首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The culure of Staph. aureus in the exponential growth phase contained 14-18 mg/g of dry orthophosphate biomass and 18-22 mg/g of dry acid insoluble polyphosphate biomass. The extracellular extract of the culture had a phosphohydrolase activity with respect to high molecular polyphosphates, tripolyphosphate and pyrophosphate. Penicillin and bacitracin which inhibited the biosynthesis of the cell wall had no effect on the content of polyphosphates and the phosphohydrolase activity of Staph. aureus. Heliomycin which inhibited the biosynthesis of RNA increased the content of polyphosphates by 1.5 times and decreased the content of ATP by 30 per cent in the cells of Staph. aureus.  相似文献   

2.
The effect of different levels of salt, sodium nitrite, polyphosphate and various sugars on growth, pigment production, protease activity and culture pH caused by Monascus purpureus was studied in broth medium and ground meat. The addition of sodium chloride (> 50.0 g l(-1)) and polyphosphate (> 3.0g l(-1)) to broth medium decreased mycelial growth, pigment production and protease activity of M. purpureus, whereas low concentrations of sodium nitrite (< 0.2 g l(-1)) promoted mycelial growth and pigment production. When the basal medium and ground meat contained salt, 150.0 g l(-1), the mould growth was stopped. The medium with fructose as carbon source proved to be the most suitable for mycelium growth and pigment production, with maltose and glucose being the second most productive. When sucrose and lactose were used as carbon sources, mycelium growth and pigment production were inhibited but the protease activity increased significantly. The mould showed more tolerance to salt and polyphosphate in ground meat than in broth medium and used sucrose as a carbon source as well as glucose for growth and pigment production in the meat mixture.  相似文献   

3.
Cell extracts, serially obtained from Candida utilis grown in continuous (synchrony) culture under phosphate limitation during an 8-h cycle and examined by NMR spectroscopy, revealed changes in polyphosphate content during the cycle period: other phosphorus containing components showed relatively little change. Initially zero, the polyphosphate content increased rapidly to a maximum after 30 min that coincided with exhaustion of phosphate from the culture, and then decreased slowly back to zero at the end of the cycle. The results suggest that polyphosphate, usually considered to function as a reserve material, actively participates during the cell cycle.  相似文献   

4.
A novel method that relies on the decoupling of the energy production and biosynthesis processes was used to characterise the maintenance, cell lysis and growth processes of Nitrosomonas sp. A Nitrosomonas culture was enriched in a sequencing batch reactor (SBR) with ammonium as the sole energy source. Fluorescent in situ hybridization (FISH) showed that Nitrosomonas bound to the NEU probe constituted 82% of the bacterial population, while no other known ammonium or nitrite oxidizing bacteria were detected. Batch tests were carried out under conditions that both ammonium and CO2 were in excess, and in the absence of one of these two substrates. The oxygen uptake rate and nitrite production rate were measured during these batch tests. The results obtained from these batch tests, along with the SBR performance data, allowed the determination of the maintenance coefficient and the in situ cell lysis rate, as well as the maximum specific growth rate of the Nitrosomonas culture. It is shown that, during normal growth, the Nitrosomonas culture spends approximately 65% of the energy generated for maintenance. The maintenance coefficient was determined to be 0.14-0.16 mgN mgCOD(biomass)(-1)h(-1), and was shown to be independent of the specific growth rate. The in situ lysis rate and the maximum specific growth rate of the Nitrosomonas culture were determined to be 0.26 and 1.0 day(-1) (0.043 h(-1)), respectively, under aerobic conditions at 30 degrees C and pH 7.  相似文献   

