首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transgenic plants offer advantages for biomolecule production because plants can be grown on a large scale and the recombinant macromolecules can be easily harvested and extracted. We introduced an Aspergillus phytase gene into canola (Brassica napus) (line 9412 with low erucic acid and low glucosinolates) by Agrobacterium-mediated transformation. Phytase expression in transgenic plant was enhanced with a synthetic phytase gene according to the Brassica codon usage and an endoplasmic reticulum (ER) retention signal KDEL that confers an ER accumulation of the recombinant phytase. Secretion of the phytase to the extracellular fluid was also established by the use of the tobacco PR-S signal peptide. Phytase accumulation in mature seed accounted for 2.6% of the total soluble proteins. The enzyme can be glycosylated in the seeds of transgenic plants and retain a high stability during storage. These results suggest a commercial feasibility of producing a stable recombinant phytase in canola at a high level for animal feed supplement and for reducing phosphorus eutrophication problems.  相似文献   

2.
The Aspergillus niger phytase-encoding gene (phyA) has been constitutively expressed in wheat. Transgenic wheat lines were generated by microprojectile bombardment of immature embryos, using the bar-Bialaphos selection system. The bar and the phyA gene expression were controlled by the maize ubiquitin-1 promoter. To ensure secretion and glycosylation of the microbial phytase, an expression cassette was designed (Ubi-SP-Phy) where an -amylase signal peptide sequence was inserted between the promoter and the phytase coding region. A similar cassette was constructed without the signal peptide sequence (Ubi-Phy). Five lines of fertile wheat transformed with the Ubi-SP-Phy were generated and two lines with the Ubi-Phy construct. The inheritance of the phyA gene was monitored through three generations. Western blotting of leaf and seed derived protein revealed the presence of an immunoreacting polypeptide of the size expected for the Aspergillus phytase. Up to 25 days after pollination, the heterologous phytase was exclusively present in the pericarp-seed coat-aleurone fraction. Thereafter, it accumulated in the endosperm in amounts exceeding that found in the seed coat and aleurone. The phyA mRNA and derived protein could at no stage be detected in the embryo. The Ubi-SP-Phy transgenic seeds exhibited up to 4-fold increase of phytase activity while up to 56% increase was found in Ubi-Phy plants. It is concluded that a functional Aspergillus phytase can be produced in significant amounts in wheat grains. This may be of relevance for improving the phytate-phosphorus digestibility when wheat grains are used for non-ruminant animal feed.  相似文献   

3.
The plant seed is a leading platform amongst plant-based storage systems for the production of recombinant proteins. In this study, we compared the activity of human adenosine deaminase (hADA) expressed in transgenic seeds of three different plant species: pea (Pisum sativum L.), Nicotiana benthamiana L. and tarwi (Lupinus mutabilis Sweet). All three species were transformed with the same expression vector containing the hADA gene driven by the seed-specific promoter LegA2 with an apoplast targeting pinII signal peptide. During the study, several independent transgenic lines were generated and screened from each plant species and only lines with a single copy of the gene of interest were used for hADA expression analysis. A stable transgenic canola line expressing the ADA protein, under the control of 35S constitutive promoter was used as both as a positive control and for comparative study with the seed specific promoter. Significant differences were detected in the expression of hADA. The highest activity of the hADA enzyme (Units/g seed) was reported in tarwi (4.26 U/g) followed by pea (3.23 U/g) and Nicotiana benthamiana (1.69 U/g). The expression of mouse ADA in canola was very low in both seed and leaf tissue compared to other host plants, confirming higher activity of seed specific promoter. Altogether, these results suggest that tarwi could be an excellent candidate for the production of valuable recombinant proteins.  相似文献   

