首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Summary The distribution of the mRNAs for chromogranin A and B was analyzed by in situ hybridization with 35S-labeled oligonucleotide probes in formalin-fixed paraffin-embedded carcinoid tumor tissues. All the 15 mid-gut carcinoid tumors examined contained both mRNAs for chromogranin A and B at high level in tumor cells. Sixteen of 18 bronchial carcinoid tumors but only 2 of 5 rectal carcinoid tumors expressed one or both species of chromogranin mRNAs. The same tendency was seen with the argyrophil reaction according to Grimelius where most of the mid-gut tumor cells were uniformly stained, while considerable variation in reactivity was seen in some of the bronchial and rectal carcinoid tumor cells. The sequential sections were stained with a monoclonal antibody against chromogranin A and a polyclonal antiserum which reacts with both chromogranins. The expression of the mRNA for chromogranin A on the carcinoid tumors was almost concordant with that of chromogranin B as well as with the chromogranin A protein, whereas almost all tumors stained positively with the polyclonal antibodies. Analyses of mRNA expression of chromogranin A before and after interferon therapy on 4 patients with mid-gut carcinoids indicated an inhibition at pre-translational level. In conclusion, the mRNAs for chromogranin A and B are good markers for the carcinoid tumors, especially of mid-gut origin. Fore-gut, mid-gut and rectal carcinoid tumors are different in their endocrine properties regarding the expression of the chromogranins.  相似文献   

2.
The increased knowledge of the pathobiology of gastrointestinal carcinoid (neuroendocrine) tumours and the improved therapeutic possibilities have brought a demand for more precise diagnosis. Although the carcinoid tumours can often be tentatively recognized in routinely processed microscopic slides, their more accurate identification requires additional diagnostic procedures. General neuroendocrine markers such as the argyrophil reaction of Grimelius and immunohistochemistry with application of antibodies against chromogranin A and of neuron-specific enolase are discriminatory staining methods which are used to reveal the neuroendocrine origin of almost all highly differentiated carcinoid tumours of the gastrointestinal tract. Mid-gut carcinoids, which predominate among these tumours almost unexceptionally contain serotonin. This biogenic amine can be demonstrated by the argentaffin reaction of Masson, serotonin immunoreactively or by formalin-induced fluorescence. The characteristic staining pattern of mid-gut carcinoids is almost invariably preserved in the metastatic deposits and consequently the staining methods for identifying serotonin can also be used on metastases to reveal a primary mid-gut carcinoid. The enterochromaffin-like (ECL) cell carcinoids of the body and fundic area of the stomach often seen in association with pernicious anaemia are argyrophil with the Sevier-Munger silver stain. Other neuroendocrine tumours, viz. antral, duodenal and rectal carcinoids should be studied by a battery of relevant peptide hormone antisera for adequate diagnosis. During the last decade new peptide hormones have been found in circulation in patients with carcinoid tumours, but serotonin and urinary 5-HIAA are still the most important markers for carcinoids of the mid-gut origin. Other clinically useful tumour markers are chromogranin A + B, pancreatic polypeptide, human chorionic gonadotropin alpha and beta subunits. For localizing procedures, angiography is the most reliable investigative method for primary tumours in the gut, whereas CT-scan and ultrasound investigations are good for detection of liver metastases. During the last five years, the therapy for malignant carcinoid tumours has been considerably improved. Chemotherapy has only revealed objective response rates in about 10-30% of the patients giving median survivals from start of therapy of about 10 months. Recently treatment with alpha interferons and the new somatostatin analogue octreotide have given objective responses in 50-75% of patients with malignant mid-gut carcinoid tumours. These patients have now a median survival from start of therapy of 70 months when treated with alpha interferons. In the future new therapies will come into use such as monoclonal antibodies and perhaps also agents blocking different growth factors.  相似文献   

