首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Accumulating evidence suggests that microRNAs (miRNAs) play an important role in regulating the pathways in adipose tissue that control processes such as adipogenesis, insulin resistance, and inflammation. MiR-143 is a well-characterized miRNA involved in adipogenesis and may be involved in regulating insulin resistance. Free fatty acids (FFAs) and adipokines, such as tumor necrosis factor-α (TNF-α), leptin, resistin, and interleukin-6 (IL-6), have already been identified as main regulators of obesity and insulin sensitivity. Therefore, we studied the effects of these inflammatory cytokines on the expression of miR-143. FFAs, resistin, and leptin downregulated miR-143 expression in human adipocytes, whereas TNF-α and IL-6 had little effect on miR-143 expression. These results suggest that the expression of miR-143 is affected by a variety of factors that are related to insulin sensitivity. Therefore, miR-143 may be an important mediator in the development of obesity-related insulin resistance.  相似文献   

3.
MicroRNA (miRNA) plays an important role in diverse cellular biological processes such as inflammatory response, differentiation and proliferation, and carcinogenesis. miR-146a has been suggested as a negative regulator of the inflammatory reaction. Although, it has been reported as expressed in inflamed adipose and periodontal tissues, however, miR-146a's inhibitory effects against inflammatory response in both the tissues, are not well understood. Therefore, in this study, the inhibitory effects of miR-146a on both adipose and periodontal inflammation, was investigated. In vitro study has revealed that miR-146a transfection into either adipocytes or gingival fibroblasts, has resulted in a reduced cytokine gene expression, observed on co-culturing the cells with macrophages in the presence of lipopolysaccharides (LPS), in comparison to the control miRNA transfected. Similarly, miR-146a transfection into macrophages resulted in a reduced expression of TNF-α gene and protein in response to LPS stimulation. In vivo study revealed that a continuous intravenous miR-146a administration into mice via tail vein, protected the mice from developing high-fat diet-induced obesity and the inflammatory cytokine gene expression was down-regulated in both adipose and periodontal tissues. miR-146a appeared to be induced by macrophage-derived inflammatory signals such as TNF-α by negative feed-back mechanism, and it suppressed inflammatory reaction in both adipose and periodontal tissues. Therefore, miR-146a could be suggested as a potential therapeutic molecule and as a common inflammatory regulator for both obesity-induced diabetes and related periodontal diseases.  相似文献   

4.
5.
Chronic low-grade inflammation in obesity is characterized by macrophage accumulation in white adipose tissue (WAT) and abnormal cytokine production. We tested the hypothesis that grape-seed procyanidin extract (PE), with known anti-inflammatory and antioxidant effects, would improve local and systemic inflammation in diet-induced obesity rats. First, we analyzed the preventive effects of procyanidins (30 mg/kg per day) on rats fed a 60% kcal fat diet for 19 weeks. Second, we induced cafeteria diet obesity for 13 weeks to investigate the corrective effects of two PE doses (25 and 50 mg/kg per day) for 10 and 30 days.In the preventive model, PE group had reduced not only body weight but also plasmatic systemic markers of inflammation tumor necrosis factor-α (TNF-α) and C-reactive protein (CRP). The PE preventive treatment significantly showed an increased adiponectin expression and decreased TNF-α, interleukin-6 and CRP expression in mesenteric WAT and muscle TNF-α. A reduced NF-κB activity in liver is also observed which can be related to low expression rates of hepatic inflammatory markers found in PE group. Finally, PE dietary supplementation is linked to a reduced expression of Emr1 (specific marker of macrophage F4/80), which suggests a reduced macrophage infiltration of WAT.In the corrective model, however, only the high dose of PE reduced CRP plasma levels in the short treatment without changes in plasmatic TNF-α.In conclusion, orally ingested PE helps preventing imbalanced obesity cytokine pattern, but its corrective effects need to be further investigated. The dietary regular intake of food or drinks containing procyanidins might help prevent low-grade inflammatory-related diseases.  相似文献   

