首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The standard assay for lipid peroxidation is the measurement of the pink, 532 n, absorbing chromogen which is formed upon reaction of 2-thiobarbituric acid (TBA) with the lipid peroxidation product malonaldehyde (MDA). The present studies indicate that the toxic lipid peroxidation product trans-4-hydroxynonenal and its dehydration product trans, trans-nonadienal react with TBA to form chromogens which absorb maximally at 530 and 532 nm, respectively. Other biologically active alpha, beta-unsaturated aldehydes, such as acrolein and crotonaldehyde, short-chain homologs of alkenals formed during lipid peroxidation, and trans,trans-muconaldehyde, a novel diene dialdehyde, react with TBA to form products which absorb maximally at 495 nm. The molar extinction coefficients of the aldehyde: TBA chromogens formed were found to vary widely, suggesting that only small contributions to the 532 nm absorption by TBA adducts of reactive aldehydes other than MDA may be encountered during the use of the TBA assay.  相似文献   

2.
The occurrence of malondialdehyde (MDA), a secondary end product of the oxidation of polyunsaturated fatty acids, is considered a useful index of general lipid peroxidation. A common method for measuring MDA, referred to as the thiobarbituric acid-reactive-substances (TBARS) assay, is to react it with thiobarbituric acid (TBA) and record the absorbance at 532 nm. However, many plants contain interfering compounds that also absorb at 532 nm, leading to overestimation of MDA values. Extracts of plant tissues including purple eggplant (Solanum melongena L.) fruit, carrot (Daucuscarota L.) roots, and spinach (Spinacia oleracea L.) leaves were assessed for the presence of MDA and other non-MDA compounds absorbing at 532 nm. A method described herein corrects for these interferences by subtracting the absorbance at 532 nm of a solution containing plant extract incubated without TBA from an identical solution containing TBA. The reliability and efficiency of this spectrophotometric method was assessed by altering the relative ratios of exogenous MDA additions and/or extracts of red cabbage (Brassica oleracea L.) leaves containing interfering compounds and then measuring MDA recovery. Reliability was also validated through high-performance liquid chromatography and high-performance liquid chromatography-mass spectrometry techniques. Results indicated that over 90% of exogenously added MDA could be recovered through the improved protocol. If there were no corrections for interfering compounds, MDA equivalents were overestimated by up to 96.5%. Interfering compounds were not detected in vegetables such as lettuce (Lactuca sativa L.) and spinach which had low or negligible concentrations of anthocyanidin derivatives. Comparisons between the TBARS method presented here and two currently accepted protocols indicated that the new modified method exhibits greater accuracy for quantifying TBA-MDA levels in tissues containing anthocyanins and/or other interfering compounds. This modified protocol represents a facile and rapid method for assessment of lipid peroxidation in virtually all plant species that contain interfering compounds. Received: 28 August 1998 / Accepted: 29 September 1998  相似文献   

3.
The fluorescence characteristics of product (I), formed during the lipid peroxidation of rat liver phosphatidylcholine liposomes containing glycine, and fluorescent product (II), derived from the reaction of malonaldehyde with glycine, were examined to elucidate the mechanism of fluorescent chromophore formation. Fluorescent product (I) had a fluorescence emission maximum at 430 nm when excited at 360 nm; its fluorescence intensity decreases in alkaline medium, but is restored by readjustment of pH to neutrality. In contrast, fluorescent product (II) exhibited an emission maximum at 458 nm, and the fluorescence was quenched at acidic pH. The fluorescent substances formed during the lipid peroxidation of hemoglobin-free human erythrocyte ghost membranes had similar fluorescence characteristics to product (I). Gel filtration experiments showed that molecular size of fluorescent product (I) was larger than that of fluorescent product (II). The thiobarbituric acid-reactive substances released from peroxidizing liposomal phospholipids had a larger molecular size than malonaldehyde, and produced little or no fluorescence with glycine. It is concluded that the precursor of the fluorescent product formed during the lipid peroxidation of membrane phospholipids differs from malonaldehyde. The mechanism of the formation of blue emitting fluorescent material, believed to be a component of lipofuscin, seems to involve peroxidized phospholipids of the membrane.  相似文献   

