首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Peters  Alan 《Brain Cell Biology》2002,31(8-9):581-593
It was believed that the cause of the cognitive decline exhibited by human and non-human primates during normal aging was a loss of cortical neurons. It is now known that significant numbers of cortical neurons are not lost and other bases for the cognitive decline have been sought. One contributing factor may be changes in nerve fibers. With age some myelin sheaths exhibit degenerative changes, such as the formation of splits containing electron dense cytoplasm, and the formation on myelin balloons. It is suggested that such degenerative changes lead to cognitive decline because they cause changes in conduction velocity, resulting in a disruption of the normal timing in neuronal circuits. Yet as degeneration occurs, other changes, such as the formation of redundant myelin and increasing thickness suggest of sheaths, suggest some myelin formation is continuing during aging. Another indication of this is that oligodendrocytes increase in number withage. In addition to the myelin changes, stereological studies have shown a loss of nerve fibers from the white matter of the cerebral hemispheres of humans, while other studies have shown a loss of nerve fibers from the optic nerves and anterior commissure in monkeys. It is likely that such nerve fiber loss also contributes to cognitive decline, because of the consequent decrease in connections between neurons. Degeneration of myelin itself does not seem to result in microglial cells undertaking phagocytosis. These cells are probably only activated when large numbers of nerve fibers are lost, as can occur in the optic nerve.  相似文献   

2.
During the last fifteen years, an increasing number of studies have examined the origin, the ontogeny, and the distribution of nerve fibers in bone. They have also investigated the nature of neuromediators conveyed by these skeletal nerve fibers. Experimental models of sensory and sympathetic denervation and clinical studies have shown that these two neuronal systems are involved in bone development, growth and remodeling. More recently, some new concepts regarding the role of nerve fibers in bone physiology have emerged with the demonstration of a leptin-dependent central control of bone formation via the sympathetic system. This new neural regulating pathway of bone cell functions could have enormous implications for human skeletal biology and treatment of bone pathologies.  相似文献   

3.
The periodontal ligament has a rich sensory nerve supply which originates from the trigeminal ganglion and trigeminal mesencephalic nucleus. Although various types of mechanoreceptors have been reported in the periodontal ligament, the Ruffini ending is an essential one. It is unknown whether the distribution of periodontal nerve fibers in deciduous teeth is identical to that in permanent teeth or not. Moreover, morphological changes in the distribution of periodontal nerve fibers during resorption of deciduous teeth and eruption of successional permanent teeth in diphyodont animals have not been reported in detail. Therefore, in this study, we examined changes in the distribution of periodontal nerve fibers in the cat during changes in dentition (i.e., deciduous, mixed and permanent dentition) by immunohistochemistry of protein gene product 9.5. During deciduous dentition, periodontal nerve fibers were concentrated at the apical portion, and sparsely distributed in the periodontal ligament of deciduous molars. During mixed dentition, the periodontal nerve fibers of deciduous molars showed degenerative profiles during resorption. In permanent dentition, the periodontal nerve fibers of permanent premolars, the successors of deciduous molars, increased in number. Similar to permanent premolars, the periodontal nerve fibers of permanent molars, having no predecessors, increased in number, and were densely present in the apical portion. The present results indicate that the distribution of periodontal nerve fibers in deciduous dentition is almost identical to that in permanent dentition although the number of periodontal nerve fibers in deciduous dentition was low. The sparse distribution of periodontal nerve fibers in deciduous dentition agrees with clinical evidence that children are less sensitive to tooth stimulation than adults.  相似文献   

