首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Four subpopulations of a Plutella xylostella (L.) strain from Malaysia (F4 to F8) were selected with Bacillus thuringiensis subsp. kurstaki HD-1, Bacillus thuringiensis subsp. aizawai, Cry1Ab, and Cry1Ac, respectively, while a fifth subpopulation was left as unselected (UNSEL-MEL). Bioassays at F9 found that selection with Cry1Ac, Cry1Ab, B. thuringiensis subsp. kurstaki, and B. thuringiensis subsp. aizawai gave resistance ratios of >95, 10, 7, and 3, respectively, compared with UNSEL-MEL (>10,500, 500, >100, and 26, respectively, compared with a susceptible population, ROTH). Resistance to Cry1Ac, Cry1Ab, B. thuringiensis subsp. kurstaki, and B. thuringiensis subsp. aizawai in UNSEL-MEL declined significantly by F9. The Cry1Ac-selected population showed very little cross-resistance to Cry1Ab, B. thuringiensis subsp. kurstaki, and B. thuringiensis subsp. aizawai (5-, 1-, and 4-fold compared with UNSEL-MEL), whereas the Cry1Ab-, B. thuringiensis subsp. kurstaki-, and B. thuringiensis subsp. aizawai-selected populations showed high cross-resistance to Cry1Ac (60-, 100-, and 70-fold). The Cry1Ac-selected population was reselected (F9 to F13) to give a resistance ratio of >2,400 compared with UNSEL-MEL. Binding studies with 125I-labeled Cry1Ab and Cry1Ac revealed complete lack of binding to brush border membrane vesicles prepared from Cry1Ac-selected larvae (F15). Binding was also reduced, although less drastically, in the revertant population, which indicates that a modification in the common binding site of these two toxins was involved in the resistance mechanism in the original population. Reciprocal genetic crosses between Cry1Ac-reselected and ROTH insects indicated that resistance was autosomal and showed incomplete dominance. At the highest dose of Cry1Ac tested, resistance was recessive while at the lowest dose it was almost completely dominant. The F2 progeny from a backcross of F1 progeny with ROTH was tested with a concentration of Cry1Ac which would kill 100% of ROTH moths. Eight of the 12 families tested had 60 to 90% mortality, which indicated that more than one allele on separate loci was responsible for resistance to Cry1Ac.  相似文献   

2.
Selection with Bacillus thuringiensis subsp. kurstaki, which contains CryIA and CryII toxins, caused a >200-fold cross-resistance to CryIF toxin from B. thuringiensis subsp. aizawai in the diamondback moth, Plutella xylostella. CryIE was not toxic, but CryIB was highly toxic to both selected and unselected larvae. The results show that extremely high levels of cross-resistance can be conferred across classes of CryI toxins of B. thuringiensis.  相似文献   

3.
Bacillus thuringiensis Cry1Ac toxin bound to a 120-kDa protein isolated from the brush border membranes of both susceptible and resistant larvae of Plutella xylostella, the diamondback moth. The 120-kDa protein was purified by Cry1Ac toxin affinity chromatography. Like Cry1Ac-binding aminopeptidase N (EC 3.4.11.2) from other insects, this protein was eluted from the affinity column with 200 mM N-acetylgalactosamine. The purified protein had aminopeptidase activity and bound Cry1Ac toxin on ligand blots. Purified aminopeptidase was recognized by antibodies to the cross-reacting determinant found on phosphatidylinositol-specific phospholipase C-solubilized proteins. The results show that the presence of Cry1Ac-binding aminopeptidase in the brush border membrane is not sufficient to confer susceptibility to Cry1Ac. Furthermore, the results do not support the hypothesis that resistance to Cry1Ac was caused by lack of a Cry1Ac-binding aminopeptidase.  相似文献   

4.
Laboratory selection increased resistance to the Bacillus thuringiensis toxin Cry1C in a strain of diamondback moth (Plutella xylostella). The selected strain was derived from a field population that had evolved high levels of resistance to Bacillus thuringiensis subsp. kurstaki and moderate resistance to Cry1C. Relative to the responses of a susceptible strain of diamondback moth, the resistance to Cry1C of the selected strain increased to 62-fold after six generations of selection. The realized heritability of resistance was 0.10. Analysis of F(inf1) hybrid progeny from reciprocal crosses between the selected strain and a susceptible strain showed that resistance to Cry1C was autosomally inherited. The dominance of resistance to Cry1C depended on the concentration; inheritance was increasingly dominant as the concentration decreased. Responses of progeny from single-pair families showed that resistance to Cry1C and resistance to Cry1Ab were inherited independently, which enhances opportunities for managing resistance. However, compared with projections based on previously reported recessive inheritance of resistance to Cry1A toxins, the potentially dominant inheritance of resistance to Cry1C observed here could accelerate evolution of resistance.  相似文献   