3.
Rat alveolar Type II cells were immunostained with antibodies directed against chromogranin A (monoclonal, LK2H10) and chromogranins A and B (polyclonal, LKZM1U). The chromogranins or chromogranin-like proteins were identified in cells in lung tissue sections and isolated Type II cells at the light and electron microscopic levels. We used post-embedding immunoelectron microscopy, with immunogold, to detect the proteins' immunoreactivity in osmicated tissues. Gold particles were distributed over the phospholipid lamellae within the lamellar bodies of alveolar Type II cells and over the lattice structure of tubular myelin. Quantitative analysis of gold labeling densities in the various cell compartments indicated that only the latter two structures were specifically labeled. Controls, which included pre-absorption of both anti-chromogranin antibodies with excess chromogranin A or with native surfactant, resulted in a greater than 60% decrease in gold labeling. A possible role of chromogranins or chromogranin-like proteins as Ca2+ binding proteins in alveolar Type II cells is discussed.  相似文献   

4.
Summary Chromogranins A and B are glycoproteins originally detected in the adrenal medulla. These proteins are also present in a variety of neuroendocrine cells. The subcellular distribution of the chromogranins, and particularly their intra-granular topology are of special interest with respect to their putative functions.Endocrine cells of the guinea pig adrenal medulla, pancreas and gastric mucosa were investigated immunoelectron microscopically for the subcellular distribution of both chromogranins. Out of 13 established endocrine cell types in all locations, only two endocrine cell types showed immunoreactivity for both chromogranin A and B, and eight endocrine cell types showed immunoreactivities only for chromogranin A. These immunoreactivities varied inter-cellularly. Three endocrine cell types were unreactive for the chromogranins. Moreover, some hormonally non-identified endocrine cells in the pancreas and the gastric mucosa also contained chromogranin A immunoreactivities.Subcellularly, chromogranin A or B were confined to secretory granules. In most endocrine cells, the secretory granules showed chromogranin immunoreactivities of varying densities. Furthermore, the intra-granular topology of chromogranin A or B in the secretory granules varied considerably: in some endocrine cell types, i.e. chromaffin-, gastrin- and enterochromaffin-like-cells, chromogranin A immunoreactivity was localized in the perigranular and/or dense core region of the secretory granules; in others, i.e. insulin-, pancreatic polypeptide-and bovine adrenal medulla dodecapeptide-cells, it was present preferentially in the electron-opaque centre of the secretory granules; chromogranin B immunoreactivity was localized preferentially in the perigranular region of the secretory granules of chromaffin cells and gastrin-cells. The inter-cellular and inter-granular variations of chromogranin A and B immunoreactivities point to differences in biosynthesis or processing of the chromogranins among endocrine cells and their secretory granules.  相似文献   

5.
Y Cetin  D Grube 《Histochemistry》1991,96(4):301-310
Chromogranins A and B are glycoproteins originally detected in the adrenal medulla. These proteins are also present in a variety of neuroendocrine cells. The subcellular distribution of the chromogranins, and particularly their intra-granular topology are of special interest with respect to their putative functions. Endocrine cells of the guinea pig adrenal medulla, pancreas and gastric mucosa were investigated immunoelectron microscopically for the subcellular distribution of both chromogranins. Out of 13 established endocrine cell types in all locations, only two endocrine cell types showed immunoreactivity for both chromogranin A and B, and eight endocrine cell types showed immunoreactivities only for chromogranin A. These immunoreactivities varied inter-cellularly. Three endocrine cell types were unreactive for the chromogranins. Moreover, some hormonally non-identified endocrine cells in the pancreas and the gastric mucosa also contained chromogranin A immunoreactivities. Subcellularly, chromogranin A or B were confined to secretory granules. In most endocrine cells, the secretory granules showed chromogranin immunoreactivities of varying densities. Furthermore, the intra-granular topology of chromogranin A or B in the secretory granules varied considerably: in some endocrine cell types, i.e. chromaffin-, gastrin- and enterochromaffin-like-cells, chromogranin A immunoreactivity was localized in the perigranular and/or dense core region of the secretory granules; in others, i.e. insulin-, pancreatic polypeptide- and bovine adrenal medulla dodecapeptide-cells, it was present preferentially in the electron-opaque centre of the secretory granules; chromogranin B immunoreactivity was localized preferentially in the perigranular region of the secretory granules of chromaffin cells and gastrin-cells. The inter-cellular and inter-granular variations of chromogranin A and B immunoreactivities point to differences in biosynthesis or processing of the chromogranins among endocrine cells and their secretory granules.  相似文献   