6.
Lipoprotein lipase (LPL) plays a pivotal role in lipid metabolism, contributes to metabolic disorders related to insulin action and body weight regulation, and is influenced by inflammation. The Pro12Ala polymorphism of the peroxisome proliferator-activated receptor (PPAR)γ2 gene seems to influence LPL functioning, but its role in obesity and insulin resistance status, which usually coexist in the clinical setting, has not been explored. Our aim was to analyze the association of obesity and insulin resistance with adipose LPL activity and expression, and the influence of the PPARγ2 Pro12Ala polymorphism. A cross-sectional study was conducted in 58 reproductive-age women who underwent elective abdominal surgery. Free-fatty acids, glucose, insulin, and selected adipokines were measured in fasting blood samples. DNA was isolated and the polymorphism genotyped. Biopsies of abdominal subcutaneous adipose tissue obtained during surgery were used to determine enzymatic LPL activity and expression; and expression of selected cytokines. Overweight/obese women presented lower LPL activity (P = 0.022) and higher circulating TNF-α (P = 0.020) than controls. Insulin resistant women also showed borderline lower LPL activity than non-resistant (P = 0.052), but adiposity and inflammatory molecules were comparable. Nevertheless, LPL activity was higher in Pro12Ala carriers than in non-carriers after adjusting for obesity, insulin resistance and inflammation. Likewise, adipose LPL expression was increased in carriers while expression of cytokines was decreased. Our data suggest that insulin resistance is associated with low adipose LPL activity independently of obesity, but the PPARγ2 Pro12Ala polymorphism seems to protect the LPL functioning of obese insulin resistant women, likely through regulating inflammation in adipose tissue.  相似文献   

7.
Inflammation of adipose tissue is believed to be a contributing factor to many chronic diseases associated with obesity. Vitamin D (VD) is now known to limit this metabolic inflammation by decreasing inflammatory marker expression and leukocyte infiltration in adipose tissue. In this study, we investigated the impact of VD on microRNA (miR) expression in inflammatory conditions in human and mouse adipocytes, using high-throughput methodology (miRNA PCR arrays). Firstly, we identified three miRs (miR-146a, miR-150, and miR-155) positively regulated by TNFα in human adipocytes. Interestingly, the expression of these miRs was strongly prevented by 1,25(OH)2D preincubation. These results were partly confirmed in 3T3-L1 adipocytes (for miR-146a and miR-150). The ability of VD to control the expression of these miRs was confirmed in diet-induced obese mice: the levels of the three miRs were increased following high fat (HF) diet in epididymal white adipose tissue and reduced in HF diet fed mice supplemented with VD. The involvement of NF-κB signaling in the induction of these miRs was confirmed in vitro and in vivo using aP2-p65 transgenic mice. Finally, the ability of VD to deactivate NF-κB signaling, via p65 and IκB phosphorylation inhibition in murine adipocyte, was observed and could constitute a driving molecular mechanism. This study demonstrated for the first time that VD modulates the expression of miRs in adipocytes in vitro and in adipose tissue in vivo through its impact on NF-κB signaling pathway, which could represent a new mechanism of regulation of inflammation by VD.  相似文献   

8.
9.
Body fat, insulin resistance, and type 2 diabetes are often linked together, but the molecular mechanisms that unify their association are poorly understood. Wnt signaling regulates adipogenesis, and its altered activity has been implicated in the pathogenesis of type 2 diabetes and metabolic syndrome. LRP6(+/-) mice on a high fat diet were protected against diet-induced obesity and hepatic and adipose tissue insulin resistance compared with their wild-type (WT) littermates. Brown adipose tissue insulin sensitivity and reduced adiposity of LRP6(+/-) mice were accounted for by diminished Wnt-dependent mTORC1 activity and enhanced expression of brown adipose tissue PGC1-α and UCP1. LRP6(+/-) mice also exhibited reduced endogenous hepatic glucose output, which was due to diminished FoxO1-dependent expression of the key gluconeogenic enzyme glucose-6-phosphatase (G6pase). In addition, in vivo and in vitro studies showed that loss of LRP6 allele is associated with increased leptin receptor expression, which is a likely cause of hepatic insulin sensitivity in LRP6(+/-) mice. Our study identifies LRP6 as a nutrient-sensitive regulator of body weight and glucose metabolism and as a potential target for pharmacological interventions in obesity and diabetes.  相似文献   