5.
We tested toxins of Bacillus thuringiensis against larvae from susceptible, Cry1C-resistant, and Cry1A-resistant strains of diamondback moth (Plutella xylostella). The Cry1C-resistant strain, which was derived from a field population that had evolved resistance to B. thuringiensis subsp. kurstaki and B. thuringiensis subsp. aizawai, was selected repeatedly with Cry1C in the laboratory. The Cry1C-resistant strain had strong cross-resistance to Cry1Ab, Cry1Ac, and Cry1F, low to moderate cross-resistance to Cry1Aa and Cry9Ca, and no cross-resistance to Cry1Bb, Cry1Ja, and Cry2A. Resistance to Cry1C declined when selection was relaxed. Together with previously reported data, the new data on the cross-resistance of a Cry1C-resistant strain reported here suggest that resistance to Cry1A and Cry1C toxins confers little or no cross-resistance to Cry1Bb, Cry2Aa, or Cry9Ca. Therefore, these toxins might be useful in rotations or combinations with Cry1A and Cry1C toxins. Cry9Ca was much more potent than Cry1Bb or Cry2Aa and thus might be especially useful against diamondback moth.  相似文献   

6.
A field collected population of Plutella xylostella (SERD4) was selected in the laboratory with Bacillus thuringiensis endotoxins Cry1Ac (Cry1Ac-SEL) and Cry1Ab (Cry1Ab-SEL). Both subpopulations showed similar phenotypes: high resistance to the Cry1A toxins and little cross-resistance to Cry1Ca or Cry1D. A previous analysis of the Cry1Ac-SEL showed incompletely dominant resistance to Cry1Ac with more than one factor, at least one of which was sex influenced. In the present study reciprocal mass crosses between Cry1Ab-SEL and a laboratory susceptible population (ROTH) provided evidence that Cry1Ab resistance was also inherited as incompletely dominant trait with more than one factor, and at least one of the factors was sex influenced. Analysis of single pair mating indicated that Cry1Ab-SEL was still heterogeneous for Cry1Ab resistance genes, showing genes with different degrees of dominance. Binding studies showed a large reduction of specific binding of Cry1Ab and Cry1Ac to midgut membrane vesicles of the Cry1Ab-SEL subpopulation. Cry1Ab-SEL was found to be more susceptible to trypsin-activated Cry1Ab toxin than protoxin, although no defect in toxin activation was found. Present and previous results indicate a common basis of resistance to both Cry1Ab and Cry1Ac in selected subpopulations and suggest that a similar set of resistance genes are responsible for resistance to Cry1Ab and Cry1Ac and are selected whichever toxin was used. The possibility of an incompletely dominant trait of resistant to these toxins should be taken into account when considering refuge resistance management strategies.  相似文献   

7.
8.
9.
The long-term usefulness of Bacillus thuringiensis Cry toxins, either in sprays or in transgenic crops, may be compromised by the evolution of resistance in target insects. Managing the evolution of resistance to B. thuringiensis toxins requires extensive knowledge about the mechanisms, genetics, and ecology of resistance genes. To date, laboratory-selected populations have provided information on the diverse genetics and mechanisms of resistance to B. thuringiensis, highly resistant field populations being rare. However, the selection pressures on field and laboratory populations are very different and may produce resistance genes with distinct characteristics. In order to better understand the genetics, biochemical mechanisms, and ecology of field-evolved resistance, a diamondback moth (Plutella xylostella) field population (Karak) which had been exposed to intensive spraying with B. thuringiensis subsp. kurstaki was collected from Malaysia. We detected a very high level of resistance to Cry1Ac; high levels of resistance to B. thuringiensis subsp. kurstaki Cry1Aa, Cry1Ab, and Cry1Fa; and a moderate level of resistance to Cry1Ca. The toxicity of Cry1Ja to the Karak population was not significantly different from that to a standard laboratory population (LAB-UK). Notable features of the Karak population were that field-selected resistance to B. thuringiensis subsp. kurstaki did not decline at all in unselected populations over 11 generations in laboratory microcosm experiments and that resistance to Cry1Ac declined only threefold over the same period. This finding may be due to a lack of fitness costs expressed by resistance strains, since such costs can be environmentally dependent and may not occur under ordinary laboratory culture conditions. Alternatively, resistance in the Karak population may have been near fixation, leading to a very slow increase in heterozygosity. Reciprocal genetic crosses between Karak and LAB-UK populations indicated that resistance was autosomal and recessive. At the highest dose of Cry1Ac tested, resistance was completely recessive, while at the lowest dose, it was incompletely dominant. A direct test of monogenic inheritance based on a backcross of F1 progeny with the Karak population suggested that resistance to Cry1Ac was controlled by a single locus. Binding studies with 125I-labeled Cry1Ab and Cry1Ac revealed greatly reduced binding to brush border membrane vesicles prepared from this field population.  相似文献   

