidiabetic agents. C57BL/6 mice were given a corn oil‐based high‐fat (35% weight/weight) diet (cHF), or cHF with 1.5% of lipids replaced with α‐methyl DHA ethyl ester (Substance 1), α‐ethyl DHA ethyl ester (Substance 2), α,α‐di‐methyl DHA ethyl ester (Substance 3), or α‐thioethyl DHA ethyl ester (Substance 4) for 4 months. Plasma markers of glucose and lipid metabolism, glucose tolerance, morphology, tissue lipid content, and gene regulation were characterized. The cHF induced obesity, hyperlipidemia, impairment of glucose homeostasis, and adipose tissue inflammation. Except for Substance 3, all other substances prevented weight gain and Substance 2 exerted the strongest effect (63% of cHF‐controls). Glucose intolerance was significantly prevented (~67% of cHF) by both Substance 1 and Substance 2. Moreover, Substance 2 lowered fasting glycemia, plasma insulin, triacylglycerols, and nonesterified fatty acids (73, 9, 47, and 81% of cHF‐controls, respectively). Substance 2 reduced accumulation of lipids in liver and skeletal muscle, as well as adipose tissue inflammation associated with obesity. Substance 2 also induced weight loss in dietary obese mice. In contrast to DHA administered either alone or as a component of the EPA/DHA concentrate (replacing 15% of dietary lipids), Substance 2 also reversed established glucose intolerance in obese mice. Thus, Substance 2 represents a novel compound with a promising potential in the treatment of obesity and associated metabolic disturbances.  相似文献   

14.
Conjugated linoleic acids (CLAs) and n-3 polyunsaturated fatty acids (PUFAs) improve insulin sensitivity in insulin-resistant rodents. However, the effects of these fatty acids on insulin secretion are not known but are of importance to completely understand their influence on glucose homeostasis. We therefore examined islet function after dietary supplementation consisting of 1% CLAs in combination with 1% n-3 enriched PUFAs for 12 wk to mice on a normal diet and to insulin-resistant mice fed a high-fat diet (58% fat). In the mice fed a normal diet, CLA/PUFA supplementation resulted in insulin resistance associated with low plasma adiponectin levels and low body fat content. Intravenous and oral glucose tolerance tests revealed a marked increase in insulin secretion, which nevertheless was insufficient to counteract the insulin resistance, resulting in glucose intolerance. In freshly isolated islets from mice fed the normal diet, both basal and glucose-stimulated insulin secretion were adaptively augmented by CLA/PUFA, and at a high glucose concentration this was accompanied by elevated glucose oxidation. In contrast, in high-fat-fed mice, CLA/PUFA did not significantly affect insulin secretion, insulin resistance, or glucose tolerance. It is concluded that dietary supplementation of CLA/PUFA in mice fed the normal diet augments insulin secretion, partly because of increased islet glucose oxidation, but that this augmentation is insufficient to counterbalance the induction of insulin resistance, resulting in glucose intolerance. Furthermore, the high-fat diet partly prevents the deleterious effects of CLA/PUFA, but this dietary supplementation was not able to counteract high-fat-diet-induced insulin resistance.  相似文献   

15.
Eicosapentaenoic acid (EPA) ethyl esters are of interest given their clinical approval for lowering circulating triglycerides and cardiometabolic disease risk. EPA ethyl esters prevent metabolic complications driven by a high fat diet in male mice; however, their impact on female mice is less studied. Herein, we first investigated how EPA influences the metabolic profile of female C57BL/6J mice consuming a high fat diet. EPA lowered murine fat mass accumulation, potentially through increased biosynthesis of 8-hydroxyeicosapentaenoic acid (HEPE), as revealed by mass spectrometry and cell culture studies. EPA also reversed the effects of a high fat diet on circulating levels of insulin, glucose, and select inflammatory/metabolic markers. Next, we studied if the improved metabolic profile of obese mice consuming EPA was associated with a reduction in the abundance of key gut Gram-negative bacteria that contribute toward impaired glucose metabolism. Using fecal 16S-ribosomal RNA gene sequencing, we found EPA restructured the gut microbiota in a time-dependent manner but did not lower the levels of key Gram-negative bacteria. Interestingly, EPA robustly increased the abundance of the Gram-negative Akkermansia muciniphila, which controls glucose homeostasis. Finally, predictive functional profiling of microbial communities revealed EPA-mediated reversal of high fat diet-associated changes in a wide range of genes related to pathways such as Th-17 cell differentiation and PI3K-Akt signaling. Collectively, these results show that EPA ethyl esters prevent some of the deleterious effects of a high fat diet in female mice, which may be mediated mechanistically through 8-HEPE and the upregulation of intestinal Akkermansia muciniphila.  相似文献   