4.
The thiobarbituric acid (TBA) reactivity of human plasma was studied to evaluate its adequacy in quantifying lipid peroxidation as an index of systemic oxidative stress. Two spectrophotometric TBA tests based on the use of either phosphoric acid (pH 2.0, method A) or trichloroacetic plus hydrochloric acid (pH 0.9, method B) were employed with and without sodium sulfate (SS) to inhibit sialic acid (SA) reactivity with TBA. To correct for background absorption, the absorbance values at 572 nm were subtracted from those at 532 nm, which represent the absorption maximum of the TBA:MDA adduct. Method B gave values of TBA-reactive substances (TBARS) 2-fold higher than those detected with method A. SS lowered TBARS by about 50% with both methods, indicating a significant involvement of SA in plasma TBA reactivity. Standard SA, at a physiologically relevant concentration of 1.5 mM, reacted with TBA, creating interference problems, which were substantially eliminated by SS plus correction for background absorbance. When method B was carried out in the lipid and protein fraction of plasma, SS inhibited by 65% TBARS formation only in the latter. Protein TBARS may be largely ascribed to SA-containing glycoproteins and, to a minor extent, protein-bound MDA. Indeed, EDTA did not affect protein TBARS assessed in the presence of SS. TBA reactivity of whole plasma and of its lipid fraction was instead inhibited by EDTA, suggesting that lipoperoxides (and possibly monofunctional lipoperoxidation aldehydes) are involved as MDA precursors in the TBA test. Pretreatment of plasma with KI, a specific reductant of hydroperoxides, decreased TBARS by about 27%. Moreover, aspirin administration to humans to inhibit prostaglandin endoperoxide generation reduced plasma TBARS by 40%. In conclusion, reaction conditions affect the relationship between TBA reactivity and lipid peroxidation in human plasma. After correction for the interfering effects of SA in the TBA test, 40% of plasma TBARS appears related to in vivo generated prostaglandin endoperoxides and only about 60% to lipoperoxidation products. Thus, the TBA test is not totally specific to oxidant-driven lipid peroxidation in human plasma.  相似文献   

5.
The distribution of lipid peroxidation products in liposomes after γ-irradiation at various doses was studied. Increases in thiobarbituric-acid-reactive substances, in the absorbance at 232 nm and in hydroperoxides were observed mainly in liposomal membranes after relatively low doses of irradiation, while carbonyl compounds were distributed both inside and outside the membranes. After higher doses of irradiation, however, the absorbance at 232 nm and the amount of hydroperoxides reached a maximal level in the membrane portion and then decreased when the decomposition products were released from the membranes. Under this condition, malondialdehyde and other carbonyl compounds were increased mainly in the medium of liposomal suspension. These results are discussed with reference to the lipid peroxidation process which is induced quantitatively by ionizing radiation.  相似文献   

6.
Antioxidative activity of natural products from plants   总被引:28,自引:0,他引:28  
Ng TB  Liu F  Wang ZT 《Life sciences》2000,66(8):709-723
A variety of flavonoids, lignans, an alkaloid, a bisbenzyl, coumarins and terpenes isolated from Chinese herbs was tested for antioxidant activity as reflected in the ability to inhibit lipid peroxidation in rat brain and kidney homogenates and rat erythrocyte hemolysis. The pro-oxidant activities of the aforementioned compounds were assessed by their effects on bleomycin-induced DNA damage. The flavonoids baicalin and luteolin-7-glucuronide-6'-methyl ester, the lignan 4'-demethyldeoxypodophyllotoxin, the alkaloid tetrahydropalmatine, the bisbenzyl erianin and the coumarin xanthotoxol exhibited potent antioxidative activity in both lipid peroxidation and hemolysis assays. The flavonoid rutin and the terpene tanshinone I manifested potent antioxidative activity in the lipid peroxidation assay but no inhibitory activity in the hemolysis assay. The lignan deoxypodophyllotoxin, the flavonoid naringin and the coumarins columbianetin, bergapten and angelicin slightly inhibited lipid peroxidation in brain and kidney homogenates. It is worth stressing that the compounds with antioxidant effects in this assay, with the exception of tetrahydropalmatin and tanshinone I, have at least one free aromatic hydroxyl group in structure. Obviously, the aromatic hydroxyl group is very important for antioxidative effects of the compounds. None of the compounds tested exerted an obvious pro-oxidant effect.  相似文献   