10.
The Bacillus thuringiensis subsp. israelensis cytolytic protein Cyt1Aa was found to be toxic to an insecticide-susceptible laboratory population of Plutella xylostella. Cry1Ac-resistant populations of P. xylostella showed various degrees of resistance to Cyt1Aa. Cyt1Aa/Cry1Ac mixtures showed a marked level of synergism in the Cry1Ac-resistant populations.  相似文献   

11.
We constructed recombinant phage particles displaying the Bacillus thuringiensis Cry1Ba4 active toxin using the pfUSE5 and pComb3X phagemid vectors. The recombinant phage particles were screened and evaluated for displayed biologically active Cry1Ba4 toxin against the target insect larvae. Concurrent expression of Cry1Ba4 protoxin was carried out using the pETBlueTM-2 plasmid expression vector in Escherichia coli TunerTM(DE3)pLacI and the protoxin was successfully expressed at a size of 129 kDa. In the bioassay, 3.30 mg crude extract of Cry1Ba4 protoxin, 9.35 × 109 TU and 7.70 × 109 TU of induced recombinant phage particles carrying Cry1Ba4 active toxin displayed on pComb3X and pFUSE5, respectively, demonstrated mortality of greater than 85% against Plutella xylostella (third-instar) within 48 hours. Thus, we have successfully displayed the Cry1Ba4 activated toxin on the surface of a phage and demonstrated toxicity towards larvae.  相似文献   

12.
Whole-crystal preparations from strains HD-1 and HD-133, activated Cry1Ab and Cry1C toxins as well as Cry1Aa, Cry1Ac, Cry1D, and Cry2Aa protoxins were tested for toxicity to 2nd-instar larvae of the diamondback moth, Plutella xylostella. Mortality data recorded after 2 and 5 days provided different results that were related to differential rates of solubilization, activation, and degradation of insecticidal crystal proteins. The two most active proteins are Cry1Ab and Cry1C, which are both present in HD-133. The Cry1Ab protoxin is activated within 2 days, whereas activation of the Cry1C protoxin occurs between 2 and 5 days. HD-133 is more active than HD-1 immediately after infection and remains toxic over 5 days owing to the sequential activation of its crystal components. Solubility properties of crystals and rates of activation of protoxins influence the overall toxicity of HD-1 and HD-133 to the diamondback moth. Received: 30 March 1999 / Accepted: 3 May 1999  相似文献   

13.
Resistant and susceptible populations of the diamondback moth (Plutella xylostella) were tested with crystalline, solubilized, and partially and fully activated forms of the Bacillus thuringiensis Cry1Ac δ-endotoxin. Fully activated toxin greatly reduced the resistance ratio (ratio of the 50% lethal concentration for the resistant population to that for the susceptible population) of the resistant population, suggesting that a defect in toxin activation is a major resistance mechanism.  相似文献   

14.
A field collected population of Plutella xylostella (SERD4) was selected in the laboratory with Bacillus thuringiensis endotoxins Cry1Ac (Cry1Ac-SEL) and Cry1Ab (Cry1Ab-SEL). Both subpopulations showed similar phenotypes: high resistance to the Cry1A toxins and little cross-resistance to Cry1Ca or Cry1D. A previous analysis of the Cry1Ac-SEL showed incompletely dominant resistance to Cry1Ac with more than one factor, at least one of which was sex influenced. In the present study reciprocal mass crosses between Cry1Ab-SEL and a laboratory susceptible population (ROTH) provided evidence that Cry1Ab resistance was also inherited as incompletely dominant trait with more than one factor, and at least one of the factors was sex influenced. Analysis of single pair mating indicated that Cry1Ab-SEL was still heterogeneous for Cry1Ab resistance genes, showing genes with different degrees of dominance. Binding studies showed a large reduction of specific binding of Cry1Ab and Cry1Ac to midgut membrane vesicles of the Cry1Ab-SEL subpopulation. Cry1Ab-SEL was found to be more susceptible to trypsin-activated Cry1Ab toxin than protoxin, although no defect in toxin activation was found. Present and previous results indicate a common basis of resistance to both Cry1Ab and Cry1Ac in selected subpopulations and suggest that a similar set of resistance genes are responsible for resistance to Cry1Ab and Cry1Ac and are selected whichever toxin was used. The possibility of an incompletely dominant trait of resistant to these toxins should be taken into account when considering refuge resistance management strategies.  相似文献   