6.
The levels of various components of chromaffin granules were determined in rat adrenals after treatment with several stimulants. After reserpine the levels of calcitonin gene-related peptide (CGRP), neuropeptide Y (NPY) and chromogranin B but not those of chromogranin A and secretogranin II were elevated. On the other hand, the mRNA of chromogranins A, B and secretogranin II were significantly increased. Treatment with oxotremorine or nicotine (multiple injections for 2 or 3 days) induced analogous changes for peptide and mRNA levels, however, the increases were smaller and for the mRNA less consistent. A single injection of oxotremorine or nicotine raised only the levels of CGRP and NPY and of the NPY mRNA whereas those of the chromogranins and their respective mRNAs remained unaltered. Amongst the membrane proteins only the levels of dopamine beta-hydroxylase are increased after prolonged stimulation, whereas those of cytochrome b-561, carboxypeptidase H and synaptin/synaptophysin (SYN) remain unaltered. Thus, the biosynthesis of chromaffin granules can be regulated in quite sophisticated patterns.  相似文献   

7.
Imprints of histologic or autopsy specimens from 12 small-cell lung cancers (SCLCs), 82 non-SCLCs (50 adenocarcinomas, 25 squamous-cell carcinomas, 1 adenosquamous carcinoma and 6 large-cell carcinomas), 2 carcinoid tumors, 1 malignant lymphoma and 8 metastatic carcinomas were examined immunocytologically for the presence of cluster 1 SCLC antigen (neural-cell adhesion molecule: N-CAM), chromogranin A, Leu-7, neuron-specific enolase (NSE) and gastrin-releasing peptide (GRP). The monoclonal antibodies NCC-LU-243 and NCC-LU-246, which are reactive with cluster 1 SCLC antigen/N-CAM, diffusely stained the cell membranes of all SCLCs and carcinoid tumors (100%) and diffusely and focally stained those of two of the large-cell carcinomas, two of the adenocarcinomas, two of the squamous-cell carcinomas and the one adenosquamous carcinoma. Malignant lymphoma and metastatic carcinoma were negative for this antigen. A few cases of large-cell carcinoma, adenocarcinoma, squamous-cell carcinoma and adenosquamous carcinoma were also stained with these antibodies, which may indicate a neuroendocrine differentiation. However, these tumors were different from SCLCs in that their positive tumor cell population was definitely smaller than that in SCLC, in which almost all tumor cells were positive. This confirmed the usefulness of antibodies against cluster 1 SCLC antigen for the immunocytologic diagnosis of SCLC and carcinoid tumor in imprint smears. Chromogranin A, GRP, NSE and Leu-7 were not useful in immunocytologically differentiating the imprints from these cases since only a few tumor cells were reactive with these antibodies. The antibodies against cluster 1 SCLC antigen/N-CAM can also be applied to cytologic preparations of sputum, pleural fluid and fine needle aspirates stained routinely by the Papanicolaou method since the antigen is preserved in such alcohol-fixed smears.  相似文献   

