首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The tricarboxylate transporter has been purified in reconstitutively active form from rat liver mitochondria. The transporter was extracted from mitoplasts with Triton X-114 in the presence of cardiolipin and citrate and was then purified by sequential chromatography on hydroxylapatite, Matrex Gel Orange A, Matrex Gel Blue B, and Affi-Gel 501. Analysis of the purified material via sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated the presence of one main protein band with an apparent molecular mass of 32.5 kDa. Upon incorporation into phospholipid vesicles, the purified transporter catalyzed a 1,2,3-benzenetricarboxylate-sensitive citrate/citrate exchange with a specific transport activity of 3240 nmol/4 min/mg of protein. This value was enhanced 831-fold with respect to the starting material. Substrate competition studies indicated that the reconstituted transport could be substantially inhibited by isocitrate, malate, and phosphoenolpyruvate, but not by alpha-ketoglutarate, succinate, malonate, pyruvate, or inorganic phosphate. Moreover, in addition to 1,2,3-benzenetricarboxylate, the reconstituted exchange was sensitive to the anion transport inhibitor n-butylmalonate but was insensitive to phenylsuccinate, alpha-cyano-4-hydroxycinnamate, and carboxyatractyloside. Finally, studies with covalent modifying agents indicated the purified transporter was inhibited by sulfhydryl reagents and by diethyl pyrocarbonate, 2,3-butanedione, phenylglyoxal, and pyridoxal 5-phosphate. In conclusion, these studies describe the first procedure to yield a highly purified tricarboxylate transport protein that both displays a high specific transport activity and can be obtained in quantities that readily enable further structural as well as functional studies. Based on its substrate specificity and inhibitor sensitivity, the purified 32.5-kDa protein appears to represent the complete tricarboxylate transport system found in rat liver mitochondria. Finally, new information is presented concerning the effect of covalent modifying reagents on the function of this transporter.  相似文献   

2.
A library of monoclonal antibodies directed against the proteins of the inner mitochondrial membrane was screened for antibodies that could bind to the glutamate/aspartate transporter of pea mitochondria and thereby inhibit its activity. One antibody, 2C7, had the property of inhibiting glutamate and aspartate-dependent oxaloacetate metabolism by pea mitochondria without affecting the metabolism of other substrates. The antibody specifically recognized a 21,000 dalton protein, which was tentatively identified as the glutamate/aspartate transporter. The antibody was used to follow the extraction of this protein by Triton X-114 and cardiolipin and the partial purification of the protein by centrifugation and chromatography on hydroxylapatite. The partially purified preparation was reconstituted into azolectin vesicles and shown to catalyze glutamate/glutamate and glutamate/aspartate exchange in an apparently nonelectrogenic manner. The antibody was shown to specifically bind to the glutamate/aspartate exchanger by its ability to inhibit this reconstituted exchange reaction.  相似文献   

3.
The tricarboxylate carrier from rat liver mitochondria was purified by chromatography on hydroxyapatite/celite and reconstituted in phospholipid vesicles by removing the detergent using hydrophobic chromatography on Amberlite. Optimal transport activity was obtained by using a Triton X-114/phospholipid ratio of 0.8, 6% cardiolipin and 24 passages through a single Amberlite column. In the reconstituted system the incorporated tricarboxylate carrier catalyzed a first-order reaction of citrate/citrate or citrate/malate exchange. The activation energy of the exchange reaction was 70.1 kJ/mol. The rate of the exchange had a pH optimum between 7 and 8. The half-saturation constant was 0.13 mM for citrate and 0.76 mM for malate. All these properties were similar to those described for the tricarboxylate transport system in intact mitochondria. In proteoliposomes the maximum exchange rate at 25 degrees C reached 2000 mumols/min per g protein. This value was independent of the type of substrate present at the external or internal space of the liposomes (citrate or malate).  相似文献   

4.
Mitochondria isolated from pea leaves possess a glycine transporter that is capable of moving glycine from the cytosol into the matrix, the site of glycine decar?ylase. The carrier was inhibited by mersalyl, p-chloromercuribenzoate, and the glycine analogues, glycine hydroxamate and aminoacetonitrile. Glycine uptake was dependent on the transmembrane pH gradient and was inhibited by uncouplers and electron transport inhibitors. Glycine transport was not, however, inhibited by the glycine decar?ylase inhibitor, arsenite. This transporter is responsible for the movement of glycine into the mitochondria and provides an important step in photorespiration.  相似文献   

