首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
The coexistence of activated polymorphonuclear leukocytes and lymphocytes in tumor masses and inflammatory tissues suggests the possibility of interaction between secreted neutrophil products and nearby lymphocytes. To test this hypothesis, we examined the effects of neutrophil myeloperoxidase and H2O2 on lymphocytes. Human peripheral blood mononuclear leukocytes were exposed to myeloperoxidase, an H2O2-generating system (glucose + glucose oxidase), and a halide, and were then tested for functional activities. Natural killer activity against K562 cells, lymphocyte proliferation in response to mitogens, and generation of immunoglobulin-secreting cells were all susceptible to oxidative injury by myeloperoxidase and H2O2. The degree as well as the mechanism of suppression was dependent on the glucose oxidase concentration (i.e., the rate of H2O2 delivery). At low H2O2 flux, myeloperoxidase was essential for induction of lymphocyte suppression; as the rate of H2O2 generation increased, suppression became myeloperoxidase-independent and was mediated by H2O2 alone. Various lymphocyte functions were differentially susceptible to oxidative injury by myeloperoxidase and H2O2. The proliferative response to poke-weed mitogen was the least sensitive, whereas antibody formation was the most sensitive. Proliferative responses to concanavalin A and phytohemagglutinin as well as natural killer activity displayed intermediate degrees of susceptibility. In all assays, lymphocyte viability was greater than 90%. Removal of monocytes from mononuclear leukocytes by adherence to glass increased susceptibility of lymphocytes to oxidative injury. Monocytes in proportions within the range present in peripheral blood mononuclear leukocytes protected lymphocyte functions against oxidative injury by myeloperoxidase and H2O2. This study demonstrates a differential susceptibility of various immune functions to oxidative injury by the neutrophil products myeloperoxidase and H2O2, and shows, in addition, that monocytes can modulate these interactions.  相似文献   

2.
There is growing evidence that natural killer (NK) cells play an important role in immune surveillance against tumors and certain infections. The coexistence of activated neutrophils with lymphocytes in tumor masses and inflammatory tissues suggests the possibility of interaction between secreted neutrophil products and nearby lymphocytes. We examined the susceptibility of lymphocyte NK activity to oxidative injury by the neutrophil myeloperoxidase (MPO) system and H2O2 with the use of a cellfree model system. Exposure of human mononuclear leukocytes (MNL) to MPO, an H2O2-generating system (glucose + glucose oxidase), and a halide (C1- or I-) resulted in marked suppression of MNL-NK activity, as measured by 51Cr release from K562 tumor targets (p less than 0.001). This suppression was dependent on the presence and activity of each system component and was blocked by azide and catalase, but not by heated catalase. In spite of the marked functional suppression of NK activity, MNL viability was more than 95% and target binding frequency was not affected. NK suppression was reversible after 24 hr in culture. The mechanism of suppression was dependent on the amount and rate of H2O2 delivered, and on MNL number. MPO was essential when H2O2 flux was low or when MNL numbers were high. As H2O2 flux increased or MNL numbers decreased, NK suppression gradually became MPO-independent and was mediated by H2O2 alone. The ability of the MPO system to compromise lymphocyte NK function may explain the in vitro inhibition of NK activity of mixed cell populations by the tumor promoter phorbol esters, because these agents are potent stimulants for neutrophil secretion of MPO and H2O2. This study may also provide a possible mechanism for the reported in situ NK activity suppression by adherent phagocytic cells during carcinogenesis in both humans and animals.  相似文献   