16.
Of the parameters that determine glucose disposal and progression to diabetes in humans: first-phase insulin secretion, glucose effectiveness (Sg), insulin sensitivity (Si), and the disposition index (DI), only Si can be reliably measured in conscious mice. To determine the importance of the other parameters in murine glucose homeostasis in lean and obese states, we developed the frequently sampled intravenous glucose tolerance test (FSIVGTT) for use in unhandled mice. We validated the conscious FSIVGTT against the euglycemic clamp for measuring Si in lean and obese mice. Insulin-resistant mice had increased first-phase insulin secretion, decreased Sg, and a reduced DI, qualitatively similar to humans. Intriguingly, although insulin secretion explained most of the variation in glucose disposal in lean mice, Sg and the DI more strongly predicted glucose disposal in obese mice. DI curves identified individual diet-induced obese (DIO) mice as having compensated or decompensated insulin secretion. Conscious FSIVGTT opens the door to apply mouse genetics to the determinants of in vivo insulin secretion, Sg, and DI, and further validates the mouse as a model of metabolic disease.  相似文献   

17.
Cardiac function depends on the ability to switch between fatty acid and glucose oxidation for energy production in response to changes in substrate availability and energetic stress. In obese and diabetic individuals, increased reliance on fatty acids and reduced metabolic flexibility are thought to contribute to the development of cardiovascular disease. Mechanisms by which cardiac mitochondria contribute to diet-induced metabolic inflexibility were investigated. Mice were fed a high fat or low fat diet for 1 d, 1 wk, and 20 wk. Cardiac mitochondria isolated from mice fed a high fat diet displayed a diminished ability to utilize the glycolytically derived substrate pyruvate. This response was rapid, occurring within the first day on the diet, and persisted for up to 20 wk. A selective increase in the expression of pyruvate dehydrogenase kinase 4 and inhibition of pyruvate dehydrogenase are responsible for the rapid suppression of pyruvate utilization. An important consequence is that pyruvate dehydrogenase is sensitized to inhibition when mitochondria respire in the presence of fatty acids. Additionally, increased expression of pyruvate dehydrogenase kinase 4 preceded any observed diet-induced reductions in the levels of glucose transporter type 4 and glycolytic enzymes and, as judged by Akt phosphorylation, insulin signaling. Importantly, diminished insulin signaling evident at 1 wk on the high fat diet did not occur in pyruvate dehydrogenase kinase 4 knockout mice. Dietary intervention leads to a rapid decline in pyruvate dehydrogenase kinase 4 levels and recovery of pyruvate dehydrogenase activity indicating an additional form of regulation. Finally, an overnight fast elicits a metabolic response similar to that induced by high dietary fat obscuring diet-induced metabolic changes. Thus, our data indicate that diet-induced inhibition of pyruvate dehydrogenase may be an initiating event in decreased oxidation of glucose and increased reliance of the heart on fatty acids for energy production.  相似文献   