4.
Phytase is used as a feed additive for degradation of antinutritional phytate, and the enzyme is desired to be highly thermostable for it to withstand feed formulation conditions. A Bacillus sp. MD2 showing phytase activity was isolated, and the phytase encoding gene was cloned and expressed in Escherichia coli. The recombinant phytase exhibited high stability at temperatures up to 100°C. A higher enzyme activity was obtained when the gene expression was done in the presence of calcium chloride. Production of the enzyme by batch- and fed-batch cultivation in a bioreactor was studied. In batch cultivation, maintaining dissolved oxygen at 20–30% saturation and depleting inorganic phosphate below 1 mM prior to induction by IPTG resulted in over 10 U/ml phytase activity. For fed–batch cultivation, glucose concentration was maintained at 2–3 g/l, and the phytase expression was increased to 327 U/ml. Induction using lactose during fed-batch cultivation showed a lag phase of 4 h prior to an increase in the phytase activity to 71 U/ml during the same period as IPTG-induced production. Up to 90% of the total amount of expressed phytase leaked out from the E. coli cells in both IPTG- and lactose-induced fed-batch cultivations.  相似文献   

5.
Phytate is the major storage form of organic phosphorus in soils and plant seeds, and phosphorus (P) in this form is unavailable to plants or monogastric animals. In the present study, the phytase genes phyA and appA were introduced into Brassica napus cv Westar with a signal peptide sequence and CaMV 35S promoter, respectively. Three independent transgenic lines, P3 and P11 from phyA and a18 from appA, were selected. The three transgenic lines exhibited significantly higher exuded phytase activity when compared to wild-type (WT) controls. A quartz sand culture experiment demonstrated that transgenic Brassica napus had significantly improved P uptake and plant biomass. A soil culture experiment revealed that seed yields of transgenic lines P11 and a18 increased by 20.9% and 59.9%, respectively, when compared to WT. When phytate was used as the sole P source, P accumulation in seeds increased by 20.6% and 46.9% with respect to WT in P11 and a18, respectively. The P3 line accumulated markedly more P in seeds than WT, while no significant difference was observed in seed yields when phytate was used as the sole P source. Phytase activities in transgenic canola seeds ranged from 1,138 to 1,605 U kg–1 seeds, while no phytase activity was detected in WT seeds. Moreover, phytic acid content in P11 and a18 seeds was significantly lower than in WT. These results introduce an opportunity for improvement of soil and seed phytate-P bioavailability through genetic manipulation of oilseed rape, thereby increasing plant production and P nutrition for monogastric animals.  相似文献   

6.
A mutant strain (KL-38) of Aspergillus oryzae was obtained by UV irradiation. Phytase activity of KL-38 in molded rice (koji rice) was about 2.7-fold of that obtained from the parent strain (BP-1). Phytase activity of KL-38 in the submerged culture was similar to that of BP-1. Two types of phytase were produced from koji culture: phytase I (Phy I) was produced during incubation of both koji and submerged cultures, and phytase II (Phy II) was obtained only from koji culture. Phy II production was increased in KL-38 compared with BP-1, whereas the production of Phy I was similar for both KL-38 and BP-1. This finding indicates that A. oryzae has at least two types of phytase isozyme.  相似文献   

7.
Gao XR  Wang GK  Su Q  Wang Y  An LJ 《Biotechnology letters》2007,29(11):1781-1787
A minimal linear gene cassette (35S-phytase gene-nos) with T-DNA borders was acquired by PCR and directly introduced into soybean through the pollen tube pathway. A total of 13% of T1 plants were positive for phyA by specific PCR. Southern blot analyses showed that phyA insertions were harbored stably in T2 progeny. Phytase expression level increased 2.5-fold over a 6-week period; its highest activity was 150 U/mg protein, compared to 56 U/mg protein in untransformed controls. Activity of phytase increased to 125 FTU/kg in T3 transgenic seeds as compared to 64 FTU/kg in wild-type plants.  相似文献   