3.
Pneumolysin, a hemolytic toxin from Streptococcus pneumoniae, is a member of the group of thiol-activated, oxygen-labile cytolysins produced by various Gram-positive bacteria. The toxin activity of pneumolysin, as determined by lysis of 51Cr-labeled human erythrocytes, was destroyed on exposure to the neutrophil enzyme myeloperoxidase, hydrogen peroxide, and a halide (chloride or iodide). Detoxification required each component of the myeloperoxidase system and was prevented by the addition of agents that inhibit heme enzymes (azide, cyanide) or degrade H2O2 (catalase). Reagent H2O2 could be replaced by the peroxide-generating enzyme system glucose oxidase plus glucose. The entire myeloperoxidase system could be replaced by sodium hypochlorite at micromolar concentrations. Toxin inactivation was a function of time of exposure to the myeloperoxidase system (less than 1 min), the rate of formation of H2O2 (0.05 nmol/min), and the concentration of toxin employed. Toxin that had been inactivated by the myeloperoxidase system was reactivated on incubation with the reducing agent dithiothreitol. Pneumolysin was also inactivated when incubated with human neutrophils (10(5)) in the presence of a halide and phorbol myristate acetate, an activator of neutrophil secretion and oxygen metabolism. Toxin inactivation by stimulated neutrophils was blocked by azide, cyanide, or catalase, but not by superoxide dismutase. Neutrophils from patients with impaired oxygen metabolism (chronic granulomatous disease) or absent myeloperoxidase (hereditary deficiency) failed to inactivate the toxin unless they were supplied with an exogenous source of H2O2 or purified myeloperoxidase, respectively. Thus, inactivation of pneumolysin involved the secretion of myeloperoxidase and H2O2, which combined with extracellular halides to form agents (e.g., hypochlorite) capable of oxidizing the toxin. This example of oxidative inactivation of a cytolytic agent may serve as a model for phagocyte-mediated detoxification of microbial products.  相似文献   

4.
It is well known that catalase is transformed to nitric oxide-Fe2+-catalase by hydrogen peroxide (H2O2) plus azide. In this report, we show that myeloperoxidase is also inactivated by H2O2 plus azide. Utilizing this system, we studied the presence and source of intracellular H2O2 generated by activated neutrophils. Stimulation of neutrophils with phorbol myristate acetate (PMA, 100 ng/ml) plus azide (5 mM) for 30 min completely inactivated intragranular myeloperoxidase and reduced cytosolic catalase to 35% of resting cells. This intracellular inactivation of heme enzymes did not occur in normal neutrophils incubated with either PMA or azide alone or in neutrophils from patients with chronic granulomatous disease (CDG) which cannot produce H2O2 in response to PMA. Incubation of neutrophils with azide and a H2O2 generating system (glucose-glucose oxidase) inactivated 41% of neutrophil myeloperoxidase. Glutathione-glutathione peroxidase (GSH-GSH peroxidase), an extracellular H2O2 scavenger, totally protected neutrophil myeloperoxidase from inactivation by azide plus glucose-glucose oxidase. In addition, when a mixture of normal and CGD cells was stimulated with PMA in the presence of azide, 90% of the myeloperoxidase in CGD neutrophils was inactivated. Therefore, H2O2 released extracellularly from activated neutrophils can diffuse into cells. In contrast, myeloperoxidase in normal polymorphonuclear leukocytes stimulated with PMA in the presence of azide and GSH-GSH peroxidase was 75% inactivated. Thus, the results indicate that a GSH-GSH peroxidase-insensitive pool of H2O2 is also generated, presumably at the plasma membrane, and this pool of H2O2 can undergo direct internal diffusion to inactivate myeloperoxidase.  相似文献   

5.
Intact human neutrophils, incubated with the soluble stimulant phorbol myristate acetate, discharge lysosomal components, generate oxygen metabolites, and transform exogenous 6-keto-prostaglandin F1 alpha, prostaglandin E2, and prostaglandin F2 alpha as assessed by thin layer radiochromatography. Neutrophils alone were incapable of transforming the prostaglandins. The addition of catalase or the myeloperoxidase inhibitor, azide, protected all three prostaglandins from the phorbol-stimulated neutrophils. Neither superoxide dismutase, heat-inactivated catalase, nor albumin had any inhibitory effect in this system. A model system consisting of glucose-glucose oxidase, as a source of H2O2, purified myeloperoxidase, and chloride was also able to transform the prostaglandins in an identical fashion. Neither glucose-glucose oxidase alone nor glucose-glucose oxidase and myeloperoxidase under chloride-free conditions were able to mediate this transformation. Thus, it appears that intact human neutrophils can transform prostaglandins by a mechanism dependent on H2O2, the lysosomal enzyme myeloperoxidase, and chloride. Given the importance of prostaglandins in regulating immune function, neutrophil-dependent prostaglandin transformation could play a novel role in modulating the inflammatory response.  相似文献   