18.
To determine the influence of dietary fructose and glucose on circulating leptin levels in lean and obese rats, plasma leptin concentrations were measured in ventromedial hypothalamic (VMH)-lesioned obese and sham-operated lean rats fed either normal chow or fructose- or glucose-enriched diets (60% by calories) for 2 wk. Insulin resistance was evaluated by the steady-state plasma glucose method and intravenous glucose tolerance test. In lean rats, glucose-enriched diet significantly increased plasma leptin with enlarged parametrial fat pad, whereas neither leptin nor fat-pad weight was altered by fructose. Two weeks after the lesions, the rats fed normal chow had marked greater body weight gain, enlarged fat pads, and higher insulin and leptin compared with sham-operated rats. Despite a marked adiposity and hyperinsulinemia, insulin resistance was not increased in VMH-lesioned rats. Fructose brought about substantial insulin resistance and hyperinsulinemia in both lean and obese rats, whereas glucose led to rather enhanced insulin sensitivity. Leptin, body weight, and fat pad were not significantly altered by either fructose or glucose in the obese rats. These results suggest that dietary glucose stimulates leptin production by increasing adipose tissue or stimulating glucose metabolism in lean rats. Hyperleptinemia in VMH-lesioned rats is associated with both increased adiposity and hyperinsulinemia but not with insulin resistance. Dietary fructose does not alter leptin levels, although this sugar brings about hyperinsulinemia and insulin resistance, suggesting that hyperinsulinemia compensated for insulin resistance does not stimulate leptin production.  相似文献   

19.
C57BL/6J mice were fed a high-fat, carbohydrate-free diet (HFD) for 9 mo. Approximately 50% of the mice became obese and diabetic (ObD), approximately 10% lean and diabetic (LD), approximately 10% lean and nondiabetic (LnD), and approximately 30% displayed intermediate phenotype. All of the HFD mice were insulin resistant. In the fasted state, whole body glucose clearance was reduced in ObD mice, unchanged in the LD mice, and increased in the LnD mice compared with the normal-chow mice. Because fasted ObD mice were hyperinsulinemic and the lean mice slightly insulinopenic, there was no correlation between insulin levels and increased glucose utilization. In vivo, tissue glucose uptake assessed by 2-[(14)C]deoxyglucose accumulation was reduced in most muscles in the ObD mice but increased in the LnD mice compared with the values of the control mice. In the LD mice, the glucose uptake rates were reduced in extensor digitorum longus (EDL) and total hindlimb but increased in soleus, diaphragm, and heart. When assessed in vitro, glucose utilization rates in the absence and presence of insulin were similar in diaphragm, soleus, and EDL muscles isolated from all groups of mice. Thus, in genetically homogenous mice, HFD feeding lead to different metabolic adaptations. Whereas all of the mice became insulin resistant, this was associated, in obese mice, with decreased glucose clearance and hyperinsulinemia and, in lean mice, with increased glucose clearance in the presence of mild insulinopenia. Therefore, increased glucose clearance in lean mice could not be explained by increased insulin level, indicating that other in vivo mechanisms are triggered to control muscle glucose utilization. These adaptive mechanisms could participate in the protection against development of obesity.  相似文献   

20.

Background

High fat diet and its induced changes in glucose homeostasis, inflammation and obesity continue to be an epidemic in developed countries. The A2b adenosine receptor (A2bAR) is known to regulate inflammation. We used a diet-induced obesity murine knockout model to investigate the role of this receptor in mediating metabolic homeostasis, and correlated our findings in obese patient samples.

Methodology/Principal Findings

Administration of high fat, high cholesterol diet (HFD) for sixteen weeks vastly upregulated the expression of the A2bAR in control mice, while A2bAR knockout (KO) mice under this diet developed greater obesity and hallmarks of type 2 diabetes (T2D), assessed by delayed glucose clearance and augmented insulin levels compared to matching control mice. We identified a novel link between the expression of A2bAR, insulin receptor substrate 2 (IRS-2), and insulin signaling, determined by Western blotting for IRS-2 and tissue Akt phosphorylation. The latter is impaired in tissues of A2bAR KO mice, along with a greater inflammatory state. Additional mechanisms involved include A2bAR regulation of SREBP-1 expression, a repressor of IRS-2. Importantly, pharmacological activation of the A2bAR by injection of the A2bAR ligand BAY 60-6583 for four weeks post HFD restores IRS-2 levels, and ameliorates T2D. Finally, in obese human subjects A2bAR expression correlates strongly with IRS-2 expression.

Conclusions/Significance

Our study identified the A2bAR as a significant regulator of HFD-induced hallmarks of T2D, thereby pointing to its therapeutic potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号