首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
膜间质蛋白酶(DegP),是一种广泛存在于真核生物和原核生物细胞中的蛋白。DegP同时具有酶活性和分子伴侣活性,并通过多聚体构成胶囊状结构执行其分子伴侣功能。DegP的酶活性依赖酶切位点与PDZ1结构域双重识别方式识别底物,这种识别模式被称为"分子量尺"。在革兰氏阴性菌中,DegP主要位于膜间质,通过分子伴侣活性与酶活性帮助保护错误折叠蛋白或降解变性蛋白。DegP也参与外膜蛋白的转运,是DegP胞内活性的研究重点。DegP也可以被分泌到胞外,帮助宿主对抗恶劣环境,并参与调节生物被膜的形成。本文将从DegP的结构与活性、胞内功能与胞外功能三大方面对DegP的研究进展进行总结,为革兰氏阴性菌周质中蛋白质质量控制与DegP体外功能的进一步研究提供参考。  相似文献   

2.
线粒体丝氨酸蛋白酶Omi/HtrA2与细胞凋亡   总被引:4,自引:0,他引:4  
Wang XL  Wang J  Lv XP 《生理科学进展》2006,37(3):285-288
Omi/HtrA2是一种线粒体丝氨酸蛋白酶,具有修复、降解线粒体中折叠错误的蛋白质的作用,并可以通过破坏caspase与X染色体连锁凋亡抑制蛋白(XIAP)之间的相互作用和直接利用其自身具有的蛋白酶活性引起细胞凋亡。本文介绍了Omi/HtrA2的结构、生物学作用、参与细胞凋亡的机制及其在某些疾病中的作用。  相似文献   

3.
具有分子伴侣和蛋白酶双重活性的大肠杆菌DegP蛋白,在热休克和其他应激条件下,对于降解和清除膜间质中变性或损伤的蛋白质起着十分重要的作用.到目前为止,已有几种蛋白质被鉴定出是DegP的天然底物.以前的研究表明,DegP的体内底物之一,PapG菌毛蛋白的羧基端多肽能够激活DegP的蛋白酶活性.然而这种激活的机制及生理意义均未见报道.用合成的PapG菌毛蛋白的羧基端多肽对这种激活的机制进行了初步研究.结果表明,DegP与多肽结合后发生了可检测的构象变化.圆二色性光谱结果显示,结合多肽后DegP的二级结构和三级结构均发生了一定的变化.凝胶排阻层析和动态光散射实验也揭示出DegP分子在一定程度上变小.进一步实验表明,DegP在多肽存在下,其疏水表面和催化位点均有所暴露.荧光各向异性结果显示出DegP在结合多肽后其构象柔性降低.对上述结果的意义进行了探讨.  相似文献   

4.
热休克蛋白在阿尔茨海默病中的研究   总被引:1,自引:0,他引:1  
热休克蛋白(heat shock protein,HSP)是一种重要的分子伴侣,它们参与辅助蛋白质合成、折叠、转运以及定位等过程,并且在协调蛋白质水解、阻止蛋白质错误折叠和聚积方面发挥重要作用。阿尔茨海默病(Alzheimer's disease,AD)是最常见的神经退行性疾病,以神经细胞内过度磷酸化的tau蛋白异常聚积形成神经原纤维缠结以及细胞外β淀粉样蛋白(β-amyloid,Aβ)异常折叠形成淀粉样斑为主要病理特征。研究表明HSP不但对tau蛋白的聚积/降解发挥重要作用,并且可抑制Aβ相关的毒性作用。这些研究结果提示了分子伴侣有可能成为AD治疗的新靶点,现对该方面的研究进展进行综述。  相似文献   

5.
分子伴侣是一类能够识别非天然蛋白并能协助其正确折叠、组装和转运的功能蛋白。最新研究发现,在原核或真核细胞中,不同结构、不同种类的分子伴侣形成了一个复杂的折叠系统,通过这个系统,蛋白质完成了从初步合成到形成具有生物活性的三维构象的过程,避免了折叠过程中多肽链的错误折叠、蛋白沉淀和有害物质的产生。文章综述了蛋白质折叠过程中不同种类分子伴侣组件的结构、功能和作用机制的研究进展,这些分子伴侣包括Hsp70、核糖体结合因子、伴侣素、前折叠素与Hsp90,并阐述了它们在蛋白质内稳态中的作用。  相似文献   

