首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Diabetes mellitus induces testicular damage, increases sperm abnormalities, and impairs reproductive dysfunction due to induction of endocrine disturbance and testicular oxidative stress. This study evaluated the reproductive protective effect of ellagic acid (EA) against testicular damage and abnormalities in sperm parameters in Streptozotocin (STZ)-induced diabetic rats (T1DM) and examined some possible mechanisms of protection. Adult male rats were segregated into 5 groups (n = 12 rat/each) as control, control + EA (50 mg/kg/day), T1DM, T1DM + EA, and T1DM + EA + brusatol (an Nrf-2 inhibitor) (2 mg/twice/week). All treatments were conducted for 12 weeks, daily. EA preserved the structure of the seminiferous tubules, prevented the reduction in sperm count, motility, and viability, reduced sperm abnormalities, and downregulated testicular levels of cleaved caspase-3 and Bax in diabetic rats. In the control and diabetic rats, EA significantly increased the circulatory levels of testosterone, reduced serum levels of FSH and LH, and upregulated Bcl-2 and all steroidogenic genes (StAr, 3β-HSD1, and 11β-HSD1). Besides, it reduced levels of ROS and MDA but increased levels of GSH and MnSOD and the transactivation of Nrf2. All these biochemical alterations induced by EA were associated with increased activity and nuclear accumulation of Nrf2. However, all these effects afforded by EA were weakened in the presence of brusatol. In conclusion, EA could be an effective therapy to alleviated DM-induced reproductive toxicity and dysfunction in rats by a potent antioxidant potential mediated by the upregulation of Nrf2.  相似文献   

2.
Abstract: The oxidation of 4-aminobutyric acid (GABA) by nonsynaptosomal mitochondria isolated from rat forebrain and the inhibition of this metabolism by the branched-chain fatty acids 2-methyl-2-ethyl caproate (MEC) and 2, 2-dimethyl valerate (DMV) were studied. The rate of GABA oxidation, as measured by O2 uptake, was determined in medium containing either 5 or 100 mM-[K+]. The apparent Km for GABA was 1.16 ± 0.19 mM and the Vmax in state 3 was 23.8 ± 5.5 ng-atoms O2. min?1. mg protein?1 in 5 mM-[K+]. In a medium with 100 mM-[K+] the apparent Km was 1.11 ± 0.17 mM and Vmax was 47.4 ± 5.7 ng-atoms O2. min?1. mg protein?1. The Km for MEC was determined to be 0.58 ± 0.24 or 0.32 ± 0.08 mM, in 5 or 100 mM-[K+], respectively. For DMV, the Ki was 0.28 ± 0.05 or 0.34 ± 0.06 mM, in 5 or 100 mM-[K+] medium, respectively. The O2 uptake of the mitochondria in the presence of GABA was coupled to the formation of glutamate and aspartate; the ratio of oxygen uptake to the rate of amino acid formation was close to the theoretical value of 3. Neither the [K2] nor any of the above inhibitors had any effect on this ratio. The metabolism of exogenous succinic semialdehyde (SSA) by these same mitochondria was also examined. The Vmax for utilization of oxygen in the presence of SSA was much greater than that found with exogenously added GABA, indicating that the capacity for GABA oxidation by these mitochondria is not limited by SSA dehydrogenase. In addition, the branched-chain fatty acids did not inhibit the metabolism of exogenously added SSA. Thus, the inhibitors examined apparently act by competitively inhibiting the GABA transaminase system of the mitochondria.  相似文献   

3.
建立大鼠血浆和脑中Z-槀苯内酯(LIG)浓度测定的高效液相色谱法。采用Agilent Hypersil ODS C18色谱柱(150mm×4.6mm,5μm),流动相为甲醇-5%异丙醇水溶液(60:40,v/v),流速为1.0mL/min,检测波长为280nm。血浆与脑中槀苯内酯浓度线性检测范围分别为93.75~3750ng/m(r=0.9999)和93.75~3750ng/g(r=0.9997),日内及日间精密度RSD10%。本法适用于大鼠口服LIG后血浆及脑中药物浓度的研究。  相似文献   

