首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two types of rhythmic foregut movements are described in fifth instar larvae of the moth, Manduca sexta. These consist of posteriorly-directed waves of peristalsis which move food toward the midgut, and synchronous constrictions of the esophageal region, which appear to retain food within the crop. We describe these movements and the muscles of the foregut that generate them.The firing patterns of a subset of these muscles, including a constrictor and dilator pair from both the esophageal and buccal regions of the foregut, are described for both types of foregut movement.The motor patterns for the foregut muscles require innervation by the frontal ganglion (FG), which lies anterior to the brain and contains about 35 neurons. Eliminating the ventral nerve cord, leaving the brain and FG intact, did not affect the muscle firing patterns in most cases. Eliminating both the brain and the ventral nerve cord, leaving only the FG to innervate the foregut, generally resulted in an increased period for both gut movements and muscle bursts. This manipulation also produced increases in burst durations for most muscles, and had variable effects on the phasing of muscle activity. Despite these changes, the foregut muscles still maintained a rhythmic firing pattern when innervated by the FG alone.Two nerves exit the FG to innervate the foregut musculature: the anteriorly-projecting frontal nerve, and the posteriorly-directed recurrent nerve. Cutting the frontal nerve immediately and irreversibly stopped all muscle activity in the buccal region, while cutting the recurrent nerve immediately stopped all muscle activity in the pharyngeal and esophageal regions. Recordings from the cut nerves leaving the FG showed that the ganglion was spontaneously active, with rhythmic activity continuing within the nerves. These observations indicate that all of the foregut muscle motoneurons are located within the FG, and the FG in isolation produces a rhythmic firing pattern in the motoneurons. We have identified several motoneurons within the FG, by cobalt backfills and/or simultaneous intracellular recordings and fills from putative motoneurons and their muscles.Abbreviations BC Buccal Constrictor - BC1 buccal constrictor motoneuron 1 - BC2 buccal constrictor motoneuron 2 - BD Buccal Dilator - BD1 buccal dilator motoneuron 1 - EC Esophageal Dilator - EC1 esophageal dilator motoneuron 1 - EC2 esophageal dilator motoneuron 2 - EC3 esophageal dilator motoneuron 3 - ejp excitatory junction potential - FG frontal ganglion - psp postsynaptic potential  相似文献   

2.
Although physiological differences among neuromuscular junctions (NMJs) have long been known, NMJs have usually been considered as one type of synapse, restricting their potential value as model systems to investigate mechanisms controlling synapse assembly and plasticity. Here we discuss recent evidence that skeletal muscles in the mouse can be subdivided into two previously unrecognized subtypes, designated FaSyn and DeSyn muscles. These muscles differ in the pattern of neuromuscular synaptogenesis during embryonic development. Differences between classes are intrinsic to the muscles, and manifest in the absence of innervation or agrin. The distinct rates of synaptogenesis in the periphery may influence processes of circuit maturation through retrograde signals. While NMJs on FaSyn and DeSyn muscles exhibit a comparable anatomical organization in postnatal mice, treatments that challenge synaptic stability result in nerve sprouting, NMJ remodeling, and ectopic synaptogenesis selectively on DeSyn muscles. This anatomical plasticity of NMJs diminishes greatly between 2 and 6 months postnatally. NMJs lacking this plasticity are lost selectively and very early on in mouse models of motoneuron disease, suggesting that disease-associated motoneuron dysfunction may fail to initiate maintenance processes at “non-plastic” NMJs. Transgenic mice overexpressing growth-promoting proteins in motoneurons exhibit greatly enhanced stimulus-induced sprouting restricted to DeSyn muscles, supporting the notion that anatomical plasticity at the NMJ is primarily controlled by processes in the postsynaptic muscle. The discovery that entire muscles in the mouse differ substantially in the anatomical plasticity of their synapses establishes NMJs as a uniquely advantageous experimental system to investigate mechanisms controlling synaptic rearrangements at defined synapses in vivo.  相似文献   