7.
A thiobarbituric acid (TBA) reaction for measuring lipid peroxidation products was evaluated for interference by several ingredients commonly used in solutions to prepare or analyze tissue homogenates or subcellular organelles. These included sucrose (up to 100 mm final concentration in the assay medium), Tris-maleate (up to 40 mm), imidazole (up to 20 mm), inorganic phosphate (up to 10 mm), and 4-morpholinepropanesulfonic acid (up to 20 mm). When the samples were heated at 95°C as recommended in some procedures, only sucrose significantly affected color development. Sucrose concentrations as low as 10 mm significantly increased absorbance at 532 nm of aqueous tetramethoxypropane (TMP) standards, and so the assay could not be applied reliably to tissue samples prepared in sucrose. Sucrose interference was only partially reduced by subsequent organic extraction (n-butanol plus pyridine), with measured absorbances remaining significantly greater (50–100%) than sucrose-free controls at sucrose concentrations of 20 mm or more. Modifying the assay to include sucrose in blanks and TMP standards failed to adequately correct for interference when the absorbance of unextracted (aqueous) solutions was measured. Further modification by adding sucrose to blanks and TMP standards, followed by butanolpyridine extraction, gave standard curves that were linear, through the origin, and had slopes equivalent to those of sucrose-free standards. This modification enabled almost complete recovery (average 2% error) of known amounts of TMP added to aliquots of tissue homogenates containing amounts of sucrose that otherwise significantly interfered. Also, with the modified method the content of TBA-reactive substances in tissues homogenized in sucrose was found to be not significantly different from that measured in tissues homogenized in a noninterfering substance, KCl.  相似文献   

8.
One of two chromophores is formed on heating the mantle tissue of Mytilus edulis with thiobarbituric acid (TBA). Application of the test to male mussels yields a strong yellow colour (λmax453 and 490 nm), whereas in females, a pink colour (λmax532 nm) develops. While the latter is characteristic of the products of lipid peroxidation, it appears that the yellow colour may be derived from the 2-deoxyribose moiety of DNA. The TBA reaction can be used for the rapid, accurate sex identification in Mytilus edulis over 9–10 months of the year.  相似文献   

9.
A W Girotti 《Biochemistry》1975,14(15):3377-3383
The photodynamic action of bilirubin on isolated human erythrocyte membranes (ghosts) has been studied. When incorporated into ghosts (pH 8.0,10 degrees) the bile pigment photosensitizes in blue light the peroxidation of unsaturated lipids, as evidenced by a positive color reaction with 2-thiobarbituric acid. Accompanying lipid peroxidation was the disappearance of most of the major membrane proteins (Coomassie Blue staining in sodium dodecyl sulfate-polyacrylamide gel electrophoresis) and appearance of polypeptide photoproducts of greater size (mol wt greater than 250,000). The association of membrane proteins (presumably by cross-linking) was insignificant when bilirubin-ghost suspensions were kept in the dark, or when ghosts were irradiated in the absence of bilirubin. Electrophoretic bands 1 and 2 (Fairbanks, G., Steck, T.L., and Wallach, D. F.H (1971), Biochemistry 10, 2606) diminished rapidly during the photoreaction, whereas band 3 and the three sialoglycoproteins disappeared at a much slower rate. Dispersal of membrane consituents by treatment with sodium dodecyl sulfate prior to irradiation resulted in relatively little peroxidation and no noticeable formation of high molecular weight polypeptide complexes. The possibility that malonaldehyde, a product of lipid peroxidation, is involved in cross-linking during irradiation was studied by incubating ghosts with exogenous malonaldehyde. Although the reagent did cross-link membrane proteins (electrophoretic bands 1, 2, 2.1 2.2, and 4.1 diminished most rapidly and high molecular weight bands appeared), the reaction could only be demonstrated with malonaldehyde concentrations several orders of magnitude greater than those detected in irradiation experiments. If malonaldehyde cross-linking occurs, it does not appeare to be the predominant mechanism of polypeptide association during irradiation of bilirubin-containing ghosts.  相似文献   