4.
Changes in serotonin (5-HT) and 5-hydroxy indole acetic acid (5-HIAA), its major metabolite, in cerebral cortex, corpus striatum and hippocampus were investigated at 10th and 21st days of chronic ethanol ingestion in Wistar rats. Ethanol (7.2% v/v) was given to rats in a modified liquid diet. Biochemical analysis was performed in two groups of ethanol-treated and control rats (n = 6 for each group). Rats in each group were decapitated at the 10th and 21st days of ethanol consumption. Brains were removed and cerebral cortex, corpus striatum and hippocampus were dissected. 5-HT and 5-HIAA levels were measured in respective brain regions by using high performance liquid chromatography. In cerebral cortex and corpus striatum, 5-HT levels were significantly lower than control at the 10th day of ethanol consumption. At the 21st day, the levels tended to remain low, but not significantly different statistically. In hippocampus, 5-HIAA levels were significantly higher than control at 10th day of ethanol consumption. Increased 5-HIAA level returned to control values at the 21st day of ethanol consumption. Our results suggest that, 5-HT clearly seems to play a critical role in the brain at the 10th day of chronic ethanol consumption.  相似文献   

5.
Arylamine N-acetyltransferases (NATs) are drug and xenobiotic metabolizing enzymes that catalyze the N-acetylation of arylamines and hydrazines and the O-acetylation of N-hydroxy-arylamines. Recently, studies report that human NAT1 and mouse Nat2 hydrolyze acetyl-coenzyme A (AcCoA) into acetate and coenzyme A in a folate-dependent fashion, a previously unknown function. In this study, our goal was to confirm these findings and determine the apparent Michaelis–Menten kinetic constants (Vmax and Km) of the folate-dependent AcCoA hydrolysis for human NAT1/NAT2, and the rodent analogs rat Nat1/Nat2, mouse Nat1/Nat2, and hamster Nat1/Nat2. We also compared apparent Vmax values for AcCoA hydrolysis and N-acetylation of the substrate para-aminobenzoic acid (PABA). Human NAT1 and its rodent analogs rat Nat2, mouse Nat2 and hamster Nat2 catalyzed AcCoA hydrolysis in a folate-dependent manner. Rates of AcCoA hydrolysis were between 0.25–1% of the rates for N-acetylation of PABA catalyzed by human NAT1 and its rodent orthologs. In contrast to human NAT1, human NAT2 and its rodent analogs rat Nat1, mouse Nat1, and hamster Nat1 did not hydrolyze AcCoA in a folate-dependent manner. These results are consistent with the possibility that human NAT1 and its rodent analogs regulate endogenous AcCoA levels.  相似文献   

6.
Abstract: Ethanolamine O-sulphate (EOS) dissolved in the drinking water (5mg-ml−1) was administered ad libitum to rats for 26 days. At the end of this period, glutamate decarboxylase (GAD) and GABA-transaminase (GABA-T) activities, 4-aminobutyrate (GABA) concentration, and the levels of six other amino acids were measured in various brain regions. Significant inhibition of GABA-T accompanied by significant increases in GABA content were observed throughout the brain, although the magnitudes of these effects varied according to region. GAD activity was significantly reduced in most brain regions, although this effect was apparently not related to cofactor availability or the direct actions of EOS or increased GABA concentration. Glutamine levels were significantly reduced to approximately 72% of control values in all brain regions. Aspartate levels were significantly reduced to approximately 84% of control values in all regions except the striatum and cerebellum. Minor changes in other amino acid levels were also detected. These neurochemical changes which accompanied the primary effect of EOS on GABA-T are discussed in terms of indirect secondary metabolic changes rather than nonspecific enzyme inhibition by EOS.  相似文献   

