首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Many ectotherms effectively reduce their exposure to low or high environmental temperatures using behavioral thermoregulation. In terrestrial ectotherms, thermoregulatory strategies range from accurate thermoregulation to thermoconformity according to the costs and limits of thermoregulation, while in aquatic taxa the quantification of behavioral thermoregulation have received limited attention. We examined thermoregulation in two sympatric newt species, Ichthyosaura alpestris and Lissotriton vulgaris, exposed to elevated water temperatures under semi-natural conditions. According to a recent theory, we predicted that species for which elevated water temperatures pose a lower thermal quality habitat, would thermoregulate more effectively than species in thermally benign conditions. In the laboratory thermal gradient, L. vulgaris maintained higher body temperatures than I. alpestris. Semi-natural thermal conditions provided better thermal quality of habitat for L. vulgaris than for I. alpestris. Thermoregulatory indices indicated that I. alpestris actively thermoregulated its body temperature, whereas L. vulgaris remained passive to the thermal heterogeneity of aquatic environment. In the face of elevated water temperatures, sympatric newt species employed disparate thermoregulatory strategies according to the species-specific quality of the thermal habitat. Both strategies reduced newt exposure to suboptimal water temperatures with the same accuracy but with or without the costs of thermoregulation. The quantification of behavioral thermoregulation proves to be an important conceptual and methodological tool for thermal ecology studies not only in terrestrial but also in aquatic ectotherms.  相似文献   

2.
The adaptive significance of colour polymorphisms in animals has received extensive scientific attention. In snakes, a generally accepted hypothesis is that melanistic individuals enjoy thermal advantages compared to normal coloured individuals. Elaphe quadrivirgata on Yakushima Island exhibits a distinct melanistic/striped colour dimorphism. To test this hypothesis, the thermal biology of free‐ranging E. quadrivirgata was investigated using temperature‐sensitive radio transmitters. The thermal quality of habitats was also evaluated using physical models of the snake. In addition, the species' set‐point range (Tset) was estimated using a laboratory experiment. In July, thermal environments appear to be benign because snakes were able to maintain their body temperature (Tb) within Tset from the midday to evening by using average thermal habitats. By contrast, later months of the year were severe in thermoregulation, and snakes had difficulty maintaining their Tb within Tset by using average thermal habitats. There were no significant intermorph differences in thermoregulation indices in any months, whereas slight differences were detected in hourly comparisons. Most of these comparisons indicated active and precise thermoregulation (with respect to Tset) in striped individuals by using thermally favourable but rare microhabitats such as forest gap. Thus, the obtained values do not support the prediction that melanistic individuals are precise thermoregulators. Yet, melanistic individuals do modify their thermoregulation strategy with respect to the available thermal environments in contrast to striped individuals. Together with the fact that body heating is slower in striped individuals than in melanistic individuals under experimental conditions, it is concluded that melanistic individuals have the potential to enjoy thermal advantages but that this might be of no practical use in terms of Tb in the wild because of the greater thermoregulatory efforts of striped individuals, and because melanistic individuals may use forest gap rarely due to conspicuousness to visually orientated predators under the exposed habitat. © 2007 The Linnean Society of London, Biological Journal of the Linnean Society, 2007, 92 , 309–322.  相似文献   

3.
The overall biology of ectotherms is strongly affected by the thermal quality of the environment. The particular conditions prevailing on islands have a strong effect on numerous features of animal life. In this study we compared mainland and island populations of the lizard Lacerta trilineata and hypothesized that insularity would affect the thermoregulatory strategy. Continental habitats were of lower thermal quality, experiencing more intense fluctuations and had higher values of operative temperatures. Nevertheless mainland lizards selected for higher body temperatures in the lab and showed more effective thermoregulation during summer than their island peers. Lizards achieved similar body temperatures in the field in both types of habitat, underlining the importance of predation as a potential factor to mainland lizards that failed to reach their higher thermal preferences. Both island and mainland populations of L. trilineata have been adapted to their thermal environment, supporting the labile view on the evolution of thermal physiology for this species.  相似文献   