5.
The tricarboxylate carrier from rat liver mitochondria has been purified and reconstituted into phospholipid vesicles. Its activity has been characterized by both a radioactive citrate uptake assay and a coupled enzymatic assay. A Km of 40 microM and a Vmax of 1.56 mumol x min-1 x mg-1 have been determined for the carrier. Cholesterol levels of between 5-10% of total lipid content are shown to cause a decrease in carrier activity.  相似文献   

6.
The mitochondrial dicarboxylate carrier has been substantially purified from rat liver mitoplasts by extraction with Triton X-114 in the presence of cardiolipin followed by chromatography on hydroxylapatite. Upon incorporation of the hydroxylapatite eluate into phospholipid vesicles, an n-butylmalonate-sensitive malonate/malate exchange has been demonstrated. This exchange activity is enhanced 226-fold relative to the starting material (i.e. detergent-extracted mitoplasts). Silver-stained sodium dodecyl sulfate-polyacrylamide gradient gels verify the high purity of this fraction relative to the starting material. Nonetheless, the banding pattern indicates that several protein species are still present. As isolated, the dicarboxylate transporter is rather unstable but can be stabilized either by the addition of 10% ethylene glycol and subsequent storage at -20 degrees C or by incorporation into phospholipid vesicles in the presence of malate followed by freezing in liquid nitrogen. Such proteoliposomes catalyze a [14C]malonate uptake which is characterized by a first order rate constant of 1.02 min-1 and a t 1/2 of 41 s. This uptake can be inhibited by dicarboxylates (e.g. succinate, malate, unlabeled malonate) but not by either alpha-ketoglutarate or by tricarboxylates (e.g. citrate, threo-Ds-isocitrate). Furthermore, the reconstituted malonate transport is dependent on internal malate and can be inhibited by n-butylmalonate, mersalyl, p-chloromercuribenzoate, and Pi, but not by N-ethylmaleimide. It is concluded that this highly purified fraction contains a reconstitutively active dicarboxylate transporter which, based on its substrate specificity and inhibitor sensitivity, appears to be identical to the native dicarboxylate transport system found in intact rat liver mitochondria.  相似文献   

7.
Isolation and characterization of ribosomes from yeast mitochondria   总被引:5,自引:0,他引:5  
Vignais PV  Huet J  André J 《FEBS letters》1969,3(3):177-181
  相似文献   

8.
The tricarboxylate carrier from rat liver mitochondria was solubilized with Triton X-100 and purified by chromatography on hydroxyapatite and celite. SDS-gel electrophoresis of the purified fraction showed a single polypeptide band with an apparent Mr of 30,000. When reconstituted into liposomes, the tricarboxylate transport protein catalyzed a 1,2,3-benzenetricarboxylate-sensitive citrate/citrate exchange. We obtained a 1070-fold purification with respect to the mitochondrial extract, the recovery was 22% and the protein yield 0.02%. The properties of the reconstituted carrier, i.e., requirement for a counteranion, substrate specificity and inhibitor sensitivity, were similar to those of the tricarboxylate transport system as characterized in intact mitochondria.  相似文献   

9.
10.
Endogenous dephosphorylation of the light-harvesting chlorophyll-protein complex of photosystem II in pea (Pisum sativum, L. cv Progress 9) thylakoids drives the state 2 to state 1 transition; the responsible enzyme is a thylakoid-bound, fluoride-sensitive phosphatase with a pH optimum of 8.0 (Bennett J [1980] Eur J Biochem 104: 85-89). An enzyme with these characteristics was isolated from well-washed thylakoids. Its molecular mass was estimated at 51.5 kD, and this monomer was catalytically active, although the activity was labile. The active site could be labeled with orthophosphate at pH 5.0. High levels of alkaline phosphatase activity were obtained with the assay substrate, 4-methylumbelliferyl phosphate (350 micromoles per minute per milligram purified enzyme). The isolated enzyme functioned as a phosphoprotein phosphatase toward phosphorylated histone III-S and phosphorylated, photosystem II-enriched particles from pea, with typical activities in the range of 200 to 600 picomoles per minute per milligram enzyme. These activities all had a pH optimum of 8.0 and were fluoride sensitive. The enzyme required magnesium ion for maximal activity but was not dependent on this ion. Evidence supporting a putative function for this phosphatase in dephosphorylation of thylakoid proteins came from the inhibition of this process by a polyclonal antibody preparation raised against the partially purified enzyme.  相似文献   