10.
Obesity is a major risk factor for the development of insulin resistance and type 2 diabetes. Adipose tissue secretes various bioactive molecules, referred to as adipokines, whose dysregulation can mediate changes in glucose homeostasis and inflammatory responses. Here, we identify C1qdc2/CTRP12 as an insulin-sensitizing adipokine that is abundantly expressed by fat tissues and designate this adipokine as adipolin (adipose-derived insulin-sensitizing factor). Adipolin expression in adipose tissue and plasma was reduced in rodent models of obesity. Adipolin expression was also decreased in cultured 3T3-L1 adipocytes by treatment with inducers of endoplasmic reticulum stress and inflammation. Systemic administration of adipolin ameliorated glucose intolerance and insulin resistance in diet-induced obese mice. Adipolin administration also reduced macrophage accumulation and proinflammatory gene expression in the adipose tissue of obese mice. Conditioned medium from adipolin-expressing cells diminished the expression of proinflammatory cytokines in response to stimulation with LPS or TNFα in cultured macrophages. These data suggest that adipolin functions as an anti-inflammatory adipokine that exerts beneficial actions on glucose metabolism. Therefore, adipolin represents a new target molecule for the treatment of insulin resistance and diabetes.  相似文献   

11.
Obesity is often associated with insulin resistance, low-grade systemic inflammation, and reduced plasma adiponectin. Inflammation is also increased in adipose tissue, but it is not clear whether the reductions of adiponectin levels are related to dysregulation of insulin activity and/or increased proinflammatory mediators. In this study, we investigated the interactions of insulin, tumor necrosis factor-α (TNF-α) and interleukin 6 (IL-6) in the regulation of adiponectin production using in vivo and in vitro approaches. Plasma adiponectin and parameters of insulin resistance and inflammation were assessed in a cohort of lean and obese insulin-resistant subjects. In addition, the effect of insulin was examined in vivo using the hyperinsulinemic-euglycemic clamp, and in adipose tissue (AT) cultures. Compared with lean subjects, the levels of total adiponectin, and especially the high-molecular-weight (HMW) isomer, were abnormally low in obese insulin-resistant subjects. The hyperinsulinemic clamp data confirmed the insulin-resistant state in the obese patients and showed that insulin infusion significantly increased the plasma adiponectin in lean but not obese subjects (P < 0.01). Similarly, insulin increased total adiponectin release from AT explants of lean and not obese subjects. Moreover, expression and secretion of TNF-α and IL-6 increased significantly in AT of obese subjects and were negatively associated with expression and secretion of adiponectin. In 3T3-L1 and human adipocyte cultures, insulin strongly enhanced adiponectin expression (2-fold) and secretion (3-fold). TNF-α, and not IL-6, strongly opposed the stimulatory effects of insulin. Intriguingly, the inhibitory effect of TNF-α was especially directed toward the HMW isomer of adiponectin. In conclusion, these studies show that insulin upregulates adiponectin expression and release, and that TNF-α opposes the stimulatory effects of insulin. A combination of insulin resistance and increased TNF-α production could explain the decline of adiponectin levels and alterations of isomer composition in plasma of obese insulin-resistant subjects.  相似文献   

12.
Obesity is a metabolic disease with excess weight. LncRNA SNHG14 is abnormally expressed in numerous diseases. This research aimed to enucleate the lncRNA SNHG14 role in obesity. Adipocytes were treated with free fatty acid (FFA) to establish an in vitro model for obesity. Mice were fed a high-fat diet to construct an in vivo model. Gene levels were determined using quantitative real-time PCR (RT-PCR). The protein level was checked by western blot. The lncRNA SNHG14 role in obesity was assessed using western blot and enzyme-linked immunosorbent assay. The mechanism was estimated by Starbase, dual-luciferase reporter gene assay, and RNA pull-down. LncRNA SNHG14 function in obesity was estimated using mouse xenograft models, RT-PCR, western blot, and enzyme-linked immunosorbent assay. LncRNA SNHG14 and BACE1 levels were increased, but the miR-497a-5p level was decreased in FFA-induced adipocytes. Interference with lncRNA SNHG14 reduced endoplasmic reticulum (ER) stress-related molecules GRP78 and CHOP expressions in FFA-induced adipocytes, and decreased IL-1β, IL-6, and TNF-α expressions, indicating that lncRNA SNHG14 knockdown mitigated FFA-induced ER stress and inflammation in adipocytes. Mechanistically, lncRNA SNHG14 combined with miR-497a-5p, and miR-497a-5p targeted BACE1. Meanwhile, lncRNA SNHG14 knockdown reduced levels of GRP78, CHOP, IL-1β, IL-6, and TNF-α, while cotransfection with anti-miR-497a-5p or pcDNA-BACE1 abolished these trends. Rescue assays illustrated that lncRNA SNHG14 knockdown relieved FFA-induced adipocyte ER stress and inflammation through miR-497a-5p/BACE1. Meanwhile, lncRNA SNHG14 knockdown restrained adipose inflammation and ER stress caused by obesity in vivo. LncRNA SNHG14 mediated obesity-induced adipose inflammation and ER stress through miR-497a-5p/BACE1.  相似文献   