6.
We have examined the effect of the myeloperoxidase-hydrogen peroxide-halide system and of activated human neutrophils on the ability of serum alpha 1-protease inhibitor (alpha 1-PI) to bind and inhibit porcine pancreatic elastase. Exposure to the isolated myeloperoxidase system resulted in nearly complete inactivation of alpha 1-PI. Inactivation was rapid (10 to 20 s); required active myeloperoxidase, micromolar concentrations of H2O2 (or glucose oxidase as a peroxide generator), and a halide cofactor (Cl- or I-); and was blocked by azide, cyanide, and catalase. Intact neutrophils similarly inactivated alpha 1-PI over the course of 5 to 10 min. Inactivation required the neutrophils, a halide (Cl-), and a phorbol ester to activate secretory and metabolic activity. It was inhibited by azide, cyanide, and catalase, but not by superoxide dismutase. Neutrophils with absent myeloperoxidase or impaired oxidative metabolism (chronic granulomatous disease) failed to inactivate alpha 1-PI, and these defects were specifically corrected by the addition of myeloperoxidase or H2O2, respectively. Thus, stimulated neutrophils secrete myeloperoxidase and H2O2 which combine with a halide to inactivate alpha 1-PI. We suggest that leukocyte-derived oxidants, especially the myeloperoxidase system, may contribute to proteolytic tissue injury, for example in elastase-induced pulmonary emphysema, by oxidative inactivation of protective antiproteases.  相似文献   

7.
Exposure of [3H]-lysine labeled elastin to either purified myeloperoxidase plus H2O2 and halides or human neutrophils plus phorbol myristate acetate resulted in oxidation of lysine side chains quantitated as 3H2O release. In both the enzyme and cell system oxidation was blocked by azide, cyanide or catalase, but not by beta-aminopropionitrile, an inhibitor of lysyl oxidase. Myeloperoxidase-deficient neutrophils were ineffective unless exogenous myeloperoxidase was added. These data provide a biochemical basis for inflammatory changes in connective tissue proteins mediated by oxidant secretory products of neutrophils.  相似文献   

8.
Human serum apotransferrin was exposed to the isolated myeloperoxidase-H2O2-halide system or to phorbol ester-activated human neutrophils. Such treatment resulted in a marked loss in transferrin iron binding capacity as well as concomitant iodination of transferrin. Each component of the cell-free system (myeloperoxidase, H2O2, iodide) or neutrophil system (neutrophils, phorbol ester, iodide) was required in order to observe these changes. In the cell-free system, the H2O2 requirement was fulfilled by either reagent H2O2 or the peroxide-generating system glucose oxidase plus glucose. Both loss of iron binding capacity and transferrin iodination by either the myeloperoxidase system or activated neutrophils were blocked by azide or catalase. The isolated peroxidase system had an acidic pH optimum, whereas the intact cell system was more efficient at neutral pH. The kinetics of changes in iron binding capacity and iodination closely paralleled one another, exhibiting t1/2 values of less than 1 min for the myeloperoxidase-H2O2 system, 3-4 min for the myeloperoxidase-glucose oxidase system, and 8 min for the neutrophil system. That the occupied binding site is protected from the myeloperoxidase system was suggested by 1) a failure to mobilize iron from iron-loaded transferrin, 2) an inverse correlation between initial iron saturation and myeloperoxidase-mediated loss of iron binding capacity, and 3) decreased myeloperoxidase-mediated iodination of iron-loaded versus apotransferrin. Since as little as 1 atom of iodide bound per molecule of transferrin was associated with substantial losses in iron binding capacity, there appears to be a high specificity of myeloperoxidase-catalyzed iodination for residues at or near the iron binding sites. Amino acid analysis of iodinated transferrin (approximately 2 atoms/molecule) demonstrated that iodotyrosine was the predominant iodinated species. These observations document the ability of neutrophils to inactivate transferrin iron binding capacity via the secretion of myeloperoxidase, formation of H2O2, and subsequent myeloperoxidase-catalyzed iodination. This sequence of events may help to explain the changes in iron metabolism associated with the in vivo inflammatory response.  相似文献   