6.
分于伴侣(Chaperohe)是细胞内催化及维持其他蛋白质正确梅象的一类蛋白质分子[1,2]。研究表明,分子伴侣参与细胞内许多蛋白质的折叠、聚合以及跨膜运输[3,4],通过瞬时稳定其他蛋白质折叠中间体,阻止了蛋白中间体的聚集,帮助其形成正确构象[5,6]。SecB是一个胞质酸性蛋白.单体分子量为17kDa,在体内以4~6个相同亚基组成的寡聚体形式存在。它在大肠杆菌中参与蛋白质分泌系统,纯化后进行离体试验表明,它可以阻止抗蛋白酶的pre-MBP的出现,能稳定地结合前体蛋白.使其处于适合运输的构型[7],它的作用是使蛋白质可以在正确折叠前跨过细胞膜,运输到细胞周质中。SecB通过与前体蛋白结合.从而阻止前体蛋自由于不正确折叠发生的聚集,属于分子伴侣家族的成员。分子伴侣的这些特性使得它们在基因工程中具有广阔的应用前景。外源蛋白在大肠杆菌中高表达时往往形成无活性的包涵体,包涵体大多是蛋白质在过量表达过程中不正确折叠形成的[8],正确构象的形成需要在体外进行变性和复性。蛋白质的复性过程十分复杂,在方法上缺少一定的规律可循,特别是分子量较大以及二硫键较多的分子,复性更加困难,有的甚至根本难以复性。分子伴侣可以促进其它蛋白质的正确折叠,设想在基因工程中如果将分子伴侣基因与外源蛋白基因共存表达,可能会有效地促进外源蛋白形成正确的构象.提高其活性,减少包涵体的形成,对基因工程下游的处理带来很大方便。根 据这个思路,我们将克隆的SecB基因与重组人淋巴毒索(Lymphotoxin,简称LT)基因在同一个大肠杆菌细胞中共存表达,来研究分子伴侣SecB对外源基因表达的影响。  相似文献   

7.
分子内分子伴侣--Pro肽在蛋白质折叠中的作用   总被引:7,自引:0,他引:7  
在体内,许多蛋白质,如很多胞外蛋白酶、某些多肽激素等都以含前导肽的前体形式合成,前导肽在蛋白质折叠中具有分子伴侣的功能。为了与一般意义上的分子伴侣相区别,人们将对蛋白质折叠有帮助的前导肽称为分子内分子伴侣,分子内分子伴侣帮助蛋白质在折叠过程中克服高的能量障碍,某些蛋白质的分子内分子伴侣甚至促进其在氧化性折叠中二硫键的正确配对。  相似文献   

8.
J蛋白(J-domain protein)是一类分子中含有J结构域的蛋白质大家族,大部分J蛋白具有分子伴侣的功能。J蛋白作为热休克蛋白70(HSP70)的同伴蛋白与HSP70组成分子伴侣机器,参与蛋白质分子折叠、组装、转运以及信号转导等多种细胞过程。此外,J蛋白在植物对环境胁迫的反应及其他生理过程中起重要作用。  相似文献   

9.
热休克蛋白Hsp70 (heat shock protein 70, Hsp70)是一类广泛存在的分子伴侣。阿尔茨海默病(Alzheimer’s disease)、帕金森病(Parkinson’s disease)等神经退行性疾病共同的病理特征是错误折叠的蛋白质(包括Tau、α-突触核蛋白、TDP-43、朊蛋白和多聚谷氨酰胺蛋白)形成有毒性的寡聚体或淀粉样纤维。大量的研究表明,Hsp70可以调控这些蛋白质的代谢进程,包括将错误折叠的蛋白质重折叠、抑制蛋白质聚集以及降解错误折叠的蛋白质。Hsp70在发挥功能时需要相对应的辅助分子伴侣的帮助。该文详细论述了Hsp70抑制Tau蛋白病、α-突触核蛋白病、TDP-43蛋白病、传染性海绵状脑病以及多聚谷氨酰胺疾病的作用机制,重点阐述了Hsp70对神经退行性疾病中错误折叠蛋白质聚集和毒性的抑制作用,并讨论和展望了Hsp70在神经退行性疾病的治疗中存在的挑战和机遇。  相似文献   