13.
14.
15.

Background

Diet-induced obesity is a rising health concern which can lead to the development of glucose intolerance and muscle insulin resistance and, ultimately, type II diabetes mellitus. This research investigates the associations between glucose intolerance or muscle insulin resistance and tissue specific changes during the progression of diet-induced obesity.

Methodology

C57BL/6J mice were fed a normal or high-fat diet (HFD; 60% kcal fat) for 3 or 8 weeks. Disease progression was monitored by measurements of body/tissue mass changes, glucose and insulin tolerance tests, and ex vivo glucose uptake in intact muscles. Lipid metabolism was analyzed using metabolic chambers and ex vivo palmitate assays in intact muscles. Skeletal muscle, liver and adipose tissues were analyzed for changes in inflammatory gene expression. Plasma was analyzed for insulin levels and inflammatory proteins. Histological techniques were used on muscle and liver cryosections to assess metabolic and morphological changes.

Principal Findings/Conclusions

A rapid shift in whole body metabolism towards lipids was observed with HFD. Following 3 weeks of HFD, elevated total lipid oxidation and an oxidative fiber type shift had occurred in the skeletal muscle, which we propose was responsible for delaying intramyocellular lipid accumulation and maintaining muscle’s insulin sensitivity. Glucose intolerance was present after three weeks of HFD and was associated with an enlarged adipose tissue depot, adipose tissue inflammation and excess hepatic lipids, but not hepatic inflammation. Furthermore, HFD did not significantly increase systemic or muscle inflammation after 3 or 8 weeks of HFD suggesting that early diet-induced obesity does not cause inflammation throughout the whole body. Overall these findings indicate skeletal muscle did not contribute to the development of HFD-induced impairments in whole-body glucose tolerance following 3 weeks of HFD.  相似文献   

16.
We previously have shown that male offspring (F1) of fathers (F0) fed a high-fat (HF) diet and that exercised had greater skeletal muscle insulin signaling and reduced type 2 diabetes mellitus (T2DM) risk compared to fathers fed HF diet and that remained sedentary. The current study extends this work by hypothesizing that F0 HF diet and exercise regulate F1 T2DM risk by alterations in placental tissue growth via changes in sperm miRNA expression. To test these hypotheses, 3-week-old male C57BL/6 mice were fed a normal-fat diet (16% fat) or an HF diet (45% fat) and assigned to either voluntary wheel running exercise or cage activity for 3 months. Results showed that F0 sperm miRNA 193b expression was decreased while miRNA 204 was increased by paternal exercise. Protein expression of dimethylated histone 3 lysine 9 was decreased with F0 HF diet. Placental and fetal tissue weights were decreased by F0 HF diet in F1 males. Placental interleukin-1β and tumor necrosis factor (TNF)-α mRNA expression was reduced by paternal exercise, while nutrient transporter mRNA expression was decreased by paternal HF diet only in the placentae of F1 females. Treatment of primary placental cell with miRNA 193b inhibited TNF-α mRNA expression, and treatment of TNF-α decreased SLC38a2 mRNA expression. Moreover, paternal exercise increased body weight at weaning in a female offspring. These results demonstrate that placental tissue weight, placental nutrient transporter gene expression and fetal weights are altered by paternal exercise, while placental inflammatory gene expression is influenced by paternal exercise in offspring in a sex-specific manner.  相似文献   