11.
12.
A partially purified soluble ATPase (ATP phosphohydrolase, EC 3.6.1.3) from pea cotyledon mitochondria was characterized. Inhibition patterns with azide, NaF, and cold, and a stimulation by 2,4-dinitrophenol were typical of F1-ATPases from mammalian mitochondria. The enzyme hydrolysed GTP, ITP, and ATP, but not CTP, UTP, ADP, or IDP. ATPase and ITPase activities were strongly inhibited by ADP and to a lesser extent by IDP. Distinctive properties of the pea mitochondrial enzyme were activation by high concentrations of CaCl2 and stimulation by NaCl.  相似文献   

13.
Glycine decarboxylase has been successfully solubilized from pea (Pisum sativum) leaf mitochondria as an acetone powder. The enzyme was dependent on added dithiothreitol and pyridoxal phosphate for maximal activity. The enzyme preparation could catalyze the exchange of CO2 into the carboxyl carbon of glycine, the reverse of the glycine decarboxylase reaction by converting serine, NH4+, and CO2 into glycine, and 14CO2 release from [1-14C]glycine. The half-maximal concentrations for the glycine-bicarbonate exchange reaction were 1.7 millimolar glycine, 16 millimolar NaH14CO2, and 0.006 millimolar pyridoxal phosphate. The enzyme (glycine-bicarbonate exchange reaction) was active in the assay conditions for 1 hour and could be stored for over 1 month. The enzymic mechanism appeared similar to that reported for the enzyme from animals and bacteria but some quantitative differences were noted. These included the tenacity of binding to the mitochondrial membrane, the concentration of pyridoxal phosphate needed for maximum activity, the requirement for dithiothreitol for maximum activity, and the total amount of activity present. Now that this enzyme has been solubilized, a more detailed understanding of this important step in photorespiration should be possible.  相似文献   

14.
A highly active phosphate transporter was extracted with octylglucoside from bovine heart submitochondrial particles that were first partially depleted of other membrane components. It was then partially purified by ammonium sulfate fractionation. After reconstitution of the transporter into liposomes prepared with a crude mixture of soybean phospholipids, the Pi/OH exchange, but not the Pi/Pi exchange, was stimulated three- to fourfold by valinomycin and nigericin in the presence of K+. Both Pi/OH and Pi/Pi exchange activities were sensitive to mercurials and other SH reagents. The rutamycin-sensitive ATPase complex from mitochondria was reconstituted together with the phosphate transporter and adenine nucleotide transporter into liposomes. After inhibition of externally located ATPase, the hydrolysis of ATP was sensitive to atractyloside and mersalyl.  相似文献   

15.
Procedures have been developed for the purification of a nearly homogeneous, highly active phosphate transport system from rat liver mitochondria in either a two-subunit (alpha, beta) or a single subunit (beta) form. Significantly, both forms display a similar high magnitude N-ethylmaleimide (NEM)-sensitive Pi/Pi exchange activity upon incorporation into phospholipid vesicles. The transport system is extracted from hypotonically shocked mitoplasts with Triton X-114 and purified in the presence of cardiolipin by sequential chromatography on hydroxylapatite, DEAE-Sepharose CL-6B, and Affi-Gel 501. Depending on the conditions used to elute the transporter from Affi-Gel 501, preparations are obtained which, when analyzed by high resolution sodium dodecyl sulfate-polyacrylamide gradient gel electrophoresis, consist of either a single 33-kDa protein (beta) or a 33-kDa (beta) plus a 35-kDa (alpha) component. In preparations yielding the latter result, both bands display a nearly equivalent Coomassie staining intensity. Furthermore, after alkylation with NEM, the two protein bands co-migrate. Fluorography indicates that the coalesced band contains [3H]NEM. Upon reconstitution of the purified Pi carrier into liposomes, direct measurement of both the initial transport rate and the amount of protein that actually incorporates into the phospholipid vesicles yields a specific transport activity of 22.6 mumol/min/mg of protein. The exchange is characterized by a first order rate constant of 0.85 min-1, a t1/2 of 49 s, and is inhibited by sulfhydryl reagents (i.e., NEM, p-chloromercuribenzoate, and mersalyl). It is also substantially inhibited by diethyl pyrocarbonate, N-acetylimidazole, phenylglyoxal, and 5-dimethylaminoaphthalene-1-sulfonyl chloride. In addition to providing a simple, rapid method for preparing the NEM-sensitive phosphate carrier in nearly homogeneous form, these studies provide new information about the catalytically active species of the carrier, its kinetic properties, and its inhibitor sensitivities.  相似文献   