3.
1.  Spikes in Aplysia MA1 neurons produced excitatory (EJPs), inhibitory (IJPs), and diphasic inhibitory-excitatory junction potentials in different fibers of the buccal muscles.
2.  The IJPs following the MA1 spikes were recorded in the muscle fibers innervated by the jaw-closing motoneurons. The depolarization of muscle fibers produced by the motoneurons was largely suppressed by simultaneous MA1 firing, suggesting that the MA1 neurons make a direct connection to a part of the muscle fibers innervated by these motoneurons and inhibit them.
3.  The excitatory and inhibitory components of the junction potentials produced by MA1 were reversibly blocked by hexamethonium and d-tubocurarine, respectively. In contrast, the EJPs produced by the jaw-closing motoneurons were blocked by an amino acid antagonist, suggesting that the MA1 neurons and the jaw-closing motoneurons use different transmitters in the nerve-muscle junctions.
4.  The jaw movement produced by the jaw-closing motoneurons was suppressed by simultaneous MA1 firing, and the suppression was released by d-tubocurarine, suggesting that the IJPs produced by MA1 may contribute to the suppression of jaw movement. The firing of MA1 produced the vertical movement of the buccal muscles, which was blocked by hexamethonium, suggesting that the EJPs produced by MA1 may contribute to the vertical movement.
  相似文献   

4.
Summary In the crickets, Gryllus campestris and Gryllus bimaculatus, the innervation of the dorso-ventral neck muscles M62, M57, and M59 was examined using cobalt staining via peripheral nerves and electrophysiological methods. M62 and M57 are each innervated by two motoneurons in the suboesophageal ganglion. The four motoneurons project into the median nerve to bifurcate into the transverse nerves of both sides. M62 and M57 are the only neck muscles innervated via this route. These bifurcating axon-projections are identical to those of the spiracular motoneurons in the prothoracic ganglion innervating the opener and closer muscle of the first thoracic spiracle in the cricket. The morphology of their branching pattern is described. The neck muscle M57 and the opener muscle of the first thoracic spiracle are additionally innervated by one mesothoracic motoneuron each, with similar morphology. These results suggest, that in crickets, the neck muscles M57 and M62 are homologous to spiracular muscles in the thoracic segments. The two neck muscles M62 and M59 (the posterior neighbour of M57) receive projections from a prothoracic dorsal unpaired median (DUM) neuron that also innervates dorsal-longitudinal neck muscles but not M57. In addition, one or two mesothoracic DUM neurons send axon collaterals intersegmentally to M59. This is the first demonstration of the innervation of neck muscles by DUM neurons.  相似文献   

5.
1. In each right and left buccal ganglia of Aplysia kurodai, we identified 4 premotor neurons impinging on the ipsilateral jaw-closing and -opening motoneurons. Three of them (MA1 neurons) had features of multifunctional neurons. Current-induced spikes in the MA1 neurons produced excitatory junction potentials (EJPs) in the buccal muscle fibers. In addition, tactile stimulation of the buccal muscle surface produced a train of spikes in the MA1 neurons without synaptic input. The other neuron (MA2) had only a premotor function. 2. The MA1 and MA2 neurons had similar synaptic effects on the jaw-closing and -opening motoneurons. Current-induced spikes in the premotor neurons gave rise to monosynaptic inhibitory postsynaptic potentials (IPSPs) in the ipsilateral jaw-closing motoneurons. Simultaneously, spikes in one of the MA1 neurons and the MA2 also gave rise to monosynaptic excitatory postsynaptic potentials (EPSPs) in the ipsilateral jaw-opening motoneuron. 3. The IPSPs and the EPSPs induced by spikes in the premotor neurons were reversibly blocked by d-tubocurarine and hexamethonium, respectively, suggesting that the MA1 and MA2 neurons are cholinergic. 4. When depolarizing and hyperpolarizing current pulses were passed into one premotor neuron, attenuated but similar potential changes were produced in another randomly selected premotor neuron in the same ganglion, suggesting that they are electronically coupled.  相似文献   