7.
As assessed by HPLC with electrochemical detection, 3-hydroxyanthranilic acid (3-HANA) was found to be present in the rat brain and peripheral organs. The highest concentrations were measured in the kidney (86 fmol/mg of tissue) and spleen (56 fmol/mg of tissue), whereas the adrenal gland, liver, heart, and several forebrain areas (hippocampus, striatum, parietal cortex, thalamus, amygdala/pyriform cortex, and frontal cortex) contained less 3-HANA (between 15 and 22 fmol/mg of tissue). Slightly lower concentrations of 3-HANA were found in the brainstem and the cerebellum. The metabolic disposition of 3-HANA was examined in tissue slices which were incubated in Krebs-Ringer buffer at 37 degrees C in vitro. Incubation for up to 2 h did not affect 3-HANA concentration in brain tissue. However, inhibition of 3-HANA degradation by the specific 3-hydroxyanthranilic acid oxygenase blocker 4-chloro-3-hydroxyanthranilic acid (4-Cl-3-HANA; 10 microM) resulted in a rapid (within 2.5 min) doubling of 3-HANA levels in slices from cerebral cortex. No further increases were observed after incubations of up to 120 min. Exposure of cortical slices to 3-HANA's putative bioprecursors, 3-hydroxykynurenine (3-HK) and anthranilic acid (ANA), in the absence of 4-Cl-3-HANA resulted in rapid, transient increases in 3-HANA production. Maximal 3-HANA synthesis from ANA exceeded the maximal effect of 3-HK by approximately 11-fold.2+ In the presence of 4-Cl-3-HANA, 1 mM ANA produced 9.0 +/- 0.3 and 89.0 +/- 9.3 (5 min) or 51.6 +/- 7.9 and 187.5 +/- 11.2 (120 min) fmol of newly synthesized 3-HANA/mg of brain tissue, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Carmustine and lomustine are nitrosourea antitumor chemotherapeutic agents which were used to determine whether or not they could affect arylamine N-acetyltransferase (NAT) activity and DNA-2-aminofluorene adducts in rat glial tumor cell line (C6 glioma). The NAT activity was measured by high preformance liquid chromatography (HPLC) assaying for the amounts of N-acetyl-2-aminofluorene (AAF) and N-acetyl-p-aminobenzoic acid (N-Ac-PABA) and remaining 2-aminofluorene (AF) and p-aminobenzoic acid (PABA). The results indicate that NAT activity in glial tumor cell cytosols and intact tumor cells were decreased by carmustine and lomustine in a dose-dependent manner. The apparent values of Km and Vmax of NAT from rat glial tumor cell also decreased after co-treatment of carmustine and lomustine in both examined cytosols and intact cells. Following exposure of glial tumor cells to the various concentrations of AF with or without co-treatment with carmustine and lomustine, DNA-AF adducts were determined by using -[32p]-dATP and HPLC. The DNA-AF adducts in rat glial tumor cells were decreased by co-treatment with carmustine and lomustine. This report is the first demonstration to show carmustine and lomustine did inhibit rat glial tumor cells NAT activity and DNA-AF adduct formation.  相似文献   

9.
建立一种快速、准确、可靠的脑内兴奋性氨基酸定量检测方法 ,并观察梭曼惊厥后大鼠脑组织中兴奋性氨基酸(EAAs)含量变化。采用 6 30 0黄金系统氨基酸分析仪 ,在锂柱 130min程序生理体液分析方法基础上 ,根据兴奋性氨基酸(EAAs)的特性 ,建立了EAAs的快速测定方法 ,并用此方法对梭曼惊厥后不同时相大鼠的新鲜脑组织进行定位检测。梭曼诱发惊厥后大脑皮质和海马内谷氨酸和天冬门氨酸水平显著下降。惊厥 30min时谷氨酸下降最明显 ,分别是正常组的 5 3.2 %和 5 2 .8%。天门冬氨酸更易受梭曼中毒的影响 ,惊厥后 5、30、90min 3个时相点测定值均显著下降。此方法完成谷氨酸和天门冬氨酸分析的时间是 2 0min ,比原方法缩短了 110min ;且有较好的重现性 (GluCV :日内 1.86 % ,日间 2 .32 % ;AspCV :日内 1.42 ,日间 2 .48% )和回收率 (Glu 97.7% ;Asp97.3% )。兴奋性氨基酸参与了梭曼中毒性惊厥的病理生理过程。本方法定量检测兴奋性氨基酸快速、准确 ,并利于大批量样品的快速测定  相似文献   