16.
Mitochondrial NADH dehydrogenase has been purified from rat liver mitochondria by protamine sulfate fractionation and DEAE-Sephadex chromatography. The enzyme is water-soluble and its molecular weight has been estimated at 400 +/- 50 kilodaltons. NADH-ferricyanide reductase and NADH cytochrome c reductase activities have been studied and the kinetic parameters have been determined. Both substrates, NADH and the electron acceptor (ferricyanide or cytochrome c) have an inhibitor effect on the reductase activities and the kinetic mechanism of the enzyme is ping-pong bi-bi.  相似文献   

17.
Isolation and characterization of a DNA primase from human mitochondria   总被引:4,自引:0,他引:4  
A family of enzymatic activities isolated from human mitochondria is capable of initiating DNA replication on single-stranded templates. The principal enzymes include at least a primase and DNA polymerase gamma and require that rNTPs as well as dNTPs be present in the reaction mixture. Poly(dC) and poly(dT), as well as M13 phage DNA, are excellent templates for the primase activity. A single-stranded DNA containing the cloned origin of mitochondrial light-strand synthesis can be a more efficient template than M13 phage DNA alone. Primase and DNA polymerase activities were separated from each other by sedimentation in a glycerol density gradient. Using M13 phage DNA as template, these mitochondrial enzymes synthesize RNA primers that are 9 to 12 nucleotides in size and are covalently linked to nascent DNA. The formation of primers appears to be the rate-limiting step in the replication process. Replication of M13 DNA is sensitive to N-ethylmaleimide and dideoxynucleoside triphosphates, but insensitive to rifampicin, alpha-amanitin, and aphidicolin.  相似文献   

18.
Mucopolysaccharides were isolated from rat liver mitochondria which had been labeled with 35S-sulfate. They were prepared from trichloroacetic acid (TCA)-insoluble and -soluble fractions of lipid-free mitochondria. These fractions were digested with pronase exhaustively, and the mucopolysaccharides were recovered in the void volume fractions of gel filtration of the pronase digests on Sephadex G-50, monitored by radioactivity determination. Identification of these mucopolysaccharides was based on electrophoresis on cellulose acetate film using three different media, enzymatic and chemical degradations specific to each type of mucopolysaccharide, using chondroitinases, heparitinase, and nitrous acid. From the TCA-insoluble fraction, chondroitin sulfate A and dermatan sulfate were obtained in a ratio of about 1 : 2, based on 35S-radioactivities, whereas the TCA-soluble fraction yielded chondroitin sulfates A/C, dermatan sulfate, and heparan sulfate in a ratio of about 1 : 3 : 12. The total amount of mitochondrial mucopolysaccharides was about 3 mg/g protein, distributed between the TCA-insoluble and -soluble fractions in a ratio of about 1 : 3.  相似文献   

19.
Isolation and characterization of a pea catalase cDNA   总被引:5,自引:0,他引:5  
  相似文献   

20.
The P, H, and T proteins of the glycine cleavage system have been purified separately from pea leaf mitochondria and demonstrate molecular weights of 98,000, 15,500, and 45,000, respectively, by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The molecular weight of P protein by gel filtration was 210,000, indicating that this enzyme has a native homodimer conformation. Reconstitution assays containing purified P, H, and T proteins and yeast lipoamide dehydrogenase catalyze the oxidation of glycine and demonstrate a strict dependence on pyridoxal phosphate, tetrahydrofolate, NAD+, and dithiothreitol. The released CO2, methylamine-H protein intermediate, and methylenetetrahydrofolate are produced in stoichiometric amounts from glycine during the cleavage reaction. H protein acts as co-substrate with glycine during the decarboxylation reaction, demonstrating an apparent Km value of 2.2 microM. P and H protein alone jointly catalyze the glycine carboxyl-14 CO2 exchange reaction in the presence of pyridoxal phosphate and dithiothreitol. L protein of the glycine cleavage system was immunopurified using monoclonal antibodies. Antigenic and molecular weight similarities of the L protein with the lipoamide dehydrogenase component of the pyruvate dehydrogenase complex were shown suggesting the possibility of common isomers of lipoamide dehydrogenase for the two enzyme complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号