6.
We investigated the modulatory role of a radular mechanoreceptor (RM) in the feeding system of Incilaria. RM spiking induced by current injection evoked several cycles of rhythmic buccal motor activity in quiescent preparations, and this effect was also observed in preparations lacking the cerebral ganglia. The evoked rhythmic activity included sequential activation of the inframedian radular tensor, the supramedian radular tensor, and the buccal sphincter muscles in that order.In addition to the generation of rhythmic motor activity, RM spiking enhanced tonic activities in buccal nerve 1 as well as in the cerebrobuccal connective, showing a wide excitatory effect on buccal neurons. The excitatory effect was further examined in the supramedian radular tensor motoneuron. RM spiking evoked biphasic depolarization in the tensor motoneuron consisting of fast excitatory postsynaptic potentials and prolonged depolarization lasting after termination of RM spiking. These depolarizations also occurred in high divalent cation saline, suggesting that they were both monosynaptic.When RM spiking was evoked in the fictive rasp phase during food-induced buccal motor rhythm, the activity of the supramedian radular tensor muscle showed the greatest enhancement of the three muscles tested, while the rate of ongoing rhythmic motor activity showed no increase.Abbreviations CPG central pattern generator - EPSP excitatory postsynaptic potential - RBMA rhythmic buccal motor activity - RM radular mechanosensory neuron - SMT supramedian radular tensor neuron  相似文献   

7.
Busetto  G.  Buffelli  M.  Cangiano  L.  Cangiano  A. 《Brain Cell Biology》2003,32(5-8):795-802
Synapse elimination is a general feature of the development of neural connections, including the connections of motoneurons to skeletal muscle fibers. Our work addressed two questions: (1) how the action potentials generated in the set of motoneurons innervating an individual muscle (i.e., in a motor pool) are correlated in time during development in vivo; (2) what influence different firing patterns exert on the processes of polyneuronal innervation and synapse elimination which characterize the establishment of muscle innervation. We recorded the spontaneous electromyographic activity of the tibialis anterior and soleus muscles of late embryonic and neonatal rats, identifying the firing of at least two single motor unit signals in each record. We found that a striking switch occurs a few days after birth from a highly synchronous type of firing to an asynchronous one, the first thus characterizing embryonic while the second one adult motoneurons. We also investigated the effects of an evoked synchronous type of discharge on neuromuscular synapse formation, measuring polyneuronal innervation and synapse elimination. This was done in an adult in vivo model of de novo synapse formation, while a chronic TTX nerve conduction block, placed centrally with respect to the stimulating electrodes, eliminated the natural activity of motoneurons. We found that the imposed synchronous activity greatly inhibits synapse elimination, causing polyneuronal innervation to persist. We conclude that the early synchronous firing, favors the establishment of polyneuronal innervation while the subsequent switch to an asynchronous one promotes synapse elimination.  相似文献   

8.
Summary The muscles of the pyloric region of the stomach of the crab,Cancer borealis, are innervated by motorneurons found in the stomatogastric ganglion (STG). Electrophysiological recording and stimulating techniques were used to study the detailed pattern of innervation of the pyloric region muscles. Although there are two Pyloric Dilator (PD) motorneurons in lobsters, previous work reported four PD motorneurons in the crab STG (Dando et al. 1974; Hermann 1979a, b). We now find that only two of the crab PD neurons innervate muscles homologous to those innervated by the PD neurons in the lobster,Panulirus interrruptus. The remaining two PD neurons innervate muscles that are innervated by pyloric (PY) neurons inP. interruptus. The innervation patterns of the Lateral Pyloric (LP), Ventricular Dilator (VD), Inferior Cardiac (IC), and PY neurons were also determined and compared with those previously reported in lobsters. Responses of the muscles of the pyloric region to the neurotransmitters, acetylcholine (ACh) and glutamate, were determined by application of exogenous cholinergic agonists and glutamate. The effect of the cholinergic antagonist, curare, on the amplitude of the excitatory junctional potentials (EJPs) evoked by stimulation of the pyloric motor nerves was measured. These experiments suggest that the differences in innervation pattern of the pyloric muscles seen in crab and lobsters are also associated with a change in the neurotransmitter active on these muscles. Possible implications of these findings for phylogenetic relations of decapod crustaceans and for the evolution of neural circuits are discussed.Abbreviations ACh acetylcholine - Carb carbamylcholine - cpv muscles of the cardio-pyloric valve - cpv7n nerve innervating muscle cpv7 - cv muscles of the ventral cardiac ossicles - cv1n nerve innervating muscle cvl - cv2n nerve innervating muscle cv2 - EJP excitatory junctional potential - IC inferior cardiac neuron - IV inferior ventricular neuron - IVN inferior ventricular nerve - LP lateral pyloric neuron - LPG lateral posterior gastric neuron - lvn lateral ventricular nerve - mvn medial ventricular nerve - p muscles of the pylorus - PD pyloric dilator neuron - PD in intrinsic PD neuron - PD ex extrinsic PD neuron - pdn pyloric dilator nerve - PY pyloric neuron - pyn pyloric nerve - STG stomatogastric ganglion - VD ventricular dilator neuron  相似文献   