10.
以大鼠前体脂肪细胞原代单层培养为模型,用不同浓度花生四烯酸(AA)处理细胞.通过台盼蓝排斥试验及噻唑蓝比色法(MTT)反映各组细胞增殖状况;Hoechst33342荧光染色观察AA处理后细胞核形态变化;油红O染色提取法分析细胞分化程度;逆转录聚合酶链反应(RTPCR)分析环氧合酶2(COX2)mRNA表达情况,探讨外源性AA对大鼠前体脂肪细胞生长分化的影响及其可能机制.120μmolLAA处理前体脂肪细胞24~72h,细胞活力明显高于对照组;160μmolLAA作用48h时,前体脂肪细胞表现出明显的凋亡现象;脂肪细胞经40~80μmolLAA作用72h时,细胞油红O染色的吸光度值显著减少;40μmolLAA在作用的24h时,可显著上调COX2mRNA的表达量.说明外源性AA以时间性和剂量依赖性调节前体脂肪细胞的生长与分化,40~80μmolLAA在不显著增加脂肪数目的同时,可抑制前体脂肪细胞向成熟脂肪细胞转化、减少脂肪生成量,对控制动物体脂的形成有一定参考价值,COX2mRNA表达量的上升可能是AA抑制前体脂肪细胞分化的内在机制.  相似文献   

11.
Calabrese  V.  Rizza  V. 《Neurochemical research》1999,24(1):79-84
A study was undertaken in rats to evaluate the effects of short-term oral ethanol administration on the levels of fatty acid ethyl esters (FAEE) in brain and peripheral organs in the presence and absence of pretreatment with L-carnitine. Administration of ethanol to rats for seven days resulted in fatty acid ethyl ester formation, particularly in the heart and brain, but also in the kidney and liver. FAEE generation was associated with a significant increase of GSH transferase activity. Treatment with L-carnitine significantly reduced both FAEE and GSH transferase activity, and these effects were associated with a significant decrease in alcohol blood concentrations. The present evidence supports the hypothesis that fatty acid ethyl esters could be mediators involved in the production of alcohol-dependent syndromes. Administration of L-carnitine through an increment in lipid metabolism and turnover, and by the modulation of cellular antioxidant enzymes, greatly reduces these metabolic abnormalities supporting its potential usefulness as a pharmacological tool in alcoholism management.I wish to dedicate this paper to the memory of Prof. Victor Rizza who tragically disappeared on the 2nd of September when this paper was in press  相似文献   

12.
Incubation of synaptosomes from rat brain with DL-2-amino-5-phosphonovalerate (APV) stimulated an increased release of dopamine, and this effect was strictly dependent on the extrasynaptosomal calcium level. APV increased biosynthesis of dopamine from tyrosine by 30%, whereas monoamine oxidase activity was inhibited by 30%. When synaptosomes were incubated with radioactive dopamine, APV caused a large decrease in incorporation of label into 3,4-dihydroxyphenylacetic acid but greatly increased incorporation into norepinephrine and its N-methyl derivatives. Quantification of dopamine and its metabolites in synaptosomes, using electrochemical detection, indicated that the presence of APV resulted in changes in the absolute levels of the aforementioned dopamine metabolites similar to the changes in radiolabel incorporation. Omission of Ca2+ from the extrasynaptosomal medium greatly diminished the APV-induced changes in catecholamine metabolism. The metabolic changes appear to largely result from an increased intrasynaptosomal Ca2+ level due to the APV-induced increase in calcium permeability of the plasma membrane.  相似文献   

13.
衰老对大鼠脑区氨基酸水平的影响   总被引:3,自引:1,他引:3  
本文测定了正常青龄组(3月龄)和老龄组(20月龄)大鼠不同脑区(皮层、小脑海马、纹状体和下丘脑)谷氨酸、天门冬氨酸、甘氨酸、r-氨基丁酸和牛磺酸的含量。结果表明:在衰老过程中大鼠某些脑区谷氨酸、天门冬氨酸、甘氨酸和牛磺酸水平显著降低;而纹状体γ-氨基丁酸含量则显著升高。  相似文献   