4.
Croak BM  Pike DA  Webb JK  Shine R 《PloS one》2012,7(6):e37982
Organisms selecting retreat sites may evaluate not only the quality of the specific shelter, but also the proximity of that site to resources in the surrounding area. Distinguishing between habitat selection at these two spatial scales is complicated by co-variation among microhabitat factors (i.e., the attributes of individual retreat sites often correlate with their proximity to landscape features). Disentangling this co-variation may facilitate the restoration or conservation of threatened systems. To experimentally examine the role of landscape attributes in determining retreat-site quality for saxicolous ectotherms, we deployed 198 identical artificial rocks in open (sun-exposed) sites on sandstone outcrops in southeastern Australia, and recorded faunal usage of those retreat sites over the next 29 months. Several landscape-scale attributes were associated with occupancy of experimental rocks, but different features were important for different species. For example, endangered broad-headed snakes (Hoplocephalus bungaroides) preferred retreat sites close to cliff edges, flat rock spiders (Hemicloea major) preferred small outcrops, and velvet geckos (Oedura lesueurii) preferred rocks close to the cliff edge with higher-than-average sun exposure. Standardized retreat sites can provide robust experimental data on the effects of landscape-scale attributes on retreat site selection, revealing interspecific divergences among sympatric taxa that use similar habitats.  相似文献   

5.
Fire‐induced changes in canopy openness may affect sunlight penetration to the forest floor, and thus the operative temperatures available to terrestrial ectotherms. We examined thermal regimes for two types of ectotherms: diurnally active species that utilize sun‐exposed patches to regulate their body temperatures, and nocturnally active species that depend upon solar radiation striking the rocks under which they shelter. We measured canopy openness, shrub height, radiation transmission and operative environmental temperatures in the open and inside reptile retreat‐sites, at 24 study sites in eucalypt forests in two regions (Gosford and Yengo) in south‐eastern Australia. All sites were last burnt in 2000–2001, but had experienced different fire frequencies (1–4 fires over the previous 37 years). In Gosford, higher fire frequencies reduced canopy openness and radiation transmission at ground and shrub level, and thus reduced environmental temperatures and the thermal quality of reptile habitats. Our modelling based on thermal preferenda of an endangered snake species (the broad‐headed snake Hoplocephalus bungaroides) suggests that increased fire frequency at Gosford halved the amount of time an animal could spend within its preferred (set‐point) range, regardless of whether it thermoregulated beneath rocks or basked out in the open. At Yengo, however, fire frequency did not affect the thermal quality of reptile habitats. Thus, the effects of fire frequency on forest structure and the thermal environment at ground level differed between adjacent areas, and relatively small changes in canopy openness translated into major effects on thermoregulatory opportunities for reptiles. Although fire is a useful management tool for creating open habitats, we need to understand more about the effects of fire frequency on vegetation structure and thermal environment before we can use fire to manage habitats for reptiles.  相似文献   

6.
  • 1.The thermal coadaptation hypothesis predicts that (1) ectotherms experiencing a narrow range of body temperatures in the wild will evolve to perform well over a narrow range of body temperatures and that (2) the optimal temperature for performance will be equal to the preferred body temperature of the species.
  • 2.We tested the predictions of the thermal coadaptation hypothesis with black rat snakes (Elaphe obsoleta) and northern water snakes (Nerodia sipedon) because black rat snakes experience lower and more variable body temperatures than northern water snakes at our study site.
  • 3.We measured swimming speed, tongue-flicking speed, and striking speed in black rat snakes, and swimming speed and tongue-flicking speed in northern water snakes.
  • 4.Adult water snakes generally had narrower performance breadths and higher optimum performance temperatures than adult black rat snakes.
  • 5.Performance breadths were the same for swimming, tongue flicking, and striking within adult black rat snakes, but performance optima for these behaviours differed significantly. Performance breadths differed and performance optima were the same for swimming and tongue flicking within adult northern water snakes.
  • 6.The relative swimming performance of neonates of the two species was similar in breadth to that of adults, but the thermal optimum for neonate black rat snakes was higher than that of adults.
  • 7.Overall, our results provided support for the thermal coadaptation hypothesis.
  相似文献   