9.
Recently, three novel flexor muscles (M1, M2 and M3) in the posterior tentacles of the snail have been described, which are responsible for the patterned movements of the tentacles of the snail, Helix pomatia. In this study, we have demonstrated that the muscles received a complex innervation pattern via the peritentacular and olfactory nerves originating from different clusters of motoneurons of the cerebral ganglia. The innervating axons displayed a number of varicosities and established neuromuscular contacts of different ultrastructural forms. Contractions evoked by nerve stimulation could be mimicked by external acetylcholine (ACh) and glutamate (Glu), suggesting that ACh and Glu are excitatory transmitters at the neuromuscular contacts. Choline acetyltransferase and vesicular glutamate transporter immunolabeled axons innervating flexor muscles were demonstrated by immunohistochemistry and in Western blot experiments. Nerve- and transmitter-evoked contractions were similarly attenuated by cholinergic and glutamatergic antagonists supporting the dual excitatory innervation. Dopamine (DA, 10?5 M) oppositely modulated thin (M1/M2) and thick (M3) muscle responses evoked by stimulation of the olfactory nerve, decreasing the contractions of the M1/M2 and increasing those of M3. In both cases, the modulation site was presynaptic. Serotonin (5-HT) at high concentration (10?5 M) increased the amplitude of both the nerve- and the ACh-evoked contractions in all muscles. The relaxation rate was facilitated suggesting pre- and postsynaptic site of action. Our data provided evidence for a DAergic and 5-HTergic modulation of cholinergic nerves innervating flexor muscles of the tentacles as well as the muscles itself. These effects of DA and 5-HT may contribute to the regulation of sophisticated movements of tentacle muscles lacking inhibitory innervation.  相似文献   

10.
GABA was tested for its effects on patterned motor activity (PMA) underlying feeding. Using buccal motoneuron B19 to monitor PMA through intracellular recordings, GABA was found to exert effects at two levels. First, GABA stimulated rhythmic patterned activity resembling fictive feeding, which is under the control of the buccal CPG. In addition, GABA produced a direct inhibition of neuron B19. Both effects were observed when the buccal ganglia were studied in isolation from the rest of the central nervous system, suggesting local interactions with GABA receptors of buccal neurons. Furthermore, these two actions of GABA were found to be pharmacologically distinguishable. The direct hyperpolarization of neuron B19 was mimicked by muscimol, but not baclofen, and involved an increased chloride conductance, which was blocked by picrotoxin.Baclofen duplicated CPG activation by GABA. Picrotoxin had no effect on GABA- or baclofen-induced PMA.These results demonstrate that the Helisoma buccal ganglia have two GABA receptor types which resemble, pharmacologically, mammalian GABAA and GABAB receptors, and that GABA plays a key role in feeding patterned motor activity in Helisoma.Abbreviations CPG central pattern generator - GABA gammaamino butyric acid - HPLC high performance liquid chromatography - IPSP inhibitory postsynaptic potential - PMA patterned motor activity - SLRT supralateral radular tensor muscle  相似文献   

11.
Previous studies carried out in our laboratory have shown that myofibers formed by fusion of muscle satellite cells from donors with spinal muscular atrophy (SMA) type I or II undergo a characteristic degeneration 1.5-3 weeks after innervation with rat embryonic spinal cord explants. The only cells responsible for degeneration of innervated cocultures are SMA muscle satellite cells. In order to study the kinetics of nerve and muscle cell degeneration in nerve-muscle cocultures implicating SMA muscle cells, we attempted to simplify the nervous component of the coculture and identify the nerve cell types necessary for a successful innervation. We demonstrate here that motoneurons alone were unable to innervate myotubes. However, when three cell types (motoneurons, sensory neurons, and Schwann cells) were added onto a reconstituted muscular component consisting of cloned muscle satellite cells and cloned muscular fibroblasts, myotubes contracted, indicating that functional neuromuscular junctions were formed. We concluded that the three cell types were required for a successful innervation. Moreover, we studied the effects of culture medium conditioned by different combinations of nerve cells on innervation; we observed that physical contacts among sensory neurons, motoneurons, and myotubes are required for a successful innervation; in contrast Schwann cells can be replaced by a Schwann-cell-conditioned medium, indicating that these cells produce a putative soluble "innervation-promoting factor." Obviously such a reconstituted system does not reflect the in vivo situation but it allows the formation of functional motor synapses and could therefore allow us to elucidate neuromuscular disease pathogenesis, especially that of spinal muscular atrophy.  相似文献   

