首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vibrio alginolyticus synthesized an inducible extracellular collagenase in a peptone medium during the stationary growth phase. These cultures also possessed extracellular alkaline serine protease activity. The alkaline protease activity did not require a specific inducer and it was produced in tryptone or minimal media. The collagenase was not produced in either the tryptone or minimal media. The alkaline protease activity was sensitive to catabolite repression by a number of carbon sources, including glucose, and by amino acids and ammonium ions. Cyclic AMP, dibutyryl cyclic AMP and cyclic GMP did not relieve catabolite repression. Histidine and urocanic acid stimulated the production of alkaline protease activity in tryptone and minimal media. Other compounds associated with the histidine utilization (hut) pathway did not increase alkaline protease activity. Histidine reversed the repression of alkaline protease activity by glucose of (NH4)2SO4 in minimal medium. Histidine and the compounds associated with the hut pathway inhibited collagenase production.  相似文献   

2.
The d-gluconate transport system of Bacillus subtilis is optimally induced by exposure of cells for 2 h to 5 mM d-gluconate in the growth medium. d-gluconate transport is subject to catabolite repression, as distinct from inducer exclusion or catabolite inhibition, in a manner parallel to the repression of inducible histidase synthesis, suggesting that the repression is not specific to this transport system. Maximum repression with the repressing carbon source (10 mM) added to cells grown in either casein hydrolysate or amino acid medium is achieved within two doubling times. Urea, the only non-carbon source tested for a repressing effect, was found to act solely by inducer exclusion. The ability of a sugar carbon source to evoke catabolite repression appears to be unrelated to its suitability as a substrate for the sugar: phosphoenolpyruvate phosphotransferase system but nonetheless the conversion to a phosphorylated derivative of the sugar seems essential. Repressed cells fail to synthesize, or do so to a more limited extent, an as yet unidentified phosphorylated compound (probably a highly phosphorylated nucleotide) which is accumulated in the medium of non-repressed cells. Mutant studies imply that inosinic acid synthesis is necessary for catabolite repression whereas the adenosine highly phosphorylated nucleotides required for spurulation are not.  相似文献   

3.
4.
Growth of Streptomyces viridochromogenes on a solid glycerol-NH4NO3 salts medium was accompanied by the formation of aerial mycelia and spores. Adding 0.5% or more casein hydrolysate to the medium stimulated growth while completely repressing the formation of aerial mycelia and spores. This repression was temporary, as evidenced by the fact that transfer of the organisms to media not containing casein hydrolysate resulted in the appearance of aerial mycelia and spores. The effects of individual amino acids were tested. Glycine retarded growth and repressed formation of both aerial mycelia and spores. L-Aspartic acid, L-glutamic acid, and L-histidine stimulated or had little effect on growth and repressed formation of spores but not aerial mycelia. Repression by casein hydrolysate could not be attributed to the carbon/nitrogen ratio or the pH of the medium. Adding 1.25 to 2.5 mM adenine to the medium caused a reversal of the casein hydrolysate repression of aerial mycelium formation but did not reverse repression of sporulation. Dimethyladenine and 8-azaguanine had an effect similar to that of adenine, but a variety of other purine or pyrimidine derivatives had no effect on casein hydrolysate repression. The repression of aerial mycelium and spore formation by casein hydrolysate occurred only in media containing 15 mM or more phosphate. Aerial mycelia and spores were formed in media containing casein hydrolysate and 3 mM or less phosphate.  相似文献   

5.
The formation of the allantoin-degrading enzymes allantoinase, allantoicase and ureidoglycolase in Pseudomonas aeruginosa was found to be regulated by induction, catabolite repression and nitrogen control. Induction was observed when urate, allantoin or allantoate were included in the growth medium, but not with ureidoglycolate. Tricarboxylic acid cycle intermediates exerted catabolite repression of the synthesis of the three enzymes, while pyruvate and glucose caused less repression. The operation of a nitrogen control mechanism in the regulation of the allantoin-degrading enzymes could be demonstrated with glutamine synthetase-negative mutants, which showed elevated synthesis and escape from catabolite repression when growth was limited for glutamine.  相似文献   