10.
分子伴侣的多重功能   总被引:24,自引:0,他引:24  
分子伴侣(molecular chaperone)在原核生物和真核生物的细胞中广泛存在.分子伴侣可稳定未折叠或部分折叠的多肽,并防止不适当的多肽链内或链间相互作用;有些分子伴侣也可与天然构象的蛋白质相互作用以促使寡聚态蛋白质发生结构重排.基于分子伴侣能识别并调节细胞内多肽的折叠,因此它们还具有介导线粒体蛋白跨膜转运,调控信息传导通路和转录、复制,以及参与微管形成与修复等功能.  相似文献   

11.
分子伴侣主要是在进化上高度保守的热休克蛋白的几个家族。从细菌到哺乳动物,分子伴侣对体内蛋白质的折叠、运输和组装都起到非常重要的作用。本文简要地概述了分子伴侣的组成、它们在蛋白质折叠中的作用以及它们在生物工程下游处理过程中的应用情况。  相似文献   

12.
二硫键形成蛋白A(Disulfide bond formation protein A,DsbA)是存在于大肠杆菌周质胞腔内的一种参与新生蛋白质折叠过程中催化二硫键形成的折叠酶。综述了DsbA三维结构、进化过程、协助蛋白质体内外复性方面的研究进展。DsbA比硫氧还原蛋白具有更强的氧化性,其强氧化性来自于Cys30残基异常低的pKa值和不稳定的氧化型结构,通过定点突变的研究表明了Cys30残基是DsbA活性中心最关键的氨基酸残基之一。DsbA不论在体内与目标蛋白融合表达还是在体外以折叠酶形式添加,都能有效地催化蛋白质的折叠复性,同时DsbA还具有部分分子伴侣的活性。  相似文献   

13.
分子伴侣(molecular chaperone)能够帮助新生多肽链或错误折叠的蛋白质形成天然构象,但本身又不是成熟蛋白质的组成成分。蛋白质需要分子伴侣的帮助,才能够从核糖体合成的新生肽链折叠成有生物活性的大分子。E.coli的ObgE蛋白是保守的GTP酶,ObgE蛋白参与信号转导、蛋白运输和细胞周期调控,并与E.coli在氨基酸饥饿下的应激反应有关。本实验通过分子克隆,将E.coli ObgE蛋白的基因克隆到表达载体pET-28a中,转化到E.coli BL21进行蛋白表达纯化。纯化后的ObgE蛋白通过柠檬酸合成酶变复性实验、α-葡萄糖苷酶变复性实验、牛碳酸酐酶变复性实验,检测ObgE蛋白的分子伴侣活性,发现ObgE具有一定的分子伴侣活性,为该蛋白的研究应用奠定了基础。  相似文献   

14.
分子伴侣及其在蛋白质折叠中的作用研究进展   总被引:1,自引:0,他引:1  
蛋白质折叠是一个复杂的、动态的过程,蛋白质的折叠不是自发的,需要其他物质的帮助.了解分子伴侣在蛋白质折叠过程中的的作用,有助于进一步研究蛋白质折叠机制.本文介绍了分子伴侣及其分类,重点综述了各类分子伴侣在蛋白质折叠中的机制,并提出了研究分子伴侣在蛋白质折叠中的作用的重要意义.  相似文献   

15.
二硫键形成蛋白A(DisulfidebondformationproteinA,DsbA)是存在于大肠杆菌周质胞腔内的一种参与新生蛋白质折叠过程中催化二硫键形成的折叠酶。综述了DsbA三维结构、进化过程、协助蛋白质体内外复性方面的研究进展。DsbA比硫氧还原蛋白具有更强的氧化性,其强氧化性来自于Cys30残基异常低的pKa值和不稳定的氧化型结构,通过定点突变的研究表明了Cys30残基是DsbA活性中心最关键的氨基酸残基之一。DsbA不论在体内与目标蛋白融合表达还是在体外以折叠酶形式添加,都能有效地催化蛋白质的折叠复性,同时DsbA还具有部分分子伴侣的活性。  相似文献   