10.
In the presence of TPNH, O2 and ADP-Fe+3 rat liver microsomes yield difference spectral changes at 237 nm and 267–270 nm that correlate with the kinetics of lipid peroxidation as measured by the rate of malonaldehyde formation and O2 and TPNH consumption. Mn+2 EDTA, aniline, and reduced glutathione were inhibitory. It is suggested that the difference spectral changes at 237 nm and 267–270 nm are essentially due to conjugated diene and malonaldehyde formation, respectively.  相似文献   

11.
Abstract: Malonaldehyde formation by cortical brain slices from rat brain was determined as a function of incubation time and of oxygen pressure. This substance, a byproduct of lipid peroxidation, was detected by the thiobarbituric acid test. Significant amounts of malonaldehyde were formed by brain slices during incubation in the 0.2 (air) to 10 atm oxygen range, and a portion of it was released into the medium. The rate of malonaldehyde formation was the highest during the first 10 min. Elevation of oxygen pressure above 1 atm caused further increments in malonaldehyde production with kinetic properties similar to that seen at 1 atm pressure, but the increments per additional oxygen pressure were diminishing. The formation of a given amount of malonaldehyde can be expressed as a function of atm oxygen × min. This function has the shape of a saturation curve approaching a maximum at around 300 atm × min. The results indicate extensive lipid peroxidation in brain slices under standard incubation conditions.  相似文献   

12.
Microcolumn liquid and column chromatography technique is conjunction with UV-spectrophotometry and spectrofluorescent analysis were used to study lipid peroxidation products accumulated in human lenses during cataract formation by means of chromatographic separation in regard to the molecular weight and polarity properties. Cataract is characterized by the appearance of certain substances changing UV-absorption lipid spectra in the region of 230 and 274 nm and having special fluorescence (excitation--320-370 nm), (emission--405-460 nm). The same changes were observed by ultrasoundinduced lipid peroxidation of model lipid samples. The accumulated lipid peroxidation products are concentrated in the same chromatographic fractions that are responsible for the change of UV-absorption and fluorescent spectra of lipids of cataractous lenses. It is the evidence of free radical lipid peroxidation products accumulation in human lenses at cataract formation. Along with the formation of diene and triene conjugates in the lens lipids, cataract is characterized by the formation of cetodienes and of low molecular weight lipid fluorescent products of fatty acids oxidation with low polarity due to the appearance of tetraene derivatives of polyunsaturated fatty acids. The particular features of mature cataract are an increased intensity of long-wave lipid fluorescence in the blue-green region (430-460 nm) of the spectrum, formation of high molecular weight fluorescent lipid peroxidation products with high polarity, and smooth decrease in absorbance in the region of 220-330 nm. During cataract formation products of deep lipid peroxidation resulting from radical phospholipids and fatty acids polymerisation are accumulated. It is supposed that lipid peroxidation is an initial phase of membrane desintegration and formation of HMW-proteins in cataract.  相似文献   