6.
Nitrogen regulation of amino acid catabolism in Neurospora crassa   总被引:5,自引:0,他引:5  
Neurospora crassa can utilize numerous compounds including certain amino acids as a sole nitrogen source. Mutants of the nit-2 locus, a regulatory gene which is postulated to mediate nitrogen catabolite repression, are deficient in the ability to utilize several amino acids as well as other nitrogen sources used by wild type. Various enzymes involved in amino acid catabolism were found to be regulated in distinct ways. Arginase, ornithine transaminase, and pyrroline-5-carboxylate dehydrogenase are all inducible enzymes but are not subject to nitrogen catabolite repression. By contrast, proline oxidase and the amino acid transport system(s) are controlled by nitrogen repression and their synthesis is increased markedly when nitrogen source is limiting. Unlike wild type, the nit-2 mutant cannot derepress amino acid transport, although proline oxidase is regulated in a normal fashion.This work was supported by Grant R01 GM-23367 from the National Institutes of Health. T. J. F. was supported by an NIH Predoctoral Traineeship in Developmental Biology; G. A. M. is supported by NIH Career Development Award GM-00052.  相似文献   

7.
8.
The glyoxylate shunt enzymes, isocitrate lyase and malate synthase, were present at high levels in mycelium grown on acetate as sole source of carbon, compared with mycelium grown on sucrose medium. The glyoxylate shunt activities were also elevated in mycelium grown on glutamate or Casamino Acids as sole source of carbon, and in amino acid-requiring auxotrophic mutants grown in sucrose medium containing limiting amounts of their required amino acid. Under conditions of enhanced catabolite repression in mutants grown in sucrose medium but starved of Krebs cycle intermediates, isocitrate lyase and malate synthase levels were derepressed compared with the levels in wild type grown on sucrose medium. This derepression did not occur in related mutants in which Krebs cycle intermediates were limiting growth but catabolite repression was not enhanced. No Krebs cycle intermediate tested produced an efficient repression of isocitrate lyase activity in acetate medium. Of the two forms of isocitrate lyase in Neurospora, isocitrate lyase-1 constituted over 80% of the isocitrate lyase activity in acetate-grown wild type and also in each of the cases already outlined in which the glyoxylate shunt activities were elevated on sucrose medium. On the basis of these results, it is concluded that the synthesis of isocitrate lyase-1 and malate synthase in Neurospora is regulated by a glycolytic intermediate or derivative. Our data suggest that isocitrate lyase-1 and isocitrate lyase-2 are the products of different structural genes. The metabolic roles of the two forms of isocitrate lyase and of the glyoxylate cycle are discussed on the basis of their metabolic control and intracellular localization.  相似文献   

9.
Recovery from the inhibitory effect of ultraviolet irradiation on the induced synthesis of beta-galactosidase was studied in Escherichia coli B/r. When irradiated cells (520 ergs/mm(2) at 254 nm) were induced and incubated in minimal medium supplemented with Casamino Acids (conditions of catabolite repression), the ability to form enzyme was greatly reduced for about 100 min and then recovery began. The inhibition observed immediately after ultraviolet irradiation was partially reversed by cyclic 3',5'-adenosine monophosphate (cyclic AMP) or by photoreactivation treatment. Inhibition was reduced if the cells were given cold treatment (5 C) before or during irradiation; the kinetics of induced enzyme formation in each case were similar to those of irradiated cells receiving cyclic AMP. These kinetics suggest that the cold treatments, like cyclic AMP, cause the release of the beta-galactosidase-synthesizing system from catabolite repression. When irradiated cells were incubated for various times before cyclic AMP or photoreactivation treatment, some reversal of the inhibition of induced enzyme formation was obtained, but by 100 min the treatments were ineffective. Because 100 min was also the time at which dark recovery of enzyme formation began, the recovery process was interpreted to be the result of completion of DNA repair, which, in turn, released the beta-galactosidase-synthesizing system from catabolite repression.  相似文献   

10.
A strain of Cyanidium caldarium has been studied which is able to grow in darkness using amino acids as sole energy sources. During growth ammonia was released into the external medium as a catabolic end product. With either threonine or glutamate similar rates of ammonia formation and similar kinetics of growth were observed. These observations suggest that the amounts of energy made available for cell growth from the two amino acids are equivalent.Deamination of threonine and glutamate by whole cells exhibited similar temperature-dependence profiles and similar Arrhenius energies of activation. Thus it is suggested that a partially common pathway is involved in the catabolism of these amino acids. Threonine dehydrase may play a role in this pathway.The threonine dehydrase of C. caldarium was inhibited by isoleucine and activated by valine. In the absence of isoleucine no cooperative effect of threonine was observed.Succinate or 2-ketoglutarate supported a faster growth than did amino acids. Growth tests in the presence of both a krebs cycle intermediate and an amino acid have shown that the oxidative metabolism of amino acids is in some way controlled by the more suitable energy sources, presumably through catabolite inhibition and catabolite repression.  相似文献   