9.
Myeloperoxidase-Halide-Hydrogen Peroxide Antibacterial System   总被引:89,自引:4,他引:85       下载免费PDF全文
An antibacterial effect of myeloperoxidase, a halide, such as iodide, bromide, or chloride ion, and H(2)O(2) on Escherichia coli or Lactobacillus acidophilus is described. When L. acidophilus was employed, the addition of H(2)O(2) was not required; however, the protective effect of catalase suggested that, in this instance, H(2)O(2) was generated by the organisms. The antibacterial effect was largely prevented by preheating the myeloperoxidase at 80 C or greater for 10 min or by the addition of a number of inhibitors; it was most active at the most acid pH employed (5.0). Lactoperoxidase was considerably less effective than was myeloperoxidase when chloride was the halide employed. Myeloperoxidase, at high concentrations, exerted an antibacterial effect on L. acidophilus in the absence of added halide, which also was temperature- and catalase-sensitive. Peroxidase was extracted from intact guinea pig leukocytes by weak acid, and the extract with peroxidase activity had antibacterial properties which were similar, in many respects, to those of the purified preparation of myeloperoxidase. Under appropriate conditions, the antibacterial effect was increased by halides and by H(2)O(2) and was decreased by catalase, as well as by cyanide, azide, Tapazole, and thiosulfate. This suggests that, under the conditions employed, the antibacterial properties of a weak acid extract of guinea pig leukocytes is due, in part, to its peroxidase content, particularly if a halide is present in the reaction mixture. A heat-stable antibacterial agent or agents also appear to be present in the extract.  相似文献   

10.
The contribution of activated oxygen species to neutrophil-mediated degradation of basement membrane collagen was investigated. In preliminary experiments, pre-exposure of either albumin or glomerular basement membrane to neutrophil myeloperoxidase with H2O2 and chloride increased their susceptibility to proteolysis 2-3-fold. In the basement membrane model, neutrophils are stimulated by trapped immune complexes to adhere, produce oxidants and degranulate. Degradation, measured as the amount of hydroxyproline solubilised, was due to neutral proteinases, particularly elastase, and depended on cell number and the amount of proteinase released. Experiments with oxidant scavengers and inhibitors and with neutrophils from donors with chronic granulomatous disease or myeloperoxidase deficiency showed that oxidants did not affect degradation of the basement membrane when this was measured on a per cell basis. However, oxidative inactivation of the released granule enzymes occurred. Activities of elastase, beta-glucuronidase and lysozyme were 1.5-2-times higher in the presence of catalase, but were unaffected by superoxide dismutase or hydroxyl radical scavengers. Inactivation did not occur with chronic granulomatous disease or myeloperoxidase deficient neutrophils. When related to the activity of released elastase, or to other degranulation markers, collagen degradation was decreased in the presence of catalase, or with chronic granulomatous disease or myeloperoxidase deficient cells. This implies that the basement membrane was made more digestible by myeloperoxidase-derived oxidants, as occurred in the cell-free experiments. Taken together, the results indicate that neutrophil oxidants have two opposing effects. They increase the susceptibility of the collagen to proteolysis and inactivate the proteinases responsible.  相似文献   

11.
Stimulation of the oxygen (O2) metabolism of isolated human neutrophilic leukocytes resulted in oxidation of hemoglobin of autologous erythrocytes without erythrocyte lysis. Hb oxidation could be accounted for by reduction of O2 to superoxide (O-2) by the neutrophils, dismutation of O-2 to yield hydrogen peroxide (H2O2), myeloperoxidase-catalyzed oxidation of chloride (Cl-) by H2O2 to yield hypochlorous acid (HOCl), the reaction of HOCl with endogenous ammonia (NH+4) to yield monochloramine ( NH2Cl ), and the oxidative attack of NH2Cl on erythrocytes. NH2Cl was detected when HOCl reacted with the NH+4 and other substances released into the medium by neutrophils. The amount of NH+4 released was sufficient to form the amount of NH2Cl required for the observed Hb oxidation. Oxidation was increased by adding myeloperoxidase or NH+4 to increase NH2Cl formation. Due to the volatility of NH2Cl , Hb was oxidized when neutrophils and erythrocytes were incubated separately in a closed container. Oxidation was decreased by adding catalase to eliminate H2O2, dithiothreitol to reduce HOCl and NH2Cl , or taurine to react with HOCl or NH2Cl to yield taurine monochloramine . NH2Cl was up to 50 times more effective than H2O2, HOCl, or taurine monochloramine as an oxidant for erythrocyte Hb, whereas HOCl was up to 10 times more effective than NH2Cl as a lytic agent. NH2Cl contributes to oxidation of erythrocyte components by stimulated neutrophils and may contribute to other forms of neutrophil oxidative cytotoxicity.  相似文献   