8.
A transgenic approach was used to alter soybean seed phytate content by expressing a soybean phytase gene (GmPhy) during seed development to degrade accumulating phytic acid (IP6). An expression vector containing the soybean phytase cDNA controlled by the seed-specific -conglycinin promoter (-subunit) was used to transform embryogenic soybean cultures. Plants from four independent transgenic lines were analyzed for transgene integration and seed IP6 levels. The reduction in IP6 levels in transgenic seeds compared to control Jack soybeans ranged from 12.6 to 24.8 as determined by HPLC. A low copy transformant was propagated to the T4 generation and examined in more detail for phytase expression and enzyme activity during seed development. Expression of phytase mRNA and phytase activity increased during seed development, consistent with the use of an embryo-specific promoter. Ectopic phytase expression during seed development offers potential as an effective strategy for reducing phytate content in soybean seed.  相似文献   

9.
Phytase is widespread in nature. It has been used as a cereal feed additive that can enhance the phosphorus and mineral absorption in monogastric animals to reduce the level of phosphorus output in manure. Phytase of Peniophora lycii is a 6′-phytase, which owns high specific activity. To achieve a high expression level of 6′-phytase in Pichia pastoris, the 1,230-bp phytase gene of P. lycii was synthesized and optimized for codon usage, G+C content, as well as mRNA secondary structures. The gene constructs containing wild type or modified phytase gene coding sequences under the control of the highly-inducible alcohol oxidase gene (AOX1) promoter, the synthetic signal peptide (designated MF4I), which is a codon-modified Saccharomyces cerevisiae mating factor α-prepro-leader sequence, were used to transform P. pastoris. The P. pastoris strain that expressed the modified phytase gene (phy-pl-sh) with MF4I sequence produced 12.2 g phytase per liter of fluid culture, with the phytase activity of 10,540 U ml−1. The yield of the modified phytase gene, with bias codon usage and MF4I signal, is 4.4 times higher than that of the wild type gene with MF4I signal and 13.6 times higher than that of the wild type gene with wild type S. cerevisiae signal. The recombinant phytase had one optimum pH (pH 4.5) and an optimum temperature of 50°C. The P. pastoris strain expressed the modified 6-phytase gene, with the MF4I signal peptide showing great potential as a commercial phytase production system.Electronic Supplementary MaterialSupplementary material is available for this article at  相似文献   

10.
11.
Production of protease-resistant phytase by Aspergillus oryzae SBS50 was optimized in solid state fermentation using wheat bran as substrate. An integrated statistical optimization approach involving the Placket–Burman design followed by response surface methodology was employed. Among all the variables tested, incubation period, triton X-100, moisture ratio, and magnesium sulphate were identified as significant and further optimized using response surface methodology that resulted in 3.35-fold improvement in phytase production from 55.43 to 185.75 U/g dry mouldy bran (DMB). Optimal conditions for maximum phytase production (185.75 U/g DMB) included wheat bran 10 g per 250 ml flask moistened with 35 ml distilled water supplemented with 3.0% triton X-100, 0.04% magnesium sulphate, 1.0% sucrose and 0.5% yeast extract incubated at 30?°C for an incubation time of 48 h. Phytase titers were sustainable (179.55 to 185.75 U/g DMB), when the mould was grown in shake flasks of varied volumes and enamel-coated metallic trays under optimized conditions. Fermentation time was reduced to half from 96 h to 48 h after optimization resulting in a 6.7-fold enhancement in the phytase productivity from 577.39 to 3868.75 U/Kg/h and thus, reducing the cost of enzyme production. Phytase released inorganic phosphate, reducing sugars and soluble proteins from different food samples in a time dependent manner as a result of phytate hydrolysis.  相似文献   

12.
The novel antimicrobial peptide MiAMP1, originally isolated from the seeds of Macadamia integrifolia, was constitutively expressed in transgenic tobacco and canola plants to test its effect on disease resistance. Analysis of plants transformed with 35S-MiAMP1 construct by northern and western blot analyses demonstrated the presence of MiAMP1 mRNA and the mature peptide in the transgenic plants. The MiAMP1 purified from the leaves of transgenic plants was biologically active with the same in vitro antifungal activity as native MiAMP1 purified from the seeds of macadamia. The effect of MiAMP1 expression on the economically important canola pathogen Leptosphaeria maculans (causal agent of blackleg disease) was evaluated in comparison with an untransformed control line and an azygous segregant derived from one of the transgenic lines. Lesion development on the cotyledons of the inoculated canola seedlings was significantly reduced in the T2 progeny of seven independently transformed transgenic lines. These results suggested that, transgenic canola expressing MiAMP1 may be useful for the management of blackleg disease.  相似文献   