15.
A colony of Plutella xylostella from crucifer fields in Florida was used in mortality bioassays with HD-1 spore, CryIA(a), CryIA(b), CryIA(c), CryIB, CryIC, CryID, CryIE, or CryIIA. The data revealed high levels of field-evolved resistance to HD-1 spore and all CryIA protoxins and no resistance to CryIB, CryIC, or CryID. CryIE and CryIIA were essentially not toxic. When HD-1 spore was combined 1:1 with protoxin and fed to susceptible larvae, spore synergized the activity of CryIA and CryIC 5- to 8-fold and 1.7-fold, respectively, and did not synergize the mortality of CryIIA. When fed to Florida larvae, spore failed to synergize the activity of all three CryIA protoxins, synergized the activity of CryIC 5.3-fold, and did not synergize the mortality for CryIIA. Binding studies with CryIA(b), CryIB, and CryIC were performed to determine possible mechanisms of resistance. The two techniques used were (i) binding of biotinylated toxin to tissue sections of larval midguts and (ii) binding of biotinylated toxin to brush border membrane vesicles prepared from whole larvae. Both showed dramatically reduced binding of CryIA(b) in resistant larvae compared with that in susceptible larvae but no differences in binding of CryIB or CryIC.  相似文献   

16.
本实验研究了小菜蛾Plutella xylostella L.高抗Cry1Ac种群DBM1Ac-R(抗性倍数大于1000)及敏感种群DBM1Ac-S的生长发育、繁殖等生物特征情况,组建了两种群的生命表,并对其适合度进行了研究。结果表明,DBM1Ac-R的产卵量、卵历期、孵化率和化蛹率、蛹重及雌雄比(♀:♂),均显著低于DBM1Ac-S。DBM1Ac-R相对于DBM1Ac-S的相对适合度为0.5762,表明Cry1Ac抗性种群在繁殖能力上存在明显的生存劣势。  相似文献   

17.
《Journal of Asia》2007,10(3):229-237
Lectins due to their affinity to carbohydrate moiety are involved in diverse functions like cell attachment in embryogenesis, organogenesis and cellular trafficking as well as nonself recognition in immune responses. Agglutinating activity was detectable in Plutella xylostella (Yponomeutidae: Lepidoptera) against 14 different species including bacterial and yeast cells, among which the whole body homogenate of P. xylostella agglutinated Providencia vermicola, Flavobacterium sp., and Saccharomyces cerevisiae with high titers. On analysis of physico-chemical properties, this putative agglutinating factor (s) was specifically dependent on the presence of Ca++ for its activity and was reversibly sensitive to EDTA. The agglutinating activity was stable at pH 6–8, but was heat-labile. The agglutinating factor (s) was proteinaceous in nature as it was completely precipitable by ammonium sulphate. Its carbohydrate binding activity was demonstrated by inhibition assay, which revealed that methyl α-D-mannopyranoside inhibited agglutination against P. vermicola. In contrast, P. xylostella parasitized by an endoparasitoid wasp, Cotesia plutellae (Braconidae: Hymenoptera), also showed the agglutination properties with somewhat higher activity than the nonparasitized. Carbohydrate inhibition assay with methyl α-D-mannopyranoside was detectable at one-fold higher concentration in the homogenate of the parasitized larvae, suggesting that the agglutinating factor (s) is inducible or due to de novo parasitism-specific synthesis. These results suggest the presence of calcium-dependent lectin in P. xylostella and an alteration in the agglutinating property by C. plutellae parasitization.  相似文献   