4.
Using the ability of the nerve fibers to conduct impulses as indicator of changes in the concentration of sodium ions in the interstitial spaces of nerve an evaluation has been made of the diffusion constant of sodium ions. The calculated minimal value (0.62 x 10(-4) cm.(2)/min.) undoubtedly is much too low; nevertheless, it is still so high that as a rule the diffusion of sodium ions is far more rapid than the establishment of excitability changes; therefore, diffusion times need not be taken into account in the interpretation of ordinary experiments. By measurements of the changes in the longitudinal conductivity of nerve which result from changes in the external concentration of sodium chloride an evaluation has been made of the diffusion constant of sodium chloride in the interstitial spaces of nerve. A minimal value for this constant is 1.4 x 10(-4) cm.(2)/min. The evidence presented would be compatible with the assumption that the permeability of the connective tissue sheath for sodium ions decreases slightly after the concentration of sodium ions in the interstitial spaces of the nerve has become negligible; the evidence, however, shows that changes in the permeability of the sheath cannot play a significant role in determining the temporal courses of the development of inexcitability in a sodium-free medium and of the restoration of excitability by added sodium ions. If a decrease in the permeability of the sheath should take place in a sodium-free medium, the change would be small and would occur after the nerve fibers have become inexcitable; on the other hand the action of a moderate concentration of sodium ions would be sufficient to restore the permeability of the sheath. As measured by the recovery by A fibers of the ability to conduct impulses the restoration by 0.1 N sodium ions of nerve that has been deprived of sodium for 15 to 20 hours, i.e. for several hours after the nerve fibers have become inexcitable, begins after a significant delay, since no A fiber begins to conduct impulses in less than 8 or 10 minutes. The delay is referable to the fact that, before the A fibers can regain the ability to conduct impulses, those changes in their properties have to be reversed, which have taken place in the absence of sodium ions. Usually within 1 minute after sodium ions are made available to the nerve the polarizability of the membrane by the anodal current begins to increase; the A fibers soon begin to produce unconducted impulses in response to the break of the anodal current; then, they produce unconducted impulses in response to the closure of the cathodal current, and finally they become able to conduct impulses, although at a markedly reduced speed. The C fibers, that become inexcitable in a sodium-free medium later than the A fibers, begin to conduct impulses within 1 minute or 2 after 0.1 N sodium ions are made available to the nerve. Treatment of a nerve, that has been kept in a sodium-free medium, for 15 to 20 hours, with a moderate concentration of sodium ions (0.015, 0.02 N), acting for 1 hour or 2, is not sufficient to restore the ability to conduct impulses to more than a few A fibers, but it produces in a relatively large number of fibers a partial restoration, so that when the concentration of sodium ions outside the epineurium is increased by 0.005 or 0.01 N a significant number of A fibers begin to conduct impulses within less than 5 seconds. Initially the recovery progresses with great rapidity, but after a small number of minutes the height of the conducted spike remains practically stationary. Increase of the external concentration of sodium ions by a small amount again causes a rapid enhancement of the recovery, but once more, after a few minutes the height of the spike remains practically stationary, etc. A subnormal concentration of sodium ions may restore to all the A fibers the ability to conduct impulses, but only 0.1 N sodium ions are able to produce a complete restoration of the speed of conduction, and only after they have been allowed to act for a considerable period of time. The ability of all the C fibers to conduct impulses may be restored by relatively small concentrations of sodium ions, 0.02 to 0.025 N. Nerve fibers that have become inexcitable in a sodium-free medium and have been restored by sodium ions are far more sensitive to the effect of the lack of sodium than the fibers of untreated nerve. Repeated removal and addition of sodium ions may bring the nerve fibers, especially those of spinal roots, to a state in which the sensitivity to the lack of sodium is exceedingly great; spinal root fibers may then begin to become inexcitable in a sodium-free medium within a few seconds. Treatment of the nerve with 0.1 N sodium ions for 1 hour or 2 is sufficient to bring about a marked increase in the resistance to the lack of sodium. On the other hand keeping a nerve in Ringer's solution or in the presence of 0.04 N sodium ions does not produce a readily detectable increase in the sensitivity to the lack of sodium. Even the resistance of nerve kept in the presence of 0.025 N sodium ions for 23 hours is very high, since after 2 hours in a sodium-free medium more than two-thirds of the initially conducting fibers will be able to conduct impulses. Frog nerve reaches different states of equilibrium with different external concentrations of sodium ions. The states are characterized by the degree of effectiveness of the nerve reaction, the speed of conduction of impulses, and the number of conducting fibers. Approximately the same equilibrium state may be reached by (a) leaving the nerve for 20 to 24 hours in the presence of a subnormal concentration of sodium ions and (b) by leaving the nerve in a sodium-free medium for 15 to 20 hours, restoring it with 0.1 N sodium ions acting for a short period of time, rendering it inexcitable again in a sodium-free medium, and finally restoring it with a moderate concentration of sodium ions. If, however, the nerve that has been kept in a sodium-free medium for 15 to 20 hours is restored directly by a moderate concentration of sodium ions the state will not be reached, at least not for several hours, which corresponds to equilibrium with that concentration. The role of sodium in nerve physiology is discussed. Sodium participates in at least four processes, (a) The regulation of the concentration of water outside the nerve fibers; (b) the regulation of the total value of the membrane potential; (c) the production of the nerve impulse, and (d) the establishment of the nerve reaction. In so far as processes (c) and (d) are concerned only the sodium present inside the nerve fibers plays a role; the presence of sodium ions outside the nerve fibers is important only because in the absence of interstitial sodium ions the nerve fibers lose a part of their internal sodium content. The nerve impulse and the nerve reaction may be produced for long periods of time after the concentration of sodium ions outside the nerve fibers has become negligible. A working hypothesis is put forward according to which the internal sodium content and the interstitial concentration of sodium ions are in equilibrium in so far as a different internal sodium content corresponds to each interstitial concentration. The properties of the nerve fibers are determined by the internal sodium content. The change in properties, i.e. in the state of the nerve fibers, results from processes that take place inside the nerve fibers after the interstitial concentration of sodium ions and consequently also the internal sodium content have been changed.  相似文献   