12.
To understand the segmental reiteration of an insect, the serially arranged neuromuscular system of the locust, Schistocerca gregaria, is studied. The ventral muscle system is chosen and its motoneuronal supply is described in the thoracic and pregenital segments. In general, repetitively arranged, similar sets of motoneurons (MNs) supply the ventral muscles of these segments. Common criteria of both topology of muscles and neural features (nerve branches and motoneuronal supply) suggest possible homonomies of the ventral longitudinal muscles and ventral diaphragm of the thoracic and abdominal system. Based on a segment-by-segment analysis, muscle topology and motor supply match, in most instances. There are, however, cases where such a parallelism is missing. In a particular cases the supply of apparently homonomous muscles shifts from one set of MNs to another. In another case, putatively equivalent MNs of different ganglia supply morphologically different muscle structures in the adult animal. Therefore, it becomes apparent that muscles and their supplying MNs are, in principle, independent elements which might be subjected autonomously to ontogenetic processes. As a consequence, in the search for the basic segmental Bauplan depending on homonomous structures, muscles and MNs have to be regarded as separate entities.Abbreviations A1–6 abdominal ganglion (or neuromere A1–3) - AS1–6 abdominal segment 1–6 - DUM doisal unpaired median - M muscle (number) - MN motoneuron - N nerve (number) - PMN paramedian nerve - T1–3 pro-, meso-, metathoracic ganglion - TS1–3 pro-, meso-, metathoracic segment - VD ventral diaphragm - VM ventral muscle  相似文献   

13.
Summary The highly mobile cyclopic compound eye of Daphnia magna is rotated by six muscles arranged as three bilateral pairs. The three muscles on each side of the head share a common origin on the carapace and insert dorsally, laterally and ventrally on the eye. The dorsal and ventral muscles are each composed of two muscle fibers and the lateral muscle is composed of from two to five fibers, with three the most common number. Individual muscle fibers are spindle-shaped mononucleated cells with organized bundles of myofilaments. Lateral eye-muscle fibers are thinner than those of the other muscles but are otherwise similar in ultrastructure. Two motor neurons innervate each dorsal and each ventral muscle and one motor neuron innervates each lateral muscle. The cell bodies of the motor neurons are situated dorsally in the supraesophageal ganglion (SEG) and are ipsilateral to the muscles they innervate. The dendritic fields of the dorsal-muscle motor neurons are ipsilateral to their cell bodies; those of the ventral-muscle motor neurons are bilateral though predominantly contralateral. The central projections of the lateral-muscle motor neurons are unknown. In the dorsal and ventral muscles one motor axon synapses principally with one muscle fiber; in each lateral muscle the single motor axon branches to, and forms synapses with, all the fibers. The neuromuscular junctions, characterized by pre- and postsynaptic densities and clear vesicles, are similar in all the eye muscles.  相似文献   

14.
The anatomy and innervation of the lateral external muscle and sensory cells located in the ventral region of pregenital abdominal segments were examined at the larval and adult stages ofTenebrio molitor (Coleoptera). All seven muscles located in this region degenerate during the pupal stage, whilst only the lateral external median (lem) appears in the adult. Backfillings of the motor nerve innervating this muscle reveal that, at both larval and adult stages, it is innervated by ten neurons. Intracellular records from the muscle fibres show that two neurons are inhibitory, and at least five are excitatory. There are also two unpaired neurons. A variety of sensory organs are located in the ventral region of the larvae, whilst only campaniform sensilla are found in the adult. At both stages, the innervation pattern of the sensory nerve branches is very similar. Also, the central projections of the sensory cells occupy similar neuropilar areas. Finally, prolonged intracellular records from the lem muscle revealed that, at the larval stage, it participates only in segmental or intersegmental reflexes, whilst in the adult it has a primary expiratory role in ventilation. The results show that extensive changes occur in the number of muscles located in the ventral region of the pregenital abdominal segments, as well as in the arrangement and number of sensory neurons, in the structure of the exoskeleton, and even in the central nervous system. In contrast, only minor changes are observed in the sensory and motor nerve branches, in the sensory projections, and in the number and the location of the motoneurons innervating the lateral external median muscle. Correspondence to: G. Theophilidis  相似文献   