12.
Although the rapid and considerable membrane depolarization response which accompanies activation of the phagocyte NADPH oxidase is due to transmembrane electron fluxes, little is known about the involvement of reactive oxidant species (ROS) in the subsequent repolarization response. In the current study, we have investigated the effects of superoxide dismutase (SOD), catalase, methionine, and the myeloperoxidase (MPO) inhibitors, sodium azide and 4-aminobenzoyl hydrazide (ABAH), as well as those of H2O2 and HOCl (both at 100 μM) on the alterations in membrane potential which accompany activation of human neutrophils with the chemoattractant, FMLP (1 μM), and on store-operated uptake of Ca2+. The generation of ROS by FMLP-activated neutrophils was monitored according to the magnitude of oxygen consumption and autoiodination, while spectrofluorimetric procedures were used to measure alterations in membrane potential and influx of Ca2+. Treatment of the cells with H2O2, and HOCl, significantly impeded membrane repolarization, while sodium azide, ABAH, methionine, and catalase exerted the opposite effects, potentiating both the rates and the magnitudes of membrane repolarization and store-operated uptake of Ca2+. These observations demonstrate that NADPH oxidase regulates neutrophil membrane potential and Ca2+ influx not only via its electrogenic activity, but also as a consequence of the generation of ROS.  相似文献   

13.
Examination of the spectra of phagocytosing neutrophils and of myeloperoxidase present in the medium of neutrophils stimulated with phorbol myristate acetate has shown that superoxide generated by the cells converts both intravacuolar and exogenous myeloperoxidase into the superoxo-ferric or oxyferrous form (compound III or MPO2). A similar product was observed with myeloperoxidase in the presence of hypoxanthine, xanthine oxidase and Cl-. Both transformations were inhibited by superoxide dismutase. Thus it appears that myeloperoxidase in the neutrophil must function predominantly as this superoxide derivative. MPO2 autoxidized slowly (t 1/2 = 12 min at 25 degrees C) to the ferric enzyme. It did not react directly with H2O2 or Cl-, but did react with compound II (MP2+ X H2O2). MPO2 catalysed hypochlorite formation from H2O2 and Cl- at approximately the same rate as the ferric enzyme, and both reactions showed the same H2O2-dependence. This suggests that MPO2 can enter the main peroxidation pathway, possibly via its reaction with compound II. Both ferric myeloperoxidase and MPO2 showed catalase activity, in the presence or absence of Cl-, which predominated over chlorination at H2O2 concentrations above 200 microM. Thus, although the reaction of neutrophil myeloperoxidase with superoxide does not appear to impair its chlorinating ability, the H2O2 concentration in its environment will determine whether the enzyme acts primarily as a catalase or peroxidase.  相似文献   