5.
 The influence of subthreshold depolarizing prepulses on the threshold current-to-distance and the threshold current-to-diameter relationship of myelinated nerve fibers has been investigated. A nerve fiber model was used in combination with both a simple, homogeneous volume conductor model with a point source and a realistic, inhomogeneous volume conductor model of a monofascicular nerve trunk surrounded by a cuff electrode. The models predict that a subthreshold depolarizing prepulse will desensitize Ranvier nodes of fibers in the vicinity of the cathode and thus cause an increase in the threshold current of a subsequent pulse to activate these fibers. If the increase in threshold current of the excited node is large enough, the excitation will be accompanied by a strong hyperpolarization of adjacent nodes, preventing the propagation of action potentials in these fibers. As fibers close to the electrode are more desensitized by prepulses than more distant ones, it is possible to stimulate distant fibers without stimulating such fibers close to the electrode. Moreover, as larger fibers are more desensitized than smaller ones, smaller fibers have lower threshold currents than larger fibers up to a certain distance from the electrode. The realistic model has provided an additional condition for the application of this method to invert nerve fiber recruitment, i.e., real or virtual anodes should be close to the cathode. When using a cuff electrode for this purpose, in the case of monopolar stimulation the cuff length (determining the position of the virtual anodes) should not exceed twice the internodal length of the fibers to be blocked. Similarly, the distance between cathode and anodes should not exceed the internodal length of these fibers when stimulation is to be applied tripolarly. Received: 15 May 2000 / Accepted in revised form: 9 February 2001  相似文献   

6.
In this study we have examined the sensitivity of auditory nerve fibers in the bullfrog (Rana catesbeiana) to changes in the phase spectrum of an equal-amplitude multi-harmonic stimulus which spanned the bullfrog's range of hearing. To assess peripheral auditory phase sensitivity, changes in the response properties of VIIIth nerve fibers were measured when the relative phase angle of a single harmonic component nearest a unit's best excitatory frequency was systematically varied. The results revealed that shifts in the phase spectrum are encoded in at least J different ways by the peripheral auditory system of the bullfrog: 1) by changes in the degree of spike synchronization of fibers from both inner ear organs (the amphibian papilla and the basilar papilla) to the fundamental waveform period; 2) by changes in the shapes of period histograms of fibers from both organs; and 3) by changes in the spike rates of amphibian papilla fibers. The presence of phase sensitivity in the peripheral auditory system of the bullfrog indicates that information regarding the fine-temporal waveshape and the underlying phase spectrum of an acoustic signal is contained within the spike trains of VIIIth nerve fibers. Similar sensitivities to changes in the phase spectra and temporal waveshapes of acoustic signals may also be present in the peripheral auditory system of other vertebrates. Such studies could provide valuable insight into the role that phase spectra and temporal waveshape may play in bioacoustic communication.Abbreviations BEF best excitatory frequency - BEC best excitatory component - CSf 1 synchronization to the fundamental period Portions of this study have been summarized in abstract form (Bodnar and Capranica 1991)  相似文献   