8.
Maly A  Meir K  Maly B 《Acta cytologica》2006,50(1):84-87
BACKGROUND: Neuroendocrine tumor metastatic to the thyroid gland is rare and may be difficult to differentiate from primary thyroid neuroendocrine tumors, such as medullary thyroid carcinoma (M/ITC). This report describes an unusual case of bronchial carcinoid metastatic to the thyroid diagnosed by fine needle aspiration cytology (FNAC). CASE: A 42-year-old woman with an undiagnosed bronchial carcinoid tumor presented to our clinic with a solitary nodule in the thyroid gland. FNAC of the nodule showed loosely cohesive groups of cuboidal tumor cells with scant, slightly granular cytoplasm; centrally located nuclei with a coarsely granular, salt-and-pepper chromatin pattern and inconspicuous nucleoli. Immunocytochemically the tumor cells were positive for neuron-specific enolase, chromogranin and synaptophysin and negative for thyroglobulin, calcitonin and carcinoembryonic antigen. The cytologic diagnosis of a metastatic neuroendocrine carcinoma was confirmed histologically. CONCLUSION: Metastasis to the thyroid gland may pose a diagnostic problem, particularly with tumors of neuroendocrine origin, as these have similar cytologic features in various organs. The correct preoperative cytologic diagnosis of metastatic carcinoid tumor in patients without a prior history of cancer and differential diagnosis with MTC are crucial because prognosis, workup and treatment are different in each.  相似文献   

9.
The chromogranins are soluble, acidic, proteins which are frequently co-stored in neuroendocrine cells with biogenic amines. In the gastric mucosa chromogranin A is localized to enterochromaffin-like cells which are the main source of histamine, and which are known to be regulated by circulating gastrin. We have used radioimmunoassays selective for the extreme C-terminal regions of chromogranin A and B to examine changes in gastric extracts following modulation of the gastric luminal contents. There were decreased concentrations of the two chromogranins in tissue extracts of rats after food withdrawal (which lowered plasma gastrin concentrations); inhibition of acid secretion with the H+/K(+)-ATPase inhibitor, omeprazole (which increased plasma gastrin concentrations) raised chromogranin A and B concentrations both in fasted rats, and in rats fed ad libitum. There was no evidence for altered patterns of posttranslational cleavage of chromogranin A or B with these treatments. The data indicate that chromogranin A and B concentrations in gastric ECL cells are regulated in parallel with histamine production, and are consistent with the idea that the chromogranins play a role in the formation and stabilization of the secretory granule involved in amine storage.  相似文献   

10.
To investigate the constituents of the matrix of endocrine secretory granules, we analyzed endocrinoilogically silent ("non-functioning") human pituitary adenomas for the occurrence of the chromogranins/secretogranins (granins), a protein family normally stored together with many different hormones. When five non-functioning pituitary adenomas were analyzed by immunoblotting using polyclonal and monoclonal antibodies specific for individual members of the granin family, chromogranin A was detected in four cases and chromogranin B and secretogranin II were detected in all cases. The cellular distribution of the granins and of various hormones known to be expressed in the anterior pituitary was studied by immunocytochemistry in fixed, frozen tissue sections from five additional adenomas. Of the eight hormones investigated, only thyroid-stimulating hormone, luteinizing hormone, and follicle-stimulating hormone were detected, occurring in only two of the five adenomas. In contrast, granins were found in all five tumors. Chromogranin B and secretogranin II were detected in each of the adenomas in virtually every cell studied, whereas chromogranin A exhibited such a widespread cell distribution in only three adenomas, being focally present in one and absent from the other tumor. The subcellular localization of the granins and the three glycoprotein hormones was investigated by double immunoelectron microscopy. Chromogranin A and chromogranin B were mainly co-localized in secretory granules, whereas secretogranin II was either co-localized with the other two granins or segregated to different secretory granules. When present, glycoprotein hormones were immunodetected in both the secretory granules containing all three granins and those containing mainly secretogranin II. Our data indicate that in non-functioning pituitary adenomas chromogranin A is differentially expressed from chromogranin B and secretogranin II. Moreover, the granins appear to be the most widespread constituents of endocrine secretory granules known, forming the dense-core matrix irrespective of the presence or absence of hormones.  相似文献   