13.
Xanthine oxidase-catalyzed crosslinking of cell membrane proteins   总被引:1,自引:0,他引:1  
Isolated erythrocyte membranes exposed to protease-free xanthine oxidase plus xanthine and ferric iron undergo lipid peroxidation and protein crosslinking (appearance of high molecular weight aggregates on sodium dodecyl sulfate (SDS) gel electrophoresis). Spectrin is more susceptible to crosslinking than the other polypeptides. Thiol-reducible bonds (disulfides) as well as nonreducible bonds are generated, the former type relatively rapidly (detected within 10-20 min) and the latter type more slowly (usually detected after 1 h). Reducible crosslinking is inhibited by catalase, but not by superoxide dismutase, desferrioxamine, butylated hydroxyltoluene, and mannitol; whereas nonreducible crosslinking, like free radical lipid peroxidation, is inhibited by all of these agents except mannitol. Zinc(II) also inhibits lipid peroxidation, but stimulates disulfide bond formation to the virtual exclusion of all other crosslinking. Our results indicate that disulfide formation is dependent on H2O2, but not O2- or iron. However, O2-, H2O2, and iron are all required for lipid peroxidation and nondisulfide crosslinking, suggesting the intermediacy of OH generated via the iron-catalyzed Haber-Weiss reaction. The possible role of malonaldehyde (MDA, a by-product of lipid peroxidation) in the latter type of crosslinking was examined. Solubilized samples of xanthine/xanthine oxidase-treated membranes showed a strong visible fluorescence (emission maximum 450 nm; excitation 390 nm). This resembled the fluorescence of membranes treated with authentic MDA, which forms conjugated imine linkages between amino groups. Fluorescence scanning of SDS gels from MDA-treated membranes showed a strong signal coincident with crosslinked proteins and also one in the low molecular weight, nonprotein region, suggestive of aminolipid conjugates. Similar scanning on xanthine/xanthine oxidase-reacted membranes indicated that all fluorescence is associated with the lipid fraction. Thus, nonreducible protein crosslinks in this system do not appear to be of the MDA-derived, Schiff base type.  相似文献   

14.
脂质过氧化对人红细胞膜脂流动性的影响   总被引:20,自引:3,他引:17  
研究枯稀过氧化氢/高铁血红素体系所产生的烷基过氧自由基对红细胞的损伤。测定了脂质过氧化的产物——丙二脂的生成,并证明阿魏酸钠对脂质过氧化的抑制。荧光偏振的结果指出,膜脂过氧化以后降低了膜脂的流动性。人红细胞用5DSA和16DSA标记并用ESR检测膜脂流动性,结果表明,序参数S几乎没有发生变化,旋转相关时间τ值的增加证明膜脂过氧化以后,疏水尾部的物理状态发生了改变。经脂质过氧化以后,红细胞膜中的不饱和脂防酸的减少,可能是降低膜脂流动性的原因之一。  相似文献   

15.
Hemolysis (Kobayashi, T., Takahashi, K., Yamada, A., Nojima, S. and Inoue, K. (1983) J. Biochem. 93, 675-680) and shedding of acetylcholinesterase-enriched membrane vesicles (diameter 150-200 nm) were observed when human erythrocytes were incubated with liposomes of phosphatidylcholine which contained polyunsaturated fatty acyl chains. These events occurring on erythrocyte membrane were inhibited by radical scavengers or incorporation of alpha-tocopherol into liposomes, suggesting that lipid peroxidation is involved in the process leading to membrane vesiculation and hemolysis. The idea was supported by findings that generation of chemiluminescence, formation of thiobarbituric acid reactive substance, accumulation of conjugated diene compounds in liposomes and decrease of polyunsaturated fatty acids in liposomes occurred concomitantly during incubation. Hemolysis was also suppressed by the addition of extra liposomes, insensitive to peroxidation, or of serum albumin even after the completion of peroxidation of liposomes. These results suggest that peroxidized lipids, responsible for vesiculation and hemolysis, may be formed first in liposomes and then gradually transferred to erythrocyte membranes. The accumulation of these lipids peroxides may eventually cause membrane vesiculation followed by hemolysis.  相似文献   