7.
8.
Whether exposure to static magnetic fields (SMF) for medical applications poses a therapeutic benefit or a health hazard is at the focus of current debate. As a peripheral nerve model for studies of the SMF effects, we have investigated whether exposure of in vitro frog sciatic nerve fibers to moderate-intensity gradient SMF up to 0.7 T modulates membrane excitation and refractory processes. We measured the changes in the amplitudes of the electrically evoked compound action potentials for three groups: a control group without SMF exposure and two exposed groups with continuous inhomogeneous exposure to maximum flux densities (B(max)) of 0.21 and 0.7 T SMF for 6 h. The values of the nerve conduction velocity of C fibers were significantly reduced by B(max) of 0.7 T SMF during the 4- to 6-h exposure period but not by B(max) of 0.21 T SMF during the entire exposure period of 6 h, relative to the unexposed control. From these findings, we speculate that exposure to moderate-intensity gradient SMF may attenuate pain perception because the C fibers are responsible for pain transmission. Although the mechanistic reasons for this decrease have yet to be clarified, SMF could affect the behavior of some types of ion channels associated with C fibers.  相似文献   

9.
Summary The terminal nerve has been described in all vertebrate classes, with the exception of cyclostomes and birds. With regard to this question, we have examined representatives of these two classes using tracer techniques, and found a terminal nerve in larval lampreys and young domestic mallards. Horseradish peroxidase or cobaltous lysine was injected into the olfactory mucosa, which is known to be innervated by peripheral branches of the terminal nerve. The brains were then searched for labeled, centrally directed fibers of the terminal nerve that project further caudally than the glomerular layer of the olfactory bulb. In larval lampreys, centrally projecting fibers of the terminal nerve were found in the tel-, diand mesencephalon. Termination of labeled fibers was observed in the hypothalamus. Some fibers of the terminal nerve cross to the contralateral side via the commissure of the posterior tuberculum. In young ducks, the terminal nerve projects ipsilaterally along the medial edge of the telencephalon.  相似文献   

10.
Detection and primary processing of physical, chemical and thermal sensory stimuli by peripheral sensory nerve fibers is key to sensory perception in animals and humans. These peripheral sensory nerve fibers express a plethora of receptors and ion channel proteins which detect and initiate specific sensory stimuli. Methods are available to characterize the electrical properties of peripheral sensory nerve fibers innervating the skin, which can also be utilized to identify the functional expression of specific ion channel proteins in these fibers. However, similar electrophysiological methods are not available (and are also difficult to develop) for the detection of the functional expression of receptors and ion channel proteins in peripheral sensory nerve fibers innervating other visceral organs, including the most challenging tissues such as bone. Moreover, such electrophysiological methods cannot be utilized to determine the expression of non-excitable proteins in peripheral sensory nerve fibers. Therefore, immunostaining of peripheral/visceral tissue samples for sensory nerve fivers provides the best possible way to determine the expression of specific proteins of interest in these nerve fibers. So far, most of the protein expression studies in sensory neurons have utilized immunostaining procedures in sensory ganglia, where the information is limited to the expression of specific proteins in the cell body of specific types or subsets of sensory neurons. Here we report detailed methods/protocols for the preparation of peripheral/visceral tissue samples for immunostaining of peripheral sensory nerve fibers. We specifically detail methods for the preparation of skin or plantar punch biopsy and bone (femur) sections from mice for immunostaining of peripheral sensory nerve fibers. These methods are not only key to the qualitative determination of protein expression in peripheral sensory neurons, but also provide a quantitative assay method for determining changes in protein expression levels in specific types or subsets of sensory fibers, as well as for determining the morphological and/or anatomical changes in the number and density of sensory fibers during various pathological states. Further, these methods are not confined to the staining of only sensory nerve fibers, but can also be used for staining any types of nerve fibers in the skin, bones and other visceral tissue.  相似文献   