5.
The proposed pH buffering and phosphagenic functions of polyphosphate were investigated by subjecting chemostat-cultivated Saccharomyces cerevisiae to alkalinization (NaOH addition) and anaerobiosis. The subsequent changes in intracellular phosphate-containing species were observed in situ by nuclear magnetic resonance (NMR) spectroscopy by using the NMR cultivator we developed. For the alkalinization experiments, changes in catabolite secretion were also measured in parallel experiments. Additionally, a range of potential neutralization capacity was investigated: a dilute culture and concentrated cultures with low or high polyphosphate content. The concentrated cultures displayed increased cytosolic pH and rapid polyphosphate degradation to small chains. The pH changes and extent of polyphosphate degradation depended inversely on initial polyphosphate content. The dilute culture restored extracellular pH rapidly and secreted acetate. The concentrated culture with low polyphosphate reserves also secreted acetate. In contrast to the alkalinization-induced polyphosphate dynamics, anaerobiosis resulted in the complete hydrolysis of polyphosphate to P(i), as opposed to small chains, and reduced cytosolic pH. The results and calculations suggest that the bulk of NMR-observable polyphosphate (vacuolar) degradation to short polymers conceivably contributes to neutralizing added alkalinity. In other circumstances, such as anaerobiosis, degradation serves other functions, such as phosphorylation potential regulation.  相似文献   

6.
Phosphorus metabolism and growth of M. aeruginosa were studied under three different conditions of diel fluctuation in redox potential. Redox potential in the culture increased in light and decreased in dark in all treatments except one, when cysteine was added in darkness. Total phosphorus content in M. aeruginosa decreased in darkness and increased in light during exponential growth but increased continuously in the stationary phase. Conversely, polyphosphate (PolyP) accumulated in darkness but was lost in the light. Low redox potential in darkness promoted PolyP accumulation. Polyglucose and soluble orthophosphate may provide energy and phosphorus, respectively, for PolyP synthesis. PolyP was important to M. aeruginosa survival during poor growth conditions. If the redox potential difference in the dark/light cycle was large, M. aeruginosa initially grew faster, but soon lost viability.  相似文献   

7.
Summary Techniques are described in this paper for growing Nitrosomonas europea in batch and in continuous culture with apparatus constructed from readily available laboratory materials.The methods employed in batch culture have enabled the collection of cells concentrated in small volumes. Nitrosomonas europaea has been grown successfully in continuous culture and yields of 23 g wet weight were obtained, an average of 0.16 g/l with a flow rate of 300 ml/h over twenty days. Results show that high levels of nitrite do not materially affect the growth of the bacterium. The continuous culture equipment has also been used to grow Azotobacter vinelandii and Thiobacillus concretivorus.  相似文献   

8.
Polyhydroxyalkanoate (PHA), a biodegradable plastic, can be produced from excess activated sludge by utilizing intracellular glycogen and polyphosphate as energy sources under growth-limiting conditions. Activated sludge of 2%, 6%, and 8% polyphosphate with similar glycogen content of 33% was investigated for batch PHA production by varying the pH values from 6 to 8. Acetate applied at 1000 mg COD/L was almost exhausted within 80 min of anaerobic stage. The remaining glycogen in the sludge was higher at a lower pH because of less energy used for acetate uptake. Highest PHA content of 51% was obtained from sludge with an 8% polyphosphate content at pH 8. PHA production occurred rapidly within the first 20 min, with a productivity rate of 2.19 g PHA/L-h. The results in this study indicate that PHA production by using activated sludge is a promising alternative to a typical pure culture approach.  相似文献   

9.
Abstract Both nitrapyrin and 6-chloropicolinic acid inhibited nitrite production when added to stationary-phase and exponentially growing cells of Nitrosomonas europaea at a concentration of 2.17 μM. Nitrapyrin inhibited growth immediately, but there was a lag before inhibition by chloropicolinic acid added to growing cells, and induction of a lag phase when this was added to stationary phase cells. There was no effect on the subsequent specific oxidation rate.  相似文献   

10.
Nitrate production by Nitrosomonas europaea in inorganic liquid medium containing ammonium was limited by reduction in pH. In the presence of montmorillonite and vermiculite, expanding clays with high cation-exchange-capacity (CEC), nitrite yield was increased, ammonia oxidation continued at pH values below those which inhibited growth in the absence of clays and growth was biphasic. The first phase was similar to that in the absence of clays, while the second was characterized by a lower rate of nitrite production. Illite, a non-expanding clay with low CEC, had no significant effect on ammonia oxidation, while oxidation of ammonia-treated vermiculite (ATV) occurred with no significant change in the pH of the medium. ATV, montmorillonite and vermiculite, but not illite, protected cells from inhibition by nitrapyrin at concentrations inhibitory to cells growing in suspended culture. This protection was maintained in ATV homo-ionic to Al3+, but montmorillonite made homo-ionic to Al3+ did not provide protection from inhibition. Attachment of cells to clays with high CEC is therefore advantageous in providing exchange at the clay surface of NH+4 and H+ produced by ammonia oxidation, in reducing pH toxicity, and in protecting cells from inhibition.  相似文献   