14.
Using the electron spin resonance/spin trapping system, 4-pyridyl 1-oxide N-tert-butylnitrone (4-POBN)/ethanol, hydroxyl radical was detected as the alpha-hydroxyethyl spin trapped adduct of 4-POBN, 4-POBN-CH(CH3)OH, from phorbol 12-myristate 13-acetate-stimulated human neutrophils and monocytes without the addition of supplemental iron. 4-POBN-CH(CH3)OH was stable in the presence of a neutrophil-derived superoxide flux. Hydroxyl radical formation was inhibited by treatment with superoxide dismutase, catalase, and azide. Treatment with a series of transition metal chelators did not appreciably alter 4-POBN-CH(CH3)OH, which suggested that hydroxyl radical generation was mediated by a mechanism independent of the transition metal-catalyzed Haber-Weiss reaction. Kinetic differences between transition metal-dependent and -independent mechanisms of hydroxyl radical generation by stimulated neutrophils were demonstrated by a greater rate of 4-POBN-CH(CH3)-OH accumulation in the presence of supplemental iron. Detection of hydroxyl radical from stimulated monocyte-derived macrophages, which lack myeloperoxidase, required the addition of supplemental iron. The addition of purified myeloperoxidase to an enzymatic superoxide generating system resulted in the detection of hydroxyl radical that was dependent upon the presence of chloride and was inhibited by superoxide dismutase, catalase, and azide. These findings implicated the reaction of hypochlorous acid and superoxide to produce hydroxyl radical. 4-POBN-CH(CH3)OH was not observed upon stimulation of myeloperoxidase-deficient neutrophils, whereas addition of myeloperoxidase to the reaction mixture resulted in the detection of hydroxyl radical. These results support the ability of human neutrophils and monocytes to generate hydroxyl radical through a myeloperoxidase-dependent mechanism.  相似文献   

15.
The susceptibility of a number of human neutrophil granule enzymes to oxidative inactivation was investigated. Addition of H2O2 to the cell-free medium from stimulated neutrophils resulted in inactivation of all enzymes tested. This was inhibited by azide and methionine, indicating that inactivation was due to myeloperoxidase-derived oxidants. Lysozyme was more than 50% inactivated by one addition of 100 nmol of H2O2/ml, whereas myeloperoxidase, beta-glucuronidase, gelatinase and collagenase were almost completely inactivated by three additions. Cathepsin G was slightly less susceptible, whereas elastase was extremely resistant to oxidative attack. Myeloperoxidase-dependent enzyme inactivation may be a means whereby the neutrophil can terminate the activity of its granule enzymes and control the release of degradative enzymes into the tissues.  相似文献   

16.
Leukocyte chemoattractants were inactivated when exposed to human neutrophils and either ingestible particles or phorbol esters. Loss of biologic activity was time- and temperature-dependent, required physiologic concentrations of viable neutrophils and a halide, and was inhibited by azide or catalase. Neutrophils from patients with either hereditary myeloperoxidase deficiency or chronic granulomatous disease failed to inactivate the chemoattractants unless purified myeloperoxidase or H2O2, respectively, was added. Susceptibility to inactivation by neutrophils correlated with the presence of methionine in the attractant. Loss of chemotactic activity was blocked by low concentrations of methionine and by higher concentrations of other reducing agents, but was unaffected by oxidized methionine. Paper chromatography demonstrated that exposure of a formyl-methionyl peptide chemotactic factor to either the cellfree myeloperoxidase system or stimulated neutrophils resulted in its conversion to a molecular species whose location in the chromatographs was identical to that of the peptide containing oxidized methionine. Thus, stimulated human neutrophils inactivate peptide chemoattractants by secretion of myeloperoxidase and H2O2, which combine with halides to form oxidants that react with a critical methionine residue. We suggest that myeloperoxidase-catalyzed oxidation of thioethers may constitute an inflammatory control mechanism as well as a general means of modifying the functional properties of biologic mediators.  相似文献   

17.
Stimulated neutrophils undergo a respiratory burst discharging large quantities of superoxide and hydrogen peroxide. They also release myeloperoxidase, which catalyses the conversion of hydrogen peroxide and Cl- to hypochlorous acid. Human neutrophils stimulated with opsonized zymosan promoted the loss of monochlorodimedon. This loss was entirely due to hypochlorous acid, since it did not occur in Cl(-)-free buffer, was inhibited by azide and cyanide, and was enhanced by adding exogenous myeloperoxidase. It was not inhibited by desferal, diethylenetriaminepentaacetic acid, mannitol or dimethylsulfoxide, which excluded involvement of the hydroxyl radical. Approx. 30% of the detectable superoxide generated was converted to hypochlorous acid. As expected, formation of hypochlorous acid was completely inhibited by catalase, but it was also inhibited by up to 70% by superoxide dismutase. Superoxide dismutase also inhibited the production of hypochlorous acid by neutrophils stimulated with phorbol myristate acetate. Our results indicate that generation of superoxide by neutrophils enables these cells to enhance their production of hypochlorous acid. Furthermore, inhibition of neutrophil processes by superoxide dismutase and catalase does not necessarily implicate the hydroxyl radical. It is proposed that superoxide may potentiate oxidant damage at inflammatory sites by optimizing the myeloperoxidase-dependent production of hypochlorous acid.  相似文献   