11.
The present research shows that sensory ganglion cells are located within the oculomotor nerve of monkeys and man. Furthermore, afferent fibers have been found in the IIIrd nerve of all the animals examined (lamb, pig, cat, dog and monkey). These fibers have their perikarya prevalently in the semilunar ganglion. Their pathway could be studied after section of either the trigeminal ophthalmic branch or of the intracranial portion of the IIIrd nerve. Following these operations, degenerating fibers were found entering the brain stem through the oculomotor nerve. In the brain stem, they were traced through the pons and the medulla and were seen to end in the spinal cord, within the subnucleus gelatinosus of the nucleus caudalis trigemini. Their degenerating endings found in the neuropil of the SG Rolandi, represented peripheral axonal endings of the glomeruli, rather than central axonal endings, as was the case after trigeminal rhizotomy. On the basis of these different degenerating patterns, the conclusion can be reached that the perikarya of the afferent fibers located in the semilunar ganglion represent, in reality, a ganglion of the IIIrd nerve.  相似文献   

12.
Reactions of nerve fibers to high frequency electrical stimulation are examined with three nerve models. Switching on the signal produces a single AP at the threshold current. Stronger currents lead into a region of repetitive firing. The firing rate depends on the current and the fibers more distant from the electrode will have a lower rate. The AP's are not synchronized. In the "House-Urban" cochlear implant a 16 kHz carrier is used for stimulation. It is modulated by electrical signals derived from sound pressure. An analysis of the modulation shows which signals can produce APs synchronized with the source signal.  相似文献   

13.
Nitric oxide synthases (NOSs) have been shown to modulate thermal hyperalgesia and mechanical hypersensitivity in inflammatory and neuropathic pain. However, little is known about the effect of NOSs on baseline function of sensory nerve fibers. Using genetic deficiency and pharmacologic inhibition of NOSs, we examined the impact of the three isoforms NOS1, NOS2, and NOS3 on baseline nocifensive behavior by measuring current vocalization threshold in response to electrical stimulation at 5, 250, 2000 Hz that preferentially stimulate C, Aδ, and Aβ fibers. In response to 5, 250 and 2000 Hz, NOS1-deficient animals had significantly higher current vocalization thresholds compared with wild-type. Genetic deficiency of NOS2 was associated with higher current vocalization thresholds in response to 5 Hz (C-fiber) stimulation. In contrast, NOS3-deficient animals had an overall weak trend toward lower current vocalization thresholds at 5 Hz and significantly lower current vocalization threshold compared with wild-type animals at 250 and 2000 Hz. Therefore, NOSs distinctively affect baseline mouse current vocalization threshold and appear to play a role on nocifensive response to electrical stimulation of sensory nerve fibers.  相似文献   

14.
In adult rats, transection of the infraorbital nerve and subsequent regeneration have been shown to result in altered somatotopic organization and changes in response properties of primary afferents within the trigeminal ganglion. The present study examined how these changes affect the postsynaptic targets of these neurons within subnucleus interpolaris of the trigeminal brainstem. Extra-cellular recordings were made from 330 cells in normal rats and 424 cells in rats surviving 57-290 days after transection of the infraorbital nerve in adulthood. Adult infraorbital nerve transection resulted in significant functional reorganization within subnucleus interpolaris. Relative to normal rats, the major changes can be summarized as follows: (1) a decrease in the dorsoventral extent of infraorbital representation; (2) a disruption of inter- and intradivisional somatotopic organization; (3) an increase in the proportion of cells with no discernible receptive field; (4) an increase in receptive field size for cells with infraorbital receptive field components; (5) the appearance of a significant proportion of cells with discontinuous receptive fields; (6) an increase in the proportion of cells exhibiting interdivisional convergence; (7) significant changes in the types of receptor surfaces activating local-circuit neurons with infraorbital receptive field components; (8) the appearance of a significant proportion of cells exhibiting convergence of different receptor surfaces; (9) significant changes in the dynamic response characteristics of cells with infraorbital receptive field components; and (10) an increase in the proportion of spontaneously active infraorbital-responsive cells. The changes observed were quite similar to those reported in adult subnucleus interpolaris following neonatal infraorbital nerve transection. The majority of changes observed in both studies can be most parsimoniously explained by alterations of primary afferents. However, central mechanisms may be more likely substrates for others. Regardless of the mechanism, the mature rodent trigeminal system appears capable of considerable functional reorganization following peripheral nerve damage.  相似文献   