13.
Aspergillus fumigatus contains a heat-stable phytase of great potential. To determine whether this phytase could be expressed in plants as a functional enzyme, we introduced the phytase gene from A. fumigatus (fphyA) in tobacco (Nicotiana tabacum L. cv. NC89) by Agrobacterium-mediated transformation. Phytase expression was controlled by the cauliflower mosaic virus (CaMV) 35S promoter. Secretion of recombinant phytase (tfphyA) to the extracellular fluid was established by use of the signal sequence from tobacco calreticulin. Forty-one independent transgenic plants were generated. Single-copy line A was selected based on segregation of T1 seeds for kanamycin resistance, phytase expression and Southern blotting analysis for use in further study. After 4-weeks of plant growth, the phytase was accumulated in leaves up to 2.3% of total soluble protein. tfphyA was functional and shared similar profiles of pH, temperature and thermal stability to the same enzyme expressed in Pichia pastoris (pfphyA). The expressed enzyme had an apparent molecular mass of 63 kDa and showed maximum activity at pH 5.5, and temperature, 55 degrees C. It had a high thermostability and retained 28.7% of the initial activity even after incubation at 90 degrees C for 15 min. The above results showed that the thermostable A. fumigatus phytase could be expressed in tobacco as a functional enzyme and thus has the potential of overexpressing it in other crop plants also.  相似文献   

14.
Phytase improves the bioavailability of phytate phosphorus in plant foods to humans and animals, and reduces the phosphorus pollution of animal waste. We have engineered the cell surface of the yeast,Saccharomyces cerevisiae by anchoring active fungal phytase on its cell wall, in order to apply it as a dietary supplement containing bioconversional functions in animal foods and a whole cell bio-catalyst for the treatment of waste. The phytase gene (phyA) ofAspergillus niger with a signal peptide of rice amylase 1A (Ramy1A) was fused with the gene encoding the C-terminal half (320 amino acid residues from the C-terminus) of yeast α-agglutinin, a protein which is involved in mating and is covalently anchored to the cell wall. The resulting fusion construct was introduced intoS. cerevisiae and expressed under the control of the constitutive glyceraldehydes-3-phosphate dehydrogenase (GPD) promoter. Phytase plate assay revealed that the surface-engineered cell exhibited a catalytically active opaque zone which was restricted to the margin of the colony. Additionally, the phytase activity was detected in the cell fraction, but was not detected in the culture medium when it was grown in liquid. These results indicate that the phytase was successfully anchored to the cell surface of yeast and was displayed as its active form. The amount of recombinant phytase on the surface of yeast cells was estimated to be 16,000 molecules per cell.  相似文献   

15.
Transgenic maize plants expressing a fungal phytase gene   总被引:12,自引:0,他引:12  
Maize seeds are the major ingredient of commercial pig and poultry feed. Phosphorus in maize seeds exists predominantly in the form of phytate. Phytate phosphorus is not available to monogastric animals and phosphate supplementation is required for optimal animal growth. Undigested phytate in animal manure is considered a major source of phosphorus pollution to the environment from agricultural production. Microbial phytase produced by fermentation as a feed additive is widely used to manage the nutritional and environmental problems caused by phytate, but the approach is associated with production costs for the enzyme and requirement of special cares in feed processing and diet formulation. An alternative approach would be to produce plant seeds that contain high phytase activities. We have over-expressed Aspergillus niger phyA2 gene in maize seeds using a construct driven by the maize embryo-specific globulin-1 promoter. Low-copy-number transgenic lines with simple integration patterns were identified. Western-blot analysis showed that the maize-expressed phytase protein was smaller than that expressed in yeast, apparently due to different glycosylation. Phytase activity in transgenic maize seeds reached approximately 2,200 units per kg seed, about a 50-fold increase compared to non-transgenic maize seeds. The phytase expression was stable across four generations. The transgenic seeds germinated normally. Our results show that the phytase expression lines can be used for development of new maize hybrids to improve phosphorus availability and reduce the impact of animal production on the environment.  相似文献   