16.
分子伴侣 (molecularchaperone)的概念由Lasky于 1978年首先提出[1] ,真核细胞内质网中的分子伴侣是由多种蛋白质组成 ,它们可以介导新合成蛋白质的正确折叠与装配 ,并在真核生物的细胞中广泛存在。细胞内蛋白质的折叠是一个复杂的、易于出错的过程 ,细胞内质量控制系统 (qualitycontrolsys tem)等机制能确保新合成的蛋白在适当位置折叠以获得正确的结构。内质网中新合成可溶性的膜连接蛋白时 ,寡聚多糖则以共价键连接到这一初生态多肽链的天门冬酰胺残基上[2 ] 。分子伴侣 ,如膜蛋白钙结合素 (…  相似文献   

17.
线虫中的小分子热休克蛋白HSP12.1具有类分子伴侣活性   总被引:1,自引:0,他引:1  
很多种类的小分子热休克蛋白(small heat shock protein,sHSP)都能在胁迫条件下抑制蛋白质的聚集,显示出了类分子伴侣活性,这种活性是ATP非依赖型的.从已经进行的实验发现,线虫C.elegans中最小的小分子热休克蛋白家族成员HSP12.1具有类分子伴侣活性,以胰岛素、乙醇脱氢酶和溶菌酶做底物发现HSP12.1能够一定程度地抑制底物的热聚集,虽然这种活性较一些经典的分子伴侣蛋白(线虫中的HSP16.1)要低.与此不同,另外3种和其分子质量相近的sHSP12s(HSP12.2、HSP12.3和HSP12.6)却没有检测出这样的类分子伴侣活性,虽然它们在一级结构上有很高的相似性.另外,在大肠杆菌中表达HSP12.1蛋白能够提高细菌在高温环境下的生存率,45℃处理后的生存率比未表达HSP12.1的菌高4倍左右,不过在线虫中是否发挥同样的功能还不是很清楚.从研究结果来看,C端“尾巴”结构域对sHSP发挥类分子伴侣活性不是必要的,在HSP12.1中没有C端“尾巴”结构域也有类分子伴侣活性就证明了这一点.N端结构域可能在发挥类分子伴侣活性中发挥比较重要的作用,当然α-crystallin结构域也可能参与到发挥这样的功能当中.  相似文献   

18.
植物中的金属蛋白酶FtsH   总被引:1,自引:0,他引:1  
FtsH是一种对ATP和Zn^2+依赖型金属蛋白酶,广泛存在于原核生物和真核生物中。具有高度保守的AAA结构域和Zn^2+结合模块,在真核生物中是多基因家族。FtsH具有ATP酶活性,蛋白水解活性和分子伴侣活性,参与蛋白质质量平衡控制,还与热激、高渗、光胁迫、低温、病害等胁迫响应有联系。文章介绍FtsH基因的发现和分布,结构、FtsH的底物识别机制以及FtsH功能的研究概况。  相似文献   

19.
内质网是一种重要的真核细胞器,糖蛋白的糖基化开始于其中.在内质网中永久性折叠错误糖蛋白或幼稚型糖链糖蛋白,以及突变的糖蛋白被阻止进入高尔基体,而是选择性地被运到胞质,然后在蛋白酶体中被降解.至少两大分子伴侣家族结合蛋白(BiP)和钙联结蛋白(CNX)/钙网蛋白(CRT)参与了糖蛋白折叠的质量控制过程.  相似文献   

20.
二硫键异构酶   总被引:1,自引:1,他引:1  
天然二硫键的形成是许多蛋白正确折叠中的限速步骤,在稳定蛋白质构象和保持蛋白质活性方面起重要作用。讨论的二硫键异构酶是内质网中一种重要的蛋白折叠催化剂,它催化蛋白二硫键的形成和错误配对二硫键的重排,并有抑制错误折叠蛋白聚集的分子伴侣活性。PDI广泛应用于基因工程上提高外源蛋白表达水平。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号