15.
Summary The temperature-sensitive mutation shibire (shi) in Drosophila melanogaster is thought to disrupt membrane recycling processes, including endocytotic vesicle pinch-off. This mutation can perturb the development of nerves and muscles of the adult escape response. After exposure to a heat pulse (6 h at 30° C) at 20 h of pupal development, adults have abnormal flight muscles. Wing depressor muscles (DLM) are reduced in number from the normal six to one or two fibers, and are composed of enlarged fibers that appear to represent fiber fusion; large spaces devoid of muscle fibers suggested fiber deletion. The normal five motor axons are present in the peripheral nerve PDMN near the ganglion. However, while some motor axons pass dorsally to the extant fibers, other motor axons lacking end targets pass into an abnormal posterior branch and terminate in a neuroma, i.e., a tangle of axons and glia without muscle target tissue. Hemisynapses are common in axons of the proximal PDMN and within the neuroma, but they are rarely seen in control (no heat pulse) shi or wild-type flies. All surviving muscle fibers are innervated; no muscle tissue exists without innervation. Fibrillar fine structure and neuromuscular synapses appear normal. Fused fibers have dual innervation, suggesting correct and specific matching of target tissue and motor axons. Motor axons lacking target fibers do not innervate erroneous targets but instead terminate in the neuroma. These results suggest developmental constraints and rules, which may contribute to the orderly, stereotyped development in the normal flight system. The nature of the anomalies inducible in the flight motor system in shi flies implies that membrane recycling events at about 20 h of pupal development are critical to the formation of the normal adult nerve-muscle pattern for DLM flight muscles.  相似文献   

16.
1.  Muscles of the posterior cardiac plate (pcp) and pyloric regions in the stomach of Squilla are innervated by motoneurons located in the stomatogastric ganglion (STG). The pattern of innervation of various muscles in these regions was determined using electrophysiological methods.
2.  The dilator muscles are singly or doubly innervated by the pyloric dilator neurons (PDs). The constrictor muscles are singly or doubly innervated by the pcp neuron (PCP) or the pyloric neurons (PYs). These muscles are sequentially activated by pcp-pyloric motor outputs produced by the PCP, PY, and PD. All muscles can generate an all-or-nothing spike.
3.  The constrictor muscles generate spikes followed by depolarizing afterpotentials which lead to a sustained depolarization with repetitive spikes. The PYs can entrain rhythmic spike discharges of these muscles.
4.  The spike of muscles remains unchanged by bath application of tetrodotoxin (10-7 M) to suppress neuronal impulse activities, but it is blocked by Mn2+ (10 mM).
5.  The constrictor muscle isolated from the STG displays an endogenous property of spontaneous membrane oscillation that produces a train of spikes. Brief depolarizing or hyperpolarizing stimuli can trigger or terminate an oscillatory potential, respectively, and reset the subsequent rhythm.
6.  The possible functions of myogenicity under the control of discharges of motoneurons in the pyloric constrictor neuromuscular system are discussed.
  相似文献   

17.
Persistent leg motoneurons of the moth Manduca sexta were investigated in larval and adult animals to compare their dendritic structures, intrinsic electrical properties and pattern of target innervation. The study focused on two identified motoneurons of the prothoracic leg. Despite the complete remodeling of leg muscles, the motoneurons innervated pretarsal flexor muscles in both larval and adult legs. Similarly, although the central dendrites regress and regrow, the branching pattern was similar with the exception of a prominent midline branch that was not present in the adult stage. The intrinsic electrical properties of the motoneurons differed between larval and adult stages. Larval motoneurons had significantly higher membrane input resistances and more depolarized resting membrane potentials than did motoneurons in pharate adults or adults. In all stages, one motoneuron had a low maximal firing frequency, whereas the second motoneuron, which innervated the other half of the muscle, had a high maximum firing frequency. Although the two motoneurons continued to innervate the same halves of the target muscle, their relative effects on muscular contraction were reversed during metamorphosis along with concomitant changes in intrinsic properties. Pretarsal flexor motoneurons in pharate adults (just prior to emergence) displayed properties similar to those in emerged adults. Accepted: 8 January 2000  相似文献   