16.
Oxygenation of anaerobically isolated brain and liver homogenates is associated with chemiluminescence and formation of lipid hydroperoxides, the latter determined by the thiobarbituric acid assay. Light emission and formation of malonaldehyde are 20-fold higher in the brain than in liver; chemiluminescence of both decays when accumulation of malonaldehyde ceases. Exogenous organic peroxides, such as t-butyl hydroperoxide, inhibit the light-emission response to oxygenation by brain homogenate, whereas they enhance that of liver homogenate. t-Butyl hydroperoxide-induced photoemission of liver homogenate shows a polyphasic kinetic pattern that is O2-dependent. The spectral analysis of chemiluminescence arising from brain and liver homogenates on oxygenation shows a spectrum with five emission bands at 420-450, 475-485, 510-540, 560-580 and 625-640 nm. These bands are subjected to intensity changes or shifts of the wavelength whenever t-butyl hydroperoxide is present, either inhibiting or stimulating light emission. The blue-band chemiluminescence, around 435 nm, is possibly due to the weak light emission arising from excited carbonyl compounds [Lloyd (1965) J. Chem. Soc. Faraday Trans. 61, 2182-2193; Vassil'ev (1965) Opt. Spectrosc. (USSR) 18, 131-135], whereas the presence of other bands suggests generation of singlet molecular oxygen either in the process triggered on oxygenation (lipid oxygenation) or after supplementation with organic hydroperoxides. We offer several explanations for the spectral analysis presented here.  相似文献   

17.
The effects of phospholipid-oxidation state and vesicle composition on lipid peroxidation in hemolysate-containing liposomes (hemosomes) were studied by the thiobarbituric acid assay. Liposomes (hemosomes) were prepared from egg phosphatidylcholine (PC) with either low (PC0.08) or high (PC0.66) oxidation indices reflecting low and high conjugated diene/lipid hydroperoxy contents. Thiobarbituric acid reactivity was negligible over 6 h at 38 degrees C in buffer-containing (control) liposomes prepared from PC0.08, whereas it was slightly increased in those prepared from PC0.66. Encapsulated hemolysate had no effect in PC0.08 liposomes, but significantly increased thiobarbituric acid reactivity in those prepared from PC0.66. Inclusion of either phosphatidylethanolamine or phosphatidylinositol in the membrane further increased lipid peroxidation in hemosomes prepared from PC0.66, whereas phosphatidic acid and phosphatidylserine were inhibitory. Inclusion of cholesterol in the membrane had no effect in PC0.66 hemosomes, but significantly inhibited lipid peroxidation in the presence of phosphatidylethanolamine or phosphatidylinositol. The effects of phosphatidic acid and cholesterol were dose-dependent. Co-incorporation of cholesterol and phosphatidic acid or phosphatidylserine in the membrane resulted in almost complete elimination of hemoglobin (Hb)-induced lipid peroxidation. Lysophosphatidic acid had similar effect as phosphatidic acid, whereas lysophosphatidylserine exerted inhibition only in the presence of phosphatidylethanolamine. The rate of lipid peroxidation showed no correlation with the amount of encapsulated Hb, neither with the oxidation indices nor the polyunsaturated fatty acid contents of negatively charged phospholipids. The above findings suggest a possible role for the high cholesterol content and preferential localization of phosphatidylserine in the inner bilayer leaflet of erythrocyte membrane in protecting against Hb-induced lipid peroxidation in the membrane.  相似文献   