17.
The main goal of the present study was to evaluate the metabolic profile, inflammatory markers and the gene expression of the renin–angiotensin system (RAS) components in the visceral adipose tissue of eutrophic, obese and malnourished individuals and mice models of obesity and food restriction. Male Swiss mice were divided into eight groups and fed different levels of food restriction (20%, 40%, or 60%) using standard or high-fat diet. Metabolic profile and adipose tissues were assessed. The expression of AGT (Angiotensinogen), ACE (Angiotensin-converting enzyme), ACE2 (Angiotensin-converting enzyme 2), interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) in the mice epididymal adipose tissue and the human visceral adipose tissue was assessed. The main findings showed reduced body weight, improved metabolism, decreased adipose tissues weight and reduced adipocyte area in mice submitted to food restriction. Diminished expression of IL-6, TNF-α, AGT, AT1 and ACE was detected in the 20% and 40% food restriction animal groups, although they were increased in the 60% malnourished group. Increased expression of IL-6, TNF-α, AGT and ACE in obese and malnourished individuals was observed. Adipocytes size was increased in obese individuals and reduced in malnutrition. In conclusion, we found that food restriction of 20% and 40% improved the metabolic profile, ameliorated the inflammatory status and down-regulated the RAS in mice. Severe 60% food restriction (malnutrition), however, stimulated a proinflammatory state and increased AGT and ACE expression in the adipose tissue of mice. A similar profile was observed in the adipose tissue of obese and malnourished humans, supporting the critical role of inflammation and RAS as mediators of metabolic disorders.  相似文献   

18.
19.
《Cytokine》2015,73(2):220-223
Leucine-rich glioma inactivated 3 (LGI3) is a secreted protein member of LGI family. We previously reported that LGI3 increased in obese adipose tissues and suppressed adipogenesis through its receptor, ADAM23. We proposed that LGI3 may be a pro-inflammatory adipokine secreted predominantly by preadipocytes and macrophages. In this study, we showed that LGI3 and tumor necrosis factor-α (TNF-α) upregulated each other in 3T3-L1 cells. Treatment of 3T3-L1 preadipocytes with LGI3 protein increased TNF-α mRNA and protein. LGI3 treatment led to NF-κB activation and binding to an NF-κB binding site (−523 to −514) in TNF-α promoter. TNF-α treatment increased mRNA and protein expression of LGI3 and ADAM23. TNF-α increased NF-κB binding to a predicted binding site (−40 to −31) in LGI3 promoter. High fat diet-fed mice showed that LGI3 and TNF-α were increased and colocalized in adipose tissue inflammation. Taken together, these results suggested that mutual upregulation of LGI3 and TNF-α may play a role in adipose tissue inflammation in obesity.  相似文献   

20.
Obesity is associated with increased risks of diverse diseases; brown adipose tissue (BAT) can increase energy expenditure and protect against obesity by increasing the decomposition of white adipose tissue (WAT) to enhance the non-coupled oxidative phosphorylation of fatty acid in adipocytes and contributes to weight loss. However, BAT is abundant in only small rodents and newborn humans, but not in adults. PRDM16 is a key factor that induces the differentiation of skeletal muscle precursors to brown adipocytes and simultaneously inhibits myogenic differentiation. In the present study, we set insulin-induced skeletal muscle satellite cells (SMSCs) adipogenic differentiation model, as confirmed by the contents of adipogenic markers PRDM16, UCP1 and PGC1α and myogenic markers MyoD1 and MyoG. We selected miR-499 as candidate miRNA, which might regulate PRDM16 to affect SMSCs adipogenic differentiation. Possibly through directly binding to PRDM16 3′-UTR, miR-499 negatively regulated PRDM16 expression and hindered SMSCs adipogenic differentiation by reducing adipogenic markers PRDM16, UCP1 and PGC1α and increasing myogenic markers MyoD1 and MyoG. PRDM16 overexpression could partially reverse the effect of miR-499 on the above markers and SMSCs adipogenic differentiation. Taken together, miR-499/PRDM16 axis can affect the balance between SMSC myogenic and adipogenic differentiation, targeting miR-499 to rescue PRDM16 expression, thus promoting SMSCs adipogenic differentiation may be a promising strategy for obesity treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号