18.
Knowledge of the neuroanatomy of the sucking pump of Manduca sexta (Sphingidae) is valuable for studies of olfactory learning, pattern generators, and postembryonic modification of motor circuitry. The pump comprises a cibarial valve, a buccal pump, and an esophageal sphincter valve. Cibarial opener and closer muscles control the cibarial valve. Six pairs of dilator muscles and a compressor muscle operate the buccal pump. The cibarial opener and one pair of buccal dilator muscles are innervated by paired neurons in the tritocerebrum, and the cibarial opener has double, bilateral innervation. Their tritocerebral innervation indicates that these muscles evolved from labro-clypeal muscles. The remaining paired buccal dilator muscles each are innervated by an unpaired motor neuron in the frontal ganglion. These motor neurons project bilaterally through the frontal connectives to dendritic arborizations in the tritocerebrum. These projections also have a series of dendritic-like arborizations in the connectives. The cibarial closer and buccal compressor muscles are also innervated by motor neurons in the frontal ganglion, but only the closer muscle neuron projects bilaterally to the tritocerebrum. The innervation of the pump muscles indicates that they are associated with the stomodaeum, and, therefore, the buccal pump evolved from the anterior stomodaeum rather than from the cibarium.  相似文献   

19.
The distribution of intrinsic enteric neurons and extrinsic autonomic and sensory neurons in the large intestine of the toad, Bufo marinus, was examined using immunohistochemistry and glyoxylic acid-induced fluoresecence. Three populations of extrinsic nerves were found: unipolar neurons with morphology and location typical of parasympathetic postganglionic neurons containing immunoreactivity to galanin, somatostatin and 5-hydroxytryptamine were present in longitudinally running nerve trunks in the posterior large intestine and projected to the muscle layers and myenteric plexus throughout the large intestine. Sympathetic adrenergic fibres supplied a dense innervation to the circular muscle layer, myenteric plexus and blood vessels. Axons containing colocalized calcitonin gene-related peptide immunoractivity and substance P immunoreactivity distributed to all layers of the large intestine and are thought to be axons of primary afferent neurons. Five populations of enteric neurons were found. These contained immunoreactivity to vasoactive intestinal peptide, which distributed to all layers of the large intestine; galanin/vasoactive intestinal peptide, which projected to the submucosa and mucosa; calcitonin gene-related peptide/vasoactive intestinal peptide, which supplied the circular muscle, submucosa and mucosa; galanin, which projected to the submucosa and mucosa; and enkephalin, which supplied the circular muscle layer.  相似文献   

20.
Developmental aspects of the neuromuscular system in mouse embryos chronically paralyzed in utero with tetrodotoxin (TTX) between embryonic days 14 and 18 were studied using biochemical and histological methods. The number of lumbar spinal motoneurons (MNs) was higher in inactive embryos than in controls suggesting a decreased motoneuron cell death. In association with the increase in MN number, choline acetyltransferase activity was significantly increased in both spinal cord and peripheral synaptic sites. Paralyzed muscles exhibited a decreased number of mature myofibers and the nuclei were centrally located. Creatine kinase activity was greatly decreased and total acetylcholine receptor and receptor cluster numbers per myofiber were significantly increased in paralyzed muscles. A similar pattern of changes occurs in the neuromuscular system of the mutant mouse muscular dysgenesis (mdg). However, in contrast to the mdg mutant, tetrodotoxin-treated muscles were similar to controls in their innervation pattern, in the ultrastructural aspects of the excitation–contraction coupling system (i.e., dyads and triads) and in the extent of dihydropyridine binding. Thus, neuromuscular inactivity is not sufficient to impair the pattern of muscle innervation or the appearance of either the triadic junctions or dihydropyridine receptors. These results indicate that alterations of dihydropyridine binding sites and triads in muscular dysgenesis cannot be accounted for by inactivity but rather must reflect a more primary defect involving the structural gene(s) regulating the development of one or more aspects of muscle differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号