18.
An unidentified inhibitor of lipid peroxidation in intestinal mucosa   总被引:1,自引:0,他引:1  
Lipid peroxidation in vitro was tested by malonaldehyde production in gastrointestinal mucosa and compared with other tissues. It was observed that gastrointestinal mucosa was resistant to both non-enzymatic and enzymatic lipid peroxidation. This was due to the presence of an inhibitor of lipid peroxidation in the membranous fractions of intestinal mucosa. This inhibitor was capable of inhibiting other recognised peroxidation systems, such as liver mitochondria. This effect was confirmed by measurement of diene conjugation and utilisation of arachidonic acid as other markers of peroxidation, in addition to malonaldehyde production. Preliminary characterisation of this inhibitor revealed that it is resistant to proteolysis, non-diffusable and extractable from membranes by organic solvents. It was partially purified by methanol extraction of the mucosa and by three successive preparative thin-layer chromatography steps. The purified material gave a single spot on thin-layer chromatography, using a number of different solvent systems. Mobility of the inhibitor on thin-layer chromatography was different from that of authentic tocopherol, and it was present in the intestine of vitamin-E-deficient animals. These results suggest that the resistance of intestinal mucosa to lipid peroxidation is due to the presence of a novel inhibitor which is lipidic in nature.  相似文献   

19.
Treatment of isolated hepatocytes from 3-methylcholanthrene induced rats with 1 mM paracetamol has been found to greatly decrease cellular reduced glutathione (GSH) content and to promote lipid peroxidation, evaluated as malonaldehyde (MDA) production and conjugated diene absorbance. A similar dosing of hepatocytes from phenobarbital-induced or normal rats is ineffective in that respect. On the other hand, the aspecific stimulation of the cytochrome P-450-mediated paracetamol activation due to acetone addition further increases GSH depletion as well as MDA production.Isolated hepatocytes with basal low GSH content are also more susceptible to paracetamol-induced lipid peroxidation, indicating that the rate of the drug metabolism and the cellular GSH content are critical factors in the determination of such peroxidative attack.In isolated mouse liver cells paracetamol does not require preliminary cytochrome P-450 induction to stimulate MDA formation, even at concentrations ineffective in rat cells.However, 5 mM paracetamol, despite a great depletion of cellular GSH content, does not promote MDA formation either in the rat or in the mouse hepatocytes. This effect may be due to the ability of paracetamol to scavenge lipid peroxides under defined conditions, as tested in various lipid peroxidizing systems.Membrane leakage of lactate dehydrogenase (LDH) is evident in paracetamol treated cells undergoing lipid peroxidation, but not when MDA formation is inhibited by high doses of the drug or by addition of antioxidants such as α-tocopherol and diphenylphenylenediamine (DPPD).Nevertheless in these conditions the covalent binding of activated paracetamol metabolites is not affected, suggesting that lipid peroxidation might play a role in the pathogenesis of liver damage following paracetamol overdose.  相似文献   

20.
The antioxidant properties of curcumin have been studied by evaluating its ability to protect RBCs from AAPH (2,2'-azobis (2-amidinopropane) hydrochloride) induced oxidative damage. RBCs are susceptible to oxidative damage, resulting in peroxidation of the membrane lipids, release of hemoglobin (hemolysis), release of intracellular K(+) ions and depletion of glutathione (GSH). In this paper, lipid peroxidation, hemolysis and K(+) ion loss in RBCs were assessed respectively by formation of thiobarbituric acid reactive substances (TBARS), absorbance of hemoglobin at 532nm and flame photometry. The treatment of RBCs with curcumin showed concentration dependant decrease in level of TBARS and hemolysis. The IC(50) values for inhibition of lipid peroxidation and hemolysis were estimated to be 23.2+/-2.5 and 43+/-5microM respectively. However in contrast to the above mentioned effects, curcumin in similar concentration range, did not prevent release of intracellular K(+) ions during the process of hemolysis, rather curcumin induced its release even in the absence of hemolysis. The ability of curcumin to prevent oxidation of intracellular GSH due to hemolysis showed mixed results. At low concentrations of curcumin (<10microM) it prevented GSH depletion and at higher concentrations, the GSH levels decreased gradually. Curcumin scavenges the peroxyl radical generated from AAPH. Based on these results, it is concluded that curcumin exhibits both antioxidant/pro-oxidant activity, in a concentration dependent manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号