11.
Vibrio alginolyticus produces an extracellular collagenase which requires specific induction by collagen or its high-molecular-weight fragments. Peptone also induces collagenase during the late exponential and early stationary growth phases. The peptone inducers have been shown to have a broad molecular weight range between 1,000 and 60,000. The peptone inducers supported slow growth of V. alginolyticus when supplied as the sole nitrogen source in minimal medium. Digestion of the peptone inducers with purified V. alginolyticus collagenase resulted in a decrease in their inducing ability, whereas digestion with trypsin or alpha-chymotrypsin did not. This indicated that induction by the inducers required the presence of collagenase-sensitive bonds. Prolonged digestion of the inducers with collagenase did not completely eliminate the inducing ability of the inducers. The peptone inducers acted as inhibitors of collagenase. A minimal medium induction system has been developed which involves resuspending cells at high density in a medium containing succinate, (NH(4))(2)SO(4), KH(2)PO(4), and the peptone inducer. Cells grown in minimal medium induce earlier than cells grown on peptone, Casamino Acids, or tryptone. Collagenase production was shown to occur for 30 to 60 min in the presence of rifampin at levels which completely inhibit the incorporation of [(3)H]uracil into trichloroacetic acid-precipitable material. Chloramphenicol completely and immediately abolished collagenase production, which together with labeling studies has confirmed that collagenase production involves de novo synthesis of the enzyme. Both glucose and Casamino Acids repressed collagenase production, although synthesis of the enzyme continued for 30 to 60 min after their addition. The repression of collagenase production by glucose and Casamino Acids was more severe than the inhibition of enzyme formation due to addition of rifampin.  相似文献   

12.
The effect of casein hydrolysate, of mixtures of amino acids and of individual amino acids on the growth of 4 strains ofSphaerotilus discophorus was determined. Growth was virtually completely inhibited by 1.0% Bacto Casamino Acids, 0.54% simulated casein hydrolysate and 0.2% of a uniform mixture of 18 amino acids. The latter were prepared withl amino acids except thatdl-serine,dl-valine anddl-threonine were present in the uniform amino acid mixture.Experiments designed to test the toxicity of the 18 individual amino acids at 0.018 – 0.36% concentration indicated that arginine, glutamic acid, leucine, lysine and proline were non-toxic. However, aspartic acid and methionine were moderately toxic; growth was greatly repressed at a concentration of 0.36%. The remaining 11 amino acids which included alanine, cystine, glycine, tyrosine, histidine, isoleucine, phenylalanine, serine, threonine, tryptophane and valine were the most toxic of the group. They prevented growth partially or completely, at a concentration of 0.18% or 0.36%.dl-Serine anddl-valine were especially toxic and prevented growth at a concentration of 0.018%. The toxicity of the individuall-amino acids can account for the toxicity of Casamino Acids and simulated casein hydrolysate. l-Methionine or cyanocobalamin (vitamin B12) is required for the growth ofS. discophorus. Alsod- anddl-methionine can replace cyanocobalamin although they completely repress growth when used at the relatively high concentration of 200 µg per ml of medium.  相似文献   

13.
14.
Several fermentable carbon sources were found to give rise to catabolite repression of all enzymes implicated in thiosulfate oxidation in the facultative chemoautotroph, Thiobacillus novellus. Glucose was found to elicit a strong repression. Glycerol, lactate, lactose, ribose, and pyruvate caused marked repression. In all cases, the repression could be relieved only by returning the cells to a medium devoid of such fermentable substrates. On the other hand, carbon compounds (amino acids and organic acids) that are metabolizable only aerobically caused transient or no repression of the thiosulfate oxidative system. All of the enzymes believed to participate in thiosulfate oxidation, except tetrathionase, were found to be simultaneously induced and repressed. This would suggest that tetrathionate may not be a necessary intermediate in the thiosulfate-oxidation pathway of T. novellus.  相似文献   

15.
16.
Some factors influencing the production of an extracellular proteinase by Pseudomonas fluorescens NCDO 2085 were studied. Proteinase production was optimal at 20C and pH 69 in static culture when calcium was included in the medium. Proteinase was not detectable in basal medium but could be induced by organic nitrogen compounds. The proteinase was produced in the exponential phase of growth on protein substrates but not until early stationary phase during growth on amino acids. The organism did not utilize lactose, the most abundant carbohydrate in milk. Citrate was readily utilized as an energy source but had a strong repressive effect on proteinase production. A medium containing sodium caseinate and pyruvate supported good growth and enzyme production. All the amino acids utilized as a sole carbon source, with the exception of serine, could induce proteinase production. Asparagine was the most effective amino acid inducer. Particular combinations of amino acids could induce or repress proteinase production. The regulation of proteinase production by Ps. fluorescens NCDO 2085 appears to be based on a balance between induction by low concentrations of low molecular weight degradation products and sensitivity to end product catabolite repression. The results suggest that the function of the proteinase is to ensure a supply of carbon rather than amino acids for protein synthesis.  相似文献   