14.
L-2-Chloropropionic acid (L-CPA) is selectively toxic to cerebellar granule cells; necrosis is first observed in rats 36 h after L-CPA administration (750 mg/kg p.o.) and becomes marked by 48 h. L-CPA has also been shown to activate the mitochondrial pyruvate dehydrogenase (PDH) complex in fasted adult rats, resulting in reduced blood glucose and lactate levels. This study aimed to investigate the biochemical and neurotoxicological effects of L-CPA on the brain. Extracts, prepared from guinea-pig cerebellar and cerebral cortex slices incubated in the presence of L-CPA, were analysed using 1H magnetic resonance spectroscopy, 31P magnetic resonance spectroscopy, and amino acid analysis. Glucose metabolism was studied by monitoring the metabolism of [1-(13)C]glucose using gas chromatography/mass spectrometry. Increased glucose metabolism and decreases in the pool sizes of lactate and alanine were observed in both tissues, demonstrating activation of the PDH complex. Extracts were also prepared from the forebrain and cerebellum of animals that had been treated in vivo with L-CPA and analysed as described for the in vitro studies. Similar evidence for PDH activation was demonstrated at 2 and 24 h after dosing in both tissues. At 48 h after dosing, when signs of toxicity are observed, an increase in the lactate concentration and a decrease in N-acetylaspartate in the cerebellum but not in the forebrain confirmed the selective neurotoxic action of L-CPA. These results suggest that activation of the PDH complex does not directly lead to the delayed selective neurotoxicity of L-CPA.  相似文献   

15.
Expression of hippocalcin and neural visinin-like calcium-binding protein 2 (NVP2) in aging rat brain was investigated by immunoblot and immunohistochemical analyses. In 3-month old rats, hippocalcin and NVP2 were present at high concentrations in hippocampal and cerebral pyramidal cells and dentate granule cells, with hippocalcin protein levels being five to ten times higher than NVP2 levels. Hippocalcin levels in hippocampus and cerebral cortex decreased by approximately 20% at 24 months. While the number of hippocalcin-positive cells in CA3, dentate gyrus and cerebral cortex were preserved, staining intensity decreased. In contrast, the number and staining intensity of hippocalcin-positive cells in CA1 were maintained. NVP2 levels in hippocampus and cerebral cortex decreased by approximately 30% at 24 months. In cerebral cortex, the number and intensity of NVP2-positive cells decreased. In CA1 through CA3 and in dentate gyrus, NVP2-positive cell numbers were preserved, but staining intensity decreased. In summary, the loss of hippocalcin and NVP2 in aging rat brain may be associated with age-related impairment of postsynaptic functions.  相似文献   

16.
This work examined the influence of the pineal gland and its hormone melatonin on the metabolism of serotonin (5-HT) in discrete areas of the forebrain, such as the Striatum and the nucleus accumbens, and the midbrain raphe. The content of 5-HT and its major oxidative metabolite, the 5-hydroxyindoleacetic acid (5-HIAA), as well as the in-vivo tryptophan hydroxylation rate were examined after long-term pinealectomy (one month) and daily melatonin treatment (500 g/kg; twice daily for ten days) in pinealectomized rats. Pinealectomy did not alter 5-HT content in any of these brain areas, but it significantly increased the content of 5-HIAA in Striatum and the 5-HIAA/5-HT ratio in nucleus accumbens. The normal values of these parameters were recuperated after administration of exogenous melatonin, but it also increased the rate of tryptophan hydroxylation in both areas. In addition, melatonin treatment decreased the levels of 5-HIAA in dorsal raphe nucleus. These data suggest that the pineal gland, through the secretion of melatonin, modulates the local metabolism of 5-HT in forebrain areas by acting on the oxidative deamination. Moreover, melatonin injected in pinealectomized rats derives in a more extended effect than pinealectomy and induces a stimulation of 5-HT synthesis in the striatum, probably due to a pharmacological effect. These results point to the striatum as a target area for the interaction between pineal melatonin and the serotonergic function, and suggest a differential effect of the melatonin injected on areas containing serotonergic terminals and cell bodies, which may relevant for the mode of action of melatonin and its behavioral effects.  相似文献   