16.
Phytase expressed and anchored on the cell surface of Pichia pastoris avoids the expensive and time-consuming steps of protein purification and separation. Furthermore, yeast cells with anchored phytase can be used as a whole-cell biocatalyst. In this study, the phytase gene of Citrobacter amalonaticus was fused with the Pichia pastoris glycosylphosphatidylinositol (GPI)-anchored glycoprotein homologue GCW61. Phytase exposed on the cell surface exhibits a high activity of 6413.5 U/g, with an optimal temperature of 60°C. In contrast to secreted phytase, which has an optimal pH of 5.0, phytase presented on the cell surface is characterized by an optimal pH of 3.0. Moreover, our data demonstrate that phytase anchored on the cell surface exhibits higher pH stability than its secreted counterpart. Interestingly, our in vitro digestion experiments demonstrate that phytase attached to the cell surface is a more efficient enzyme than secreted phytase.  相似文献   

17.
18.
Transgenic Trifolium subterraneum expressing a phytase gene (phyA) from Aspergillus niger were generated. Five independently transformed lines showed an average 77‐fold increase in exuded phytase activity in comparison with null segregant and wild‐type controls. Unlike other phosphatases, exuded phytase activity was unaffected by P supply, verifying the constitutive expression of phyA. Transgenic T. subterraneum grown in agar with P supplied as phytate, took up 1.3‐ to 3.6‐fold more P than controls and had equivalent P uptake to plants supplied with orthophosphate. This unique phenotype was compromised when the plants were grown in soil. None of the five lines showed increased shoot biomass or total P uptake in an unfertilized, low‐P soil taken from under permanent pasture. With addition of P, one of the five transgenic lines had consistently greater P nutrition compared with control plants. Despite variable growth and P nutrition responses, P uptake per root length was on average greater for transgenic lines. Exudation of phytase by transgenic T. subterraneum allowed utilization of P from phytate in non‐sorbing, sterile laboratory media, but was less effective when plants were grown in soil. Release of extracellular phytase is therefore not the only requirement for the acquisition of P from endogenous soil phytate by plants.  相似文献   

19.
A seed coat outer integument-specific promoter for Brassica napus   总被引:1,自引:0,他引:1  
In search for seed coat-specific promoters for canola (Brassica napus), transgenic plants carrying a 2,121 bp fragment of Arabidopsis thaliana At4g12960 promoter (AtGILTpro) fused to the uidA reporter gene (GUS) were generated. Out of 7 independent events in transgenic canola plants raised, 2 exhibited GUS activity exclusively in the outer integument of the seed coat. GUS activity in other tissues was also observed in the remaining five transformants. Therefore, the AtGILT promoter can be used as a canola seed coat outer integument-specific promoter after the generation and selection of desired transformants from several transgenic lines.  相似文献   

20.
Phytases release inorganic phosphates from phytate in soil. A gene encoding phytase (AfPhyA) was isolated from Aspergillus ficuum and its ability to degrade phytase and release phosphate was demonstrated in Saccharomyces cerevisiae. A promoter from the Arabidopsis Pky10 gene and the carrot extensin signal peptide were used to drive the root-specific and secretory expression of the AfPhyA gene in soybean plants. The phytase activity and inorganic phosphate levels in transgenic soybean root secretions were 4.7 U/mg protein and 439 μM, respectively, compared to 0.8 U/mg protein and 120 μM, respectively, in control soybeans. Our results demonstrated the potential usefulness of the root-specific promoter for the exudation of recombinant phytases and offered a new perspective on the mobilization of phytate in soil to inorganic phosphates for plant uptake. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Guilan Li and Shaohui Yang authors contribute equally to the paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号