15.
In adult rats, transection of the infraorbital nerve and subsequent regeneration have been shown to result in altered somatotopic organization and changes in response properties of primary afferents within the trigeminal ganglion. The present study examined how these changes affect the postsynaptic targets of these neurons within subnucleus interpolaris of the trigeminal brainstem. Extracellular recordings were made from 330 cells in normal rats and 424 cells in rats surviving 57-290 days after transection of the infraorbital nerve in adulthood. Adult infraorbital nerve transection resulted in significant functional reorganization within subnucleus interpolaris. Relative to normal rats, the major changes can be summarized as follows: (1) a decrease in the dorsoventral extent of infraorbital representation; (2) a disruption of inter- and intradivisional somatotopic organization; (3) an increase in the proportion of cells with no discernible receptive field; (4) an increase in receptive field size for cells with infraorbital receptive field components; (5) the appearance of a significant proportion of cells with discontinuous receptive fields; (6) an increase in the proportion of cells exhibiting interdivisional convergence; (7) significant changes in the types of receptor surfaces activating local-circuit neurons with infraorbital receptive field components; (8) the appearance of a significant proportion of cells exhibiting convergence of different receptor surfaces; (9) significant changes in the dynamic response characteristics of cells with infraorbital receptive field components; and (10) an increase in the proportion of spontaneously active infraorbital-responsive cells. The changes observed were quite similar to those reported in adult subnucleus interpolaris following neonatal infraorbital nerve transection. The majority of changes observed in both studies can be most parsimoniously explained by alterations of primary afferents. However, central mechanisms may be more likely substrates for others. Regardless of the mechanism, the mature rodent trigeminal system appears capable of considerable functional reorganization following peripheral nerve damage.  相似文献   

16.
Summary The ferret is widely used in functional and neuromorphological studies on the respiratory tract. We have examined the occurrence and distribution of peptide-containing and adrenergic nerve fibers (using dopamine--hydroxylase as a marker). Adrenergic nerve fibers and fibers storing vasoactive intestinal peptide have a widespread distribution along the entire respiratory tract. Adrenergic nerve fibers were found in the lamina propria, as well as around blood vessels and glands and in smooth muscle. Nerve fibers storing vasoactive intestinal peptide occurred in the epithelium, the lamina propria, around blood vessels and glands, and among muscle bundles. Substance P-, neurokinin A- and calcitonin gene-related peptide-containing nerve fibers predominated beneath and within the epithelium along the entire respiratory tract. Neuropeptide Y-containing nerve fibers were prominent among smooth muscle bundles and around glands. The blood vessels in the wall of the airways were richly supplied with peptidecontaining nerve fibers and adrenergic fibers. Ganglia located over the outer or dorsal surface of the tracheal wall harbored vasoactive intestinal peptide-containing nerve cell bodies. Substance P and neurokinin A invariably coexisted in the same nerve fibers. Further, coexistence of substance P/neurokinin A and calcitonin gene-related peptide was observed in the nerve fibers associated with the epithelium. Vasoactive intestinal peptide, neuropeptide Y and occasionally also substance P coexisted in the population of nerve fibers associated with blood vessels and smooth muscle. Many adrenergic nerve fibers contained neuropeptide Y.  相似文献   

17.
The sensitivity of the Limulus lateral eye exhibits a pronounced circadian rhythm. At night a circadian oscillator in the brain activates efferent fibers in the optic nerve, inducing multiple changes in the physiological and anatomical characteristics of retinal cells. These changes increase the sensitivity of the retina by about five orders of magnitude. We investigated whether this increase in retinal sensitivity is accompanied by changes in the ability of the retina to process temporal information. We measured the frequency transfer characteristic (FTC) of single receptors (ommatidia) by recording the response of their optic nerve fibers to sinusoidally modulated light. We first measured the FTC in the less sensitive daytime state and then after converting the retina to the more sensitive nighttime state by electrical stimulation of the efferent fibers. The activation of these fibers shifted the peak of the FTC to lower frequencies and reduced the slope of the low-frequency limb. These changes reduce the eye's ability to detect rapid changes in light intensity but enhance its ability to detect dim flashes of light. Apparently Limulus sacrifices temporal resolution for increased visual sensitivity at night.  相似文献   