17.
在二元酸发酵过程中流加H2O2对热带假丝酵母发酵生产二元酸有明显的促进作用,2mmol/L的H2O2对产酸的促进作用最为明显,比对照提高了26%。对细胞色素P450酶的分析表明,流加H2O2对细胞色素P450酶的活性有明显的促进作用,并且细胞色素P450酶的活性跟产酸成正相关。此外,还进一步分析了流加H2O2对产酸的促进机理。  相似文献   

18.
The steady-state brain/plasma distribution ratios of [14C]deoxyglucose ([14C]DG) for hypoglycemic rats previously determined by measurement of DG concentrations in neutralized acid extracts of freeze-blown brain and plasma exceeded those predicted by simulations of kinetics of the DG model. Overestimation of the true size of the precursor pool of [14C]DG for transport and phosphorylation could arise from sequestration of [14C]DG within brain compartments and/or instability of metabolites of [14C]DG and regeneration of free [14C]DG during the experimental period or extraction procedure. In the present study, the concentrations of [14C]DG and glucose were compared in samples of rat brain and plasma extracted in parallel with perchloric acid or 65% ethanol containing phosphate-buffered saline. The concentrations of both hexoses in acid extracts of brain were higher than those in ethanol, whereas hexose contents of plasma were not dependent on the extraction procedure. The magnitude of overestimation of DG content (about 1.2-to fourfold) varied with glucose level and was highest in extracts isolated from hypoglycemic rats; contamination of the [14C]DG fraction with 14C-labeled nonacidic metabolites also contributed to this overestimation. Glucose concentrations in acid extracts of brain exceeded those of the ethanol extracts by less than 40% for normal and hypoglycemic rats.  相似文献   

19.
CO2 production from exogenous glucose of cortical, whole hippocampal, and CA3 region hippocampal slices, as well as O2 consumption of whole hippocampal slices, were measured in the presence of different concentrations of kainic acid. A moderate, significant increase of CO2 production was seen only in the CA3 region hippocampal preparation at kainic acid concentrations of 10(-4)-10(-2) M. The O2 consumption, at the expense of endogenous energy stores of whole hippocampal slices, was substantially increased by 10(-3) M kainic acid when the slices were incubated without exogenous glucose. The effect was partly paralleled by the use of high (50 mM) K+ concentration. Some of the possible factors involved in the differential metabolic responses of brain slices to the action of kainic acid are discussed briefly.  相似文献   

20.
Using rat organotypic hippocampal-entorhinal cortical (HEC) slice cultures, we examined whether phospholipase A2 (PLA2) activity is involved in binge alcohol (ethanol)-induced neurodegeneration, and whether docosahexaenoic acid (DHA; 22:6n-3), a fish oil-enriched fatty acid that is anti-inflammatory in brain damage models, is neuroprotective. Assessed with propidium iodide and lactate dehydrogenase (LDH) leakage, neurodamage from ethanol (6 days 100 mM ethanol with four withdrawal periods) was prevented by the PLA2 pan-inhibitor, mepacrine. Also, ethanol-dependent neurodegeneration—particularly in the entorhinal region—was significantly ameliorated by DHA supplementation (25 μM); however, adrenic acid, a 22:4n-6 analog, was ineffective. Consistent with PLA2 activation, [3H] liberation was approximately fivefold greater in [3H]arachidonic acid-preloaded HEC slice cultures during ethanol withdrawal compared to controls, and DHA supplementation suppressed [3H] release to control levels. DHA might antagonize PLA2 activity directly or suppress upstream activators (e.g., oxidative stress); however, other DHA mechanisms could be important in subdueing ethanol-induced PLA2-dependent and independent neuroinflammatory processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号