11.
Summary Antisera against chromogranin A, B and C were used to study the distribution of these acidic proteins in bovine endocrine and nervous tissues. The three chromogranins occur together in several endocrine organs (adrenal medulla, anterior pituitary, endocrine pancreas) and in sympathetic ganglion cells. In the posterior pituitary, only chromogranin C and in the intermediate lobe only A and C are found. The parathyroid gland contains only A, and enterochromaffin cells are immunoreactive for A and B. Cells of the thyroid gland and some cells of the anterior pituitary apparently do not contain any chromogranins. It is concluded that the three chromogranins are not always stored together and that they are not present in all endocrine cells. This distinct localization of the chromogranins indicates some special, although still undiscovered, function for these proteins.  相似文献   

12.
We investigated the occurrence and subcellular localization of chromogranins A and B in atrial myoendocrine cells of rat heart, using immunological methods. Immunoblotting revealed the presence of both chromogranin A and B in an extract from large granules isolated from this tissue by subcellular fractionation. Immunohistochemistry at the ultrastructural level demonstrated the presence of chromogranin A and B in secretory granules. These organelles also immunostained for atrial natriuretic peptides (ANP). Within a given section, all granules were labeled with immunogold for these three antigens. This apparent co-localization of the three antigens was confirmed by double immunostaining with immunogold particles of different sizes. We conclude that, in agreement with their endocrine nature, the secretory organelles of rat atria contain both chromogranins A and B. Apparently these acidic peptides, which have a widespread distribution in the endocrine system, are co-stored and therefore also co-secreted with ANP.  相似文献   

13.
This short review deals with our investigations in neuroendocrine tumors (NETs) with antibodies against defined epitopes of chromogranins (Cgs) A and B and secretogranins (Sgs) II and III. The immunohistochemical expression of different epitopes of the granin family of proteins varies in NE cells in normal human endocrine and non-endocrine organs and in NETs, suggesting post-translational processing. In most NETs one or more epitopes of the granins were lacking, but variations in the expression pattern occurred both in benign and malignant NETs. A few epitopes displayed patterns that may be valuable in differentiating between benign and malignant NET types, e.g., well-differentiated NET types expressed more CgA epitopes than the poorly differentiated ones and C-terminal secretoneurin visualized a cell type related to malignancy in pheochromocytomas. Plasma concentrations of different epitopes of CgA and CgB varied. In patients suffering from carcinoid tumors or endocrine pancreatic tumors the highest concentrations were found with epitopes from the mid-portion of CgA. For CgB the highest plasma concentrations were recorded for the epitope 439–451. Measurements of SgII showed that patients with endocrine pancreatic tumors had higher concentrations than patients with carcinoid tumors or pheochromocytomas. SgIII was not detectable in patients with NETs.  相似文献   

14.
Antibodies specific for chromogranin A, B or C have been used to detect immunohistochemically these three anionic proteins. Pancreatic A, B and PP cells, gut argentaffin EC, argyrophil ECL and gastrin G cells, thyroid C cells, parathyroid cells, adrenal medullary cells, pituitary TSH, FSH and LH cells as well as some axons of visceral nerves have been found to react with chromogranin A antibodies. Pancreatic A, gut EC and G, adrenal medullary and pituitary cells as well as some gut nerve fibers showed chromogranin B immunoreactivity. Chromogranin C immunoreactivity has been detected in pancreatic A, pyloric D1, intestinal L, thyroid C, adrenal medullary and pituitary cells, as well as in some gut neurons and nerve fibers. No crossreactivity has been found in immunohistochemical tests between chromogranins A, B or C and costored monoamines or peptide hormones/prohormones, from which chromogranins can be separated by selective extraction during fixation. On both morphological and chemical grounds a relationship seems to exist between chromogranin A and Grimelius' argyrophilia. Sialooligosaccharide chains of chromogranin A and, possibly, chromogranins' phosphoserine/phosphothreonine groups, seem to interact with guanidyl, amino, and/or imidazole groups of non-chromogranin components to form silver complexing sites accounting for granules' argyrophilia, which can be removed or blocked without affecting chromogranin immunoreactivities. The abundant anionic groups of the three proteins should contribute substantially to granules' basophilia, the partly "masked" pattern of which supports the existence of a close interaction of such groups with other components of secretory granules, including monoamines and peptide hormones or prohormones. Chromogranins could play a r?le in hormone postranslational biosynthesis and intragranular packaging.  相似文献   