11.
 Triacontanol, a long-chain primary alcohol was found to be an effective growth regulator in the micropropagation of balm, Melissa officinalis. In both the multiplication and the rooting phase, concentrations of 2, 5, 10 and 20 μg triacontanol per liter were applied. After 4 weeks of culture, the fresh weight of shoots was measured in the multiplication phase and root formation, photosynthetic activity, chlorophyll content and the fresh and dry weights of shoots were analyzed in the root induction phase. In the multiplication phase, 5 μg/l triacontanol was found to be the optimal concentration, while in the rooting phase 2 μg/l was the most effective. Triacontanol increased the number and length of roots, and it enhanced shoot growth, fresh weight, and the chlorophyll content, but it had no effect on the dry weight and the photosynthetic activity of the plants. Results of our work demonstrate that triacontanol can be applied as an effective growth regulator in the tissue culture of balm. Received: 3 December 1997 / Revised: 24 February 1998 / Accepted: 26 February 1999  相似文献   

12.
The cells of Acetobacter xylinum decreased phosphate concentration in the medium from 5 to 2.5 or 0.3 mM during incubation in the presence of Mg2+ and glucose, or Mg2+ and casamino acids, respectively. The prevalence of orthophosphate or polyphosphate in the biomass of A. xylinum depends on the medium composition. Under phosphate uptake in the presence of glucose, the content of orthophosphate in the biomass changed little, while that of polyphosphate increased fourfold. At incubation with casamino acids, the content of orthophosphate increased 15 times, while that of polyphosphate increased only 2.5 times. Some part of orthophosphate in this case seems to be bound with the cell surface. The polyphosphate chain length in the cells of A. xylinim increases under phosphate uptake. This increase is more noticeable in the presence of glucose. Casamino acids can be replaced by α-ketoglutaric acid in combination with (NH4)2SO4, or arginine, or glutamine, the catabolism of which results in formation of NH4 + and α-ketoglutarate.  相似文献   

13.
Oxidation of high-strength ammonium wastewater can lead to exceptionally high nitrite concentrations; therefore, the effect of high nitrite concentration (> 400 mM) was studied using an ammonium-oxidizing enrichment culture in a batch reactor. Ammonium was fed to the reactor in portions of 40-150 mM until ammonium oxidation rates decreased and finally stopped. Activity was restored by replacing half of the medium, while biomass was retained by a membrane. The ammonium-oxidizing population obtained was able to oxidize ammonium at nitrite concentrations of up to 500 mM. The maximum specific oxidation activity of the culture in batch test was about 0.040 mmol O(2)g(-1)proteinmin(-1) and the K(s) value was 1.5 mM ammonium. In these tests, half of the maximum oxidation activity was still present at a concentration of 600 mM nitrite and approximately 10% residual activity could still be measured at 1200 mM nitrite (pH 7.4), or as a free nitrous acid (FNA) concentration of 6.6 mg l(-1). Additional experiments showed that the inhibition was caused by nitrite and not by the high sodium chloride concentration of the medium. The added ammonium was mainly converted into nitrite and no nitrite oxidation was observed. In addition, gaseous nitrogen compounds were detected and mass balance calculations revealed a nitrogen loss of approximately 20% using this system. Phylogenetic analyses of 16S rRNA and ammonium monooxygenase (amoA) genes of the obtained enrichment culture showed that ammonium-oxidizing bacteria of the Nitrosomonas europaea/Nitrosococcus mobilis cluster dominated the two clone libraries. Approximately 25% of the 16S rRNA clones showed a similarity of 92% to Deinococcus-like organisms. Specific fluorescence in situ hybridization (FISH) probes confirmed that these microbes comprised 10-20% of the microbial community in the enrichment. The Deinococcus-like organisms were located around the Nitrosomonas clusters, but their role in the community is currently unresolved.  相似文献   