18.
The nerve fiber distribution in the epidermis of the hairless rat skin was studied light microscopically by means of zinc iodide-osmium tetroxide staining. Two different morphological types of free nerve fiber endings could be detected: clusters of relatively thick nerve fibers stretched up through the spinous layer up to the granular layer sending off terminal branches. In addition, many solitary thin varicose nerve fibers were seen within the epidermis. The observed discrepancies in nerve fiber diameters appeared to be larger than those reported for human intraepidermal nerve fibers in recent immunohistochemical studies. Moreover, dendritic cells, most probably representing Langerhans cells, could be selectively stained. These cells appeared to be in a close location to thin varicose nerve fibers. Both types of demonstrated free nerve endings have to be functionally connected with different sensoric functions. Possibly, a subpopulation of the thin nerve fibers might possess primarily a nociceptive task, whereas the thick ones have most probably to be regarded as mechanoreceptive. The nerve fibers innervating dendritic cells appear to be identical to the peptidergic ones which may regulate the antigen-presenting capacity of these cells. Due to its selectivity for intraepidermal nerve fibers, the used method might supplement immunohistochemical procedures in a helpful manner.  相似文献   

19.
Sectioned dorsal giant fibers of the earthworm Eisenia foetida have been studied with the electron microscope. The giant axon is surrounded by a Schwannian sheath in which the lamellae are arranged spirally. They can be traced from the outer surface of the Schwann cell to the axon-Schwann membranes. Irregularities in the spiral arrangement are frequently observed. Desmosome-like attachment areas occur on the giant fiber nerve sheath. These structures appear to be arranged bilaterally in columns which are oriented slightly obliquely to the long axis of the giant fiber and aligned linearly from the axon to the periphery of the sheath. At these sites they bind together apposing portions of Schwann cell membrane comprising the sheath. Longitudinal or oblique sections of the nerve sheath attachment areas are reminiscent of the Schmidt-Lantermann clefts of vertebrate peripheral nerve. Septa of the giant fibers have been examined. They are symmetrical or non-polarized and consist of the two plasma membranes of adjacent nerve units. Characteristic vesicular and tubular structures are associated with both cytoplasmic surfaces of these septa.  相似文献   

20.
1. The number and size of myelinated nerve fibers have been determined at standard levels, in the nerve to medial head of right and left gastrocnemius muscles of 112 rats in which the left sciatic nerve had suffered an experimental lesion according one of the following four modalities: localized crushing, total section followed or not by suture and resection of a nervous segment of about 1 cm. 2. In the nerve to medial head of right gastrocnemius muscle (contralateral nerve used as control), the number of myelinated fibers decreased in average to 10% after crushing, 5% or 4% after section followed or not by suture. However, an increase of 6% was observed after resection. The mean values of the mean diameters showed a decrease of 8% after crushing and 5% after section without suture. This value did not seem to be affected by section followed by immediate suture and after resection, it increased of 11%. On the whole, male rats appeared to be more sensitive than female to the effects of the operation. 3. The nerves of 12 rats have been observed from 15 to 334 days after resection of about 1 cm of sciatic nerve. The 20% of the regenerating myelinated nerve fibers which have succeeded to cross over such a distance had a distribution which remained unimodal; the diameter of the large fibres did not exceed 8 micronm. 4. 34 rats have been sacrificed from 15 to 715 days after sciatic nerve section which was not followed by suture. The number of myelinated nerve fibers became normal again during the 4th month and reached afterwards a mean value of 130%, with very marked variations. The nerve fibre distribution was most frequently unimodal, but may came bimodal one year after the operation in certain nerves. Their mean diameter never exceeded 60% of the normal. 5. The nerves of 34 rats have been examined from 15 to 720 days after section and immediate suture. The number of myelinated nerve fibers returned to normal during the second month and increased afterwards to an average of 150% with very important variations. The nerve fiber distribution was generally unimodal, but may become bimodal 7 months after the operation. Their mean diameter reached only 50 to 55% of the normal. 6. 32 rats have been sacrificed from 10 to 720 rats after a localized crushing. The number of myelinated nerve fibers come back to normal during the 4th week and later increased up to a mean of 115%. Their distribution became early bimodal from the 97th day onwards. Although, their mean diameter nerver exceeded 80% of the normal, the histograms of the regenerating nerve and of the control nerve could be almost superposed during the second year.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号