15.
Summary Antisera were raised against synthetic peptides derived from the primary amino acid sequence of human chromogranin B. These antisera recognized in one- and two-dimensional immunoblotting a component previously designated as chromogranin B. In human chromaffin granules, the major endogenous processing product of chromogranin B is formed by proteolytic cleavage of the protein near theC-terminus. Immunohistochemical localizations were obtained with antisera against human chromogranins A and B and against a synthetic peptide corresponding to the B sequence. In human tissues, chromogranin B is co-stored with chromogranin A in the adrenal medulla, the anterior pituitary, parafollicular cells of the thyroid, in some cells of the endocrine pancreas and in some enterochromaffin cells, whereas only chromogranin A is found in the parathyroid gland and enterochromaffin cells of the gastric corpus mucosa. In the nervous system, no immunostaining was observed for chromogranin A and only a weak one for chromogranin B in some cells of the spinal cord. However, the Purkinje cells of the cerebellum were strongly positive for chromogranin B.  相似文献   

16.
Polypeptide growth factors secreted from the target tissue determine the choice of transmitter synthesis in the innervating nerves. We have investigated whether they also influence the expression of chromogranins and neuropeptide Y, components co-stored with the neurotransmitters within large dense-core vesicles. IMR-32 and SH-SY5Y human neuroblastoma cells were treated for up to six days with various neurotrophic growth and differentiation factors. For chromogranins A and B, no significant changes at the mRNA level were observed and for chromogranin A this was confirmed at the protein level. The expression of secretogranin II/pro-secretoneurin mRNA, however, was considerably enhanced in both cell lines after basic fibroblast growth factor treatment. In IMR-32 cells we determined a fast and continuous induction, whereas the up-regulation in SH-SY5Y cells was more delayed. A transient elevation of secretogranin II/pro-secretoneurin mRNA levels was seen in SH-SY5Y cells in response to epidermal growth factor. In these cells we also measured the amounts of secretogranin II/pro-secretoneurin protein which were increased by both growth factors. In addition to the above described changes in secretogranin II/pro-secretoneurin biosynthesis we extended and confirmed data available on neuropeptide Y. We found a qualitatively similar pattern of biosynthesis regulation as for secretogranin II/pro-secretoneurin, indicating that the ultimately increased expression of the two proteins may be characteristic of the phenotypic differentiation after growth factor treatment. Moreover, this finding of a concomitant regulation further emphasizes the concept of secretogranin II/pro-secretoneurin being a neuropeptide precursor from which the functional peptide secretoneurin is proteolytically liberated.  相似文献   

17.
Chromogranins A and B are high capacity, low affinity calcium (Ca(2+)) storage proteins that bind to the inositol 1,4,5-trisphosphate-gated receptor (InsP(3) R). Although most commonly associated with secretory granules of neuroendocrine cells, chromogranins have also been found in the lumen of the endoplasmic reticulum (ER) of many cell types. To investigate the functional consequences of the interaction between the InsP(3) R and the chromogranins, we disrupted the interaction between the two proteins by adding a chromogranin fragment, which competed with chromogranin for its binding site on the InsP(3)R. Responses were monitored at the single channel level and in intact cells. When using InsP(3) R type I incorporated into planar lipid bilayers and activated by cytoplasmic InsP(3) and luminal chromogranin, the addition of the fragment reversed the enhancing effect of chromogranin. Moreover, the expression of the fragment in the ER of neuronally differentiated PC12 cells attenuated agonist-induced intracellular Ca(2+) signaling. These results show that the InsP(3)R/chromogranin interaction amplifies Ca(2+) release from the ER and that chromogranin is an essential component of this intracellular channel complex.  相似文献   