14.
The vacuoles of logarithmic and stationary stage cells were compared by 31P-NMR with regard to pH, orthophosphate (Pi) content and average size of polyphosphate. The vacuoles of stationary cells had lower pH higher Pi content, and polyphosphates of longer average chain lenght, although total polyphosphate content was about the same as in logarithmic cells. The lower vacuolar pH in stationary cells was the major cause of a larger cytoplasmic-vacuolar pH gradient. Addition of NH4Cl, (NH4)2SO4, methylamine or amantadine at pH 8 to cells in either stage caused an icnrease in both cytoplasmic and vacuolar pH, with little or no change in the cytoplasmic-vacuolar pH gradient. However, the administration of ammonium salts to the cells at pH 8.0 resulted in rapid hydrolysis of the intravacuolar polyphosphate to tripolyphosphate and Pi, with attendant redistribution of Pi between the vacuolar and cytoplasmic compartments.  相似文献   

15.
The vacuoles of logarithmic and stationary stage cells were compared by 31P-NMR with regard to pH, orthophosphate (Pi) content and average size of polyphosphate. The vacuoles of stationary cells had lower pH higher Pi content, and polyphosphates of longer average chain lenght, although total polyphosphate content was about the same as in logarithmic cells. The lower vacuolar pH in stationary cells was the major cause of a larger cytoplasmic-vacuolar pH gradient. Addition of NH4Cl, (NH4)2SO4, methylamine or amantadine at pH 8 to cells in either stage caused an icnrease in both cytoplasmic and vacuolar pH, with little or no change in the cytoplasmic-vacuolar pH gradient. However, the administration of ammonium salts to the cells at pH 8.0 resulted in rapid hydrolysis of the intravacuolar polyphosphate to tripolyphosphate and Pi, with attendant redistribution of Pi between the vacuolar and cytoplasmic compartments.  相似文献   

16.
Cyanobacterium Anabaena flos-aquae was cultivated in photobioreactors for production of intracellular gas vesicles (GVs), as potential oxygen microcarriers. Natural flotation of the buoyant culture was investigated as a potential means of cell harvesting, because filtration and centrifugation tended to destroy the vesicles. Best flotation was found with actively growing culture and when conducted in the dark. The flotation-related cell properties, including the specific GV content, vesicle-collapsed filament density, and intracellular carbohydrate content, were measured to understand the phenomena. During the batch culture, the specific GV content remained relatively constant at 370 microL/(g dry cells) but the filament density (ranging 1.02 to 1.08 g/cm3) showed a decrease-then-increase profile. The increase began when the growth slowed down because of the reduced light availability at high cell concentrations. The dark flotation was studied with both actively growing (mu approximately 0.2 day-1) and stationary-phase cultures. The specific GV content of the stationary-phase culture remained relatively constant while that of the growing culture increased slightly. The intracellular carbohydrate content of the growing culture decreased much faster and more significantly, from 57 to 10 mg/(g dry cells) in 相似文献   

17.
NADP-glutamate dehydrogenase (NADP-GDH) and NAD-glutamate dehydrogenase (NAD-GDH) activities from Bipolaris maydis race T (ATCC 36180) were determined by measuring the change in absorbance at 340 nm of either reduced NADP or NAD in a reaction mixture of NH4C1, -ketoglutarate and a cell free extract of the fungus. NADP-GDH activity was high at 48 h, but low at 72 and 96 h when the fungus was incubated on a reciprocal shaker at 28 °C in a mineral salts medium containing 2 g/l glucose and 4 g/l Lasparagine. In contrast, in these cultures NAD-GDH activity was low at 48 h, but high at 72 and 96 h. At 72 and 96 h glucose was not detected in the culture medium. In addition, levels of ammonium and pH increased from 0.0 moles/ml and pH 5.8 at 48 h to 10.6 moles/ml and pH 7.2 at 72 h, and to 23.0 moles/ml and pH 8.4 at 96 h. Fungal mycelia were transferred after 48 h of incubation on media containing 2 g/l glucose and 4 g/l L-asparagine to fresh media containing 0, 2 or 5 g/l glucose with and without 4 g/l L-asparagine. Twenty-four h after transfer to fresh media containing 5 g/l glucose with L-asparagine or 2 or 5 g/l glucose without L-asparagine, NADP-GDH activity was high and NAD-GDH activity was low. Glucose was detected in the culture medium, ammonium was not detected and the pH remained unchanged or decreased. In contrast, 24 h after transfer to fresh media with 0 or 2 g/l glucose with L-asparagine and on media lacking glucose or L-asparagine, NADP-GDH activity was low and NAD-GDH activity was high. Glucose was not detected in the culture medium, ammonium levels were high and the pH increased. Thus, accumulation of ammonium and pH increases accompanying depletion of glucose in a L-asparagine medium could be related to a change in the capacity of B. maydis race T to assimilate and produce ammonium via pathways involving glutamate dehydrogenases.  相似文献   