18.
An in vitro model was designed to study the role of ischemia/reperfusion and endothelium-derived oxygen free radicals on neutrophil adhesion, with particular interest in the endothelial adhesion molecules involved. Human umbilical vein endothelial cells were submitted to 5 h hypoxia followed by various times (20 min to 24 h) of reoxygenation. Human resting neutrophils were added to monolayers for the last 15 min of reoxygenation. Adherence was evaluated by myeloperoxidase assay. Under these conditions, we found an increased adhesion of neutrophils with two peaks after 20 min and 4 h reoxygenation. This was correlated with the respective expression of the preformed granule membrane protein 140 (GMP-140) and of the de novo synthesized endothelial leukocyte adhesion molecule 1 (ELAM-1) on endothelial surface. Superoxide dismutase and/or catalase, or oxypurinol added to cultures before hypoxia efficiently prevented neutrophil adhesion. These results underline the crucial role played by endothelial oxy radicals at reoxygenation in adhesion of leukocytes, which could lead to an amplification of the oxidative stress injury. The protection offered by free radical scavengers emphasizes the potential therapeutic use of antioxidants in postischemic vascular disorders.  相似文献   

19.
Both the chemotactic peptide formylmethionylleucylphenylalanine (FMLP) and the calcium-specific ionophore ionomycin can activate the NADPH-oxidase in human neutrophils. However, since ionomycin and FMLP activity differ in their requirement for azide, a potent inhibitor of the hydrogen peroxide consuming enzymes catalase and myeloperoxidase, we propose that the two stimuli can activate different pools of the oxidase. Degranulation, induced in vitro by sn-1,2-dedecaoylglycerol or in vivo by an exudation process, resulted in a priming of the cells using FMLP as stimulating agent as well as in a reduced capacity to generate H2O2 in response to ionomycin. The sensitivity of the plasma membrane-bound NADPH-oxidase to an intracellular [Ca2+] rise, induced by the ionophore was, however, not changed by the degranulation. From these results we propose that FMLP activates the plasma membrane-bound oxidase, whereas the ionophore is capable of activating a granule-bound pool of the oxidase.  相似文献   

20.
The detailed mechanisms by which acutely activated leukocytes metabolize NO and regulate its bioactivity are unknown. Therefore, healthy, chronic granulomatous disease (CGD) or myeloperoxidase (MPO)-deficient human neutrophils were examined for their ability to consume NO and attenuate its signaling. fMLP or PMA activation of healthy neutrophils caused NO consumption that was fully blocked by NADPH oxidase inhibition, and was absent in CGD neutrophils. Studies using MPO-deficient neutrophils, enzyme inhibitors, and reconstituted NADPH oxidase ruled out additional potential NO-consuming pathways, including Fenton chemistry, PGH synthase, lipoxygenase, or MPO. In particular, the inability of MPO to consume NO resulted from lack of H(2)O(2) substrate since all superoxide (O(2)(-.) reacted to form peroxynitrite. For healthy or MPO-deficient cells, NO consumption rates were 2- to 4-fold greater than O(2)(-.) generation, significantly faster than expected from 1:1 termination of NO with O(2)(-.). Finally, fMLP or PMA-stimulated NO consumption fully blocked NO-dependent neutrophil cGMP synthesis. These data reveal NADPH oxidase as the central regulator of NO signaling in human leukocytes. In addition, they demonstrate an important functional difference between CGD and either normal or MPO-deficient human neutrophils, namely their inability to metabolize NO which will alter their ability to adhere and migrate in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号