18.
Receptor for advanced glycation end products (RAGE) mediates neurite outgrowth and cell migration upon stimulation with its ligand, amphoterin. We show here that RAGE-dependent changes in cell morphology are associated with proliferation arrest and changes in gene expression in neuroblastoma cells. Chromogranin B, a component of secretory vesicles in endocrine cells and neurons, was found to be up-regulated by RAGE signaling during differentiation of neuroblastoma cells along with the two other members of the chromogranin family, chromogranin A and secretogranin II. Ligation of RAGE by amphoterin lead to rapid phosphorylation and nuclear localization of cyclic AMP response element-binding protein (CREB), a major regulator of chromogranin expression. Furthermore, inhibition of ERK1/2-Rsk2-dependent CREB phosphorylation efficiently inhibited up-regulation of chromogranin gene expression upon RAGE activation. To further study the effects of RAGE and amphoterin on cellular differentiation, we stimulated embryonic stem cells expressing RAGE or a signaling-deficient mutant of RAGE with amphoterin. Amphoterin was found to promote RAGE-dependent neuronal differentiation of embryonic stem cells characterized by up-regulation of neuronal markers light neurofilament protein and beta-III-tubulin, activation of CREB, and increased expression of chromogranins A and B. These data suggest that RAGE signaling is capable of driving neuronal differentiation involving CREB activation and induction of chromogranin expression.  相似文献   

19.
Chromogranin A is a highly acidic protein that is found in the secretory granules of many endocrine and neuronal cells. To localize bovine cell populations involved in chromogranin A biosynthesis, the distribution of the mRNA encoding this protein was determined with in situ hybridization histochemistry. In the adrenal gland, the mRNA was found in the chromaffin cells of the medulla but was absent from the cortex. The distribution of the mRNA in the medulla was uneven; cells located at the periphery were more heavily labeled than those in the center of the gland. Because the adrenal medulla is composed of several cell types, the chromogranin A-containing cells were further characterized for the presence of neuropeptide and adrenergic markers. Adjacent sections were examined for the mRNAs encoding enkephalin and phenylethanolamine N-methyltransferase (PNMT), the enzyme that catalyzes the formation of epinephrine from norepinephrine. Both mRNAs were present in a narrow band of cells at the periphery of the medulla. However, in contrast to the distribution of chromogranin A mRNA, the enkephalin and PNMT mRNAs were detected in only a small number of cells in the inner medullary region. The difference in the distribution of the enkephalin and PNMT mRNAs from that of chromogranin A suggests that the expression of these genes is differentially regulated. In addition to the adrenal gland, chromogranin A mRNA is expressed by many other tissues. In the parathyroid gland, which is rich in the mRNA but exhibits little chromogranin A-like immunoreactivity, the message was present in most cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
E Wilander 《Acta cytologica》1985,29(6):1058-1060
Cytologic samples of malignant carcinoid tumors were examined with regard to the presence of serotonin by immunocytochemical staining with a monoclonal antibody. Serotonin immunoreactivity occurred in tumor cells derived from carcinoids of the small intestine while bronchial carcinoid tumor cells were nonreactive. Acetone-alcohol fixation of the cells was a prerequisite for an adequate staining. The serotonin-immunoreactive tumors were also argentaffin positive. The results indicate that cytologic specimens of neuroendocrine tumors, such as carcinoid, can be successfully assayed for the presence of serotonin by an immunocytochemical procedure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号