18.
Four subpopulations of a Plutella xylostella (L.) strain from Malaysia (F(4) to F(8)) were selected with Bacillus thuringiensis subsp. kurstaki HD-1, Bacillus thuringiensis subsp. aizawai, Cry1Ab, and Cry1Ac, respectively, while a fifth subpopulation was left as unselected (UNSEL-MEL). Bioassays at F(9) found that selection with Cry1Ac, Cry1Ab, B. thuringiensis subsp. kurstaki, and B. thuringiensis subsp. aizawai gave resistance ratios of >95, 10, 7, and 3, respectively, compared with UNSEL-MEL (>10,500, 500, >100, and 26, respectively, compared with a susceptible population, ROTH). Resistance to Cry1Ac, Cry1Ab, B. thuringiensis subsp. kurstaki, and B. thuringiensis subsp. aizawai in UNSEL-MEL declined significantly by F(9). The Cry1Ac-selected population showed very little cross-resistance to Cry1Ab, B. thuringiensis subsp. kurstaki, and B. thuringiensis subsp. aizawai (5-, 1-, and 4-fold compared with UNSEL-MEL), whereas the Cry1Ab-, B. thuringiensis subsp. kurstaki-, and B. thuringiensis subsp. aizawai-selected populations showed high cross-resistance to Cry1Ac (60-, 100-, and 70-fold). The Cry1Ac-selected population was reselected (F(9) to F(13)) to give a resistance ratio of >2,400 compared with UNSEL-MEL. Binding studies with (125)I-labeled Cry1Ab and Cry1Ac revealed complete lack of binding to brush border membrane vesicles prepared from Cry1Ac-selected larvae (F(15)). Binding was also reduced, although less drastically, in the revertant population, which indicates that a modification in the common binding site of these two toxins was involved in the resistance mechanism in the original population. Reciprocal genetic crosses between Cry1Ac-reselected and ROTH insects indicated that resistance was autosomal and showed incomplete dominance. At the highest dose of Cry1Ac tested, resistance was recessive while at the lowest dose it was almost completely dominant. The F(2) progeny from a backcross of F(1) progeny with ROTH was tested with a concentration of Cry1Ac which would kill 100% of ROTH moths. Eight of the 12 families tested had 60 to 90% mortality, which indicated that more than one allele on separate loci was responsible for resistance to Cry1Ac.  相似文献   

19.
Plutella xylostella strain resistant (PXR) to Bacillus thuringiensis Cry1Ac toxin was not killed at even more than 1000 μg Cry1Ac/g diet but killed by Cry1Ab at 0.5 μg/g diet. In contrast, susceptible strain (PXS) was killed by Cry1Ac at 1 μg/g diet. Cy3-labeld Cry1A(s) binding to brush border membrane vesicles (BBMV) prepared from both strains were analyzed with direct binding assay. The Kd value of Cry1Aa to both BBMV was almost identical: 213.2 and 205.8 nM, and 263.5 and 265.0 nM for Cry1Ac. The highest Kd values were in Cry1Ab which showed most effective insecticidal activity in PXS and PXR, 2126 and 2463 nM, respectively. These results clearly showed that the BBMV from PXR and PXS could equally bind to Cry1Ac. The binding between BBMV and Cy3-labeled Cry1Ac was inhibited only by anti-175 kDa cadherin-like protein (CadLP) and -252 kDa protein antisera, but not by anti-120 kDa aminopeptidase. This supports that resistance in PXR resulted from the abortion of pore formation after the binding of Cry1Ac to the BBMV. And furthermore, the importance of 175K CadLP and P252 proteins in those bindings was suggested. We briefly discuss possible mechanisms of the resistance.  相似文献   

20.
The insecticidal toxin gene of Bacillus thuringiensis (Bt) is the most commonly used to develop insect‐resistant living modified organisms (LMOs). Insecticidal proteins produced in transgenic plants are released into the soil from the roots. In this study, possible effects of crystal 1Ac (Cry1Ac) protein on the soil microbial community in Korea were studied. To purify the insoluble Cry1Ac protein expressing Escherichia coli cells, we performed repeated sonication and PBS washing of the insoluble part and Cry1Ac protein was isolated in soluble form from the insoluble form using 100 mM Na2CO3 buffer (pH 9.6) without affinity bead. Also, size‐exclusion chromatography (SEC) was performed to increase the purity of the isolated Cry1Ac protein. The final protein product was identified as Cry1Ac protein through MALDI‐TOF. Insecticidal activity of Cry1Ac protein was demonstrated through the death of Plutella xylostella treated with Cry1Ac protein. Purely isolated Cry1Ac protein showed the same insecticidal activity as Cry1Ac expressed in LM crops. To investigate the change of soil microbial distribution using maize field soils treated with Cry1Ac protein, we isolated high quality metagenomic DNAs from buffer‐ and Cry1Ac protein‐treated soil groups, and analyzed the distribution of soil microorganisms through next‐generation sequencing (NGS) analysis. NGS results showed a similar microbial distribution in both buffer‐ and Cry1Ac protein‐treated samples. These results suggest a useful risk assessment method for domestic targeted insect and soil microorganisms using the Cry1Ac protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号