18.
The phosphorus contents of acid-soluble pools, lipid, ribonucleic acid, and acid-insoluble polyphosphate were lowered in Synechococcus in proportion to the reduction in growth rate in phosphate-limited but not in nitrate-limited continuous culture. Phosphorus in these cell fractions was lost proportionately during progressive phosphate starvation of batch cultures. Acid-insoluble polyphosphate was always present in all cultural conditions to about 10% of total cell phosphorus and did not turn over during balanced exponential growth. Extensive polyphosphate formation occurred transiently when phosphate was given to cells which had been phosphate limited. This material was broken down after 8 h even in the presence of excess external orthophosphate, and its phosphorus was transferred into other cell fractions, notably ribonucleic acid. Phosphate uptake kinetics indicated an invariant apparent K(m) of about 0.5 muM, but V(max) was 40 to 50 times greater in cells from phosphate-limited cultures than in cells from nitrate-limited or balanced batch cultures. Over 90% of the phosphate taken up within the first 30 s at 15 degrees C was recovered as orthophosphate. The uptake process is highly specific, since neither phosphate entry nor growth was affected by a 100-fold excess of arsenate. The activity of polyphosphate synthetase in cell extracts increased at least 20-fold during phosphate starvation or in phosphate-restricted growth, but polyphosphatase activity was little changed by different growth conditions. The findings suggest that derepression of the phosphate transport and polyphosphate-synthesizing systems as well as alkaline phosphatase occurs in phosphate shortage, but that the breakdown of polyphosphate in this organism is regulated by modulation of existing enzyme activity.  相似文献   

19.
Evidence for the occurrence of polyphosphates having apparent chain-lengths ranging from less than 10 to over 5000 orthophosphate units has been found in adult brain as well as in a number of other mammalian tissues which have been examined. There appears to be three times as much polyphosphate in rat brain as there is in rat liver. Adult rat brain appears to contain at least 15 μg of phosphorus as polyphosphate per g of fresh tissue. In addition, neural polyphosphate is extremely labile to catabolic degradation after death whereas hepatic polyphosphate is relatively more stable. The nature of this inorganic polymer was elucidated through use of the technique of 31P nuclear magnetic resonance spectroscopy. Further structural evidence was obtained by application of the isotopic dilution technique to 32P-labelled neural polyphosphate mixed with an abiotically prepared inorganic polyphosphate. The conditions and rates of hydrolysis of the biological polyphosphate and a non-biological polyphosphate were comparable.  相似文献   

20.
The intracellular levels of orthophosphate (P1), pyrophosphate (PP1) and short- and long-chain polyphosphate (Poly P) were measured in Leishmania major promastigotes incubated in a phosphate-free medium. In the absence of exogenous substrate, the levels of both P1 and PP1 increased during a 1 h incubation. The increase in both P1 and PP1 was prevented when glucose was present, but glycerol prevented the rise in P1 only. A rise in P1 and PP1 was also seen in cells incubated in the absence of exogenous substrate under anaerobic conditions. This was reversed upon addition of glucose plus oxygen. Polyphosphate, here shown to be present in L. major , was measured by means of a polyphosphate glucokinase assay. Short-chain Poly P content did not differ between cells incubated for 1 h in the absence of exogenous substrate or in the presence of glucose or glycerol. Long-chain Poly P content, however, was lower in cells incubated without glucose than in cells incubated with glucose and was also lower in cells incubated for 1 h with glycerol as compared with freshly washed cells. Up to 61% of the increase in P1 and PP1 that occurred in promastigotes incubated in the absence of exogenous substrate could have arisen from the concomitant decrease in long-chain Poly P.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号