17.
Some factors influencing the production of an extracellular proteinase by Pseudomonas fluorescens NCDO 2085 were studied. Proteinase production was optimal at 20 degrees C and pH 6.9 in static culture when calcium was included in the medium. Proteinase was not detectable in basal medium but could be induced by organic nitrogen compounds. The proteinase was produced in the exponential phase of growth on protein substrates but not until early stationary phase during growth on amino acids. The organism did not utilize lactose, the most abundant carbohydrate in milk. Citrate was readily utilized as an energy source but had a strong repressive effect on proteinase production. A medium containing sodium caseinate and pyruvate supported good growth and enzyme production. All the amino acids utilized as a sole carbon source, with the exception of serine, could induce proteinase production. Asparagine was the most effective amino acid inducer. Particular combinations of amino acids could induce or repress proteinase production. The regulation of proteinase production by Ps. fluorescens NCDO 2085 appears to be based on a balance between induction by low concentrations of low molecular weight degradation products and sensitivity to end product catabolite repression. The results suggest that the function of the proteinase is to ensure a supply of carbon rather than amino acids for protein synthesis.  相似文献   

18.
Prevost, C. (University of California, Berkeley), and V. Moses. Action of phenethyl alcohol on the synthesis of macromolecules in Escherichia coli. J. Bacteriol. 91:1446-1452. 1966.-A kinetic study of the effects of various concentrations of phenethyl alcohol on the synthesis of ribonucleic acid (RNA), deoxyribonucleic acid (DNA), protein, and beta-galactosidase in Escherichia coli has confirmed that RNA synthesis, rather than DNA synthesis, is first and most affected by phenethyl alcohol. The presence of inducer did not protect beta-galactosidase synthesis from inhibition by phenethyl alcohol. Little preferential inhibition of beta-galactosidase synthesis was observed; this is in contrast to the severe catabolite repression which results from partial inhibition of total protein synthesis caused by chloramphenicol or starvation for a required amino acid. We found no evidence that messenger RNA synthesis was inhibited to a greater extent than total RNA synthesis.  相似文献   

19.
The physiological state of Escherichia coli with respect to (permanent) catabolite repression was assessed by measuring the steady-state level of beta-galactosidase in induced or in constitutive cells under a variety of growth conditions. Four results were obtained. (i) Catabolite repression had a major effect on fully induced or constitutive expression of the lac gene, and the magnitude of this effect was found to be dependent on the promoter structure; cells with a wild-type lac promoter showed an 18-fold variation in lac expression, and cells with the lacP37 (formerly lac-L37) promoter exhibited several hundred-fold variation. (ii) Exogenous adenosine cyclic 3',5'-monophosphoric acid (cAMP) could not abolish catabolite repression, even though several controls demonstrated that cAMP was entering the cells in significant amounts. (Rapid intracellular degradation of cAMP could not be ruled out.) (iii) Neither the growth rate nor the presence of biosynthetic products altered the degree of catabolite repression; all variation could be related to the catabolites present in the growth medium. (iv) Slowing by imposing an amino acid restriction decreased the differential rate of beta-galactosidase synthesis from the wild-type lac promoter when bacteria were cultured in either the absence or presence of cAMP; this decreased lac expression also occurred when the bacteria harbored the catabolite-insensitive lacP5 (formerly lacUV5) promoter mutation. These findings support the idea that (permanent) catabolite repression is set by the catabolites in the growth medium and may not be related to an imbalance between catabolism and anabolism.  相似文献   

20.
Transient Repression of the lac Operon   总被引:20,自引:9,他引:11       下载免费PDF全文
Severe transient repression of constitutive or induced beta-galactosidase synthesis occurs upon the addition of glucose to cells of Escherichia coli growing on glycerol, succinic acid, or lactic acid. Only mutants particularily well adapted to growth on glucose exhibit this phenomenon when transferred to a glucose-containing medium. No change in ribonucleic acid (RNA) metabolism was observed during transient repression. We could show that transient repression is pleiotropic, affecting all products of the lac operon. It occurs in a mutant insensitive to catabolite repression. It is established much more rapidly than catabolite repression, and is elicited by glucose analogues that are phosphorylated but not further catabolized by the cell. Thus, transient repression is not a consequence of the exclusion of inducer from the cell, does not require catabolism of the added compound, and does not involve a gross change in RNA metabolism. We conclude that transient repression is distinct from catabolite repression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号