7.
Density‐dependent habitat selection has been used to predict and explain patterns of abundance of species between habitats. Thermal quality, a density‐independent component of habitat suitability, is often the most important factor for habitat selection in ectotherms which comprise the vast majority of animal species. Ectotherms may reach high densities such that individual fitness is reduced in a habitat due to increased competition for finite resources. Therefore, density and thermal quality may present conflicting information about which habitat will provide the highest fitness reward and ectotherm habitat selection may be density‐independent. Using ornate tree lizards Urosaurus ornatus at 10 sites each straddling two adjacent habitats (wash and upland), we tested the hypothesis that habitat selection is density‐dependent even when thermal quality differs between habitats. We first tested that fitness proxies decline with density in each habitat, indicating density‐dependent effects on habitat suitability. We also confirmed that the two habitats vary in suitability (quantified by food abundance and thermal quality). Next, we tested the predictions that habitat selection depends on density with isodar analyses and that fitness proxies are equal in the two habitats within a site. We found that monthly survival rates decreased with density, and that the wash habitat had more prey and higher thermal quality than the upland habitat. Lizards preferred the habitat with more food and higher thermal quality, lizard densities in the two habitats were positively correlated, and fitness proxies of lizards did not differ between habitats. These patterns are consistent with density‐dependent habitat selection, despite differences in thermal quality between habitats. We expect that density‐dependent habitat selection is widespread in terrestrial ectotherms when densities are high and temperatures are close to their optimal performance range. In areas where thermal quality is low, however, we expect that depletable resources, such as food, become less limiting because assimilating resources is more difficult.  相似文献   

8.
In ectotherms, the main behavioural option for thermoregulation is the adjustment of daily and seasonal activity to the thermal quality of the environment. While active, ectotherms thermoregulate by shuttling in between thermally differing microhabitat patches. Here, we focused on the question of whether other behavioural or physiological processes could force ectotherms to maintain activity during thermally unfavourable periods, when accurate thermoregulation is impossible. Using laboratory experiments and field data we compared the thermoregulation of male adders ( Vipera berus ) between two periods in spring when (1) only males and (2) also females and juveniles had terminated their winter hibernation. We found that males thermoregulated actively both in the lab and in the field. Accurate thermoregulation was only possible during the second period because of the low thermal quality of the environment. Male adders maintained a lower mean body temperature in the field than in the laboratory within both periods, and in addition their body temperature during the first period was on average 4 °C lower than during the second period. The thermal qualities of the natural basking sites showed a similar pattern. We discuss the results in the context of a potential trade-off between spermiogenesis and thermoregulation, where the benefits of early spermiogenesis coupled with inaccurate thermoregulation are higher than the associated costs. The results support the contention that the earlier spring emergence of the male compared with female adders is explainable by natural selection favouring early initiation of spermiogenesis, and hence sex differences in phenology.  © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 92 , 19–27.  相似文献   

9.
Established indexes of thermoregulation in ectotherms compare body temperatures of real animals with a null distribution of operative temperatures from a physical or mathematical model with the same size, shape, and color as the actual animal but without mass. These indexes, however, do not account for thermal inertia or the effects of inertia when animals move through thermally heterogeneous environments. Some recent models have incorporated body mass, to account for thermal inertia and the physiological control of warming and cooling rates seen in most reptiles, and other models have incorporated movement through the environment, but none includes all pertinent variables explaining body temperature. We present a new technique for calculating the distribution of body temperatures available to ectotherms that have thermal inertia, random movements, and different rates of warming and cooling. The approach uses a biophysical model of heat exchange in ectotherms and a model of random interaction with thermal environments over the course of a day to create a null distribution of body temperatures that can be used with conventional thermoregulation indexes. This new technique provides an unbiased method for evaluating thermoregulation in large ectotherms that store heat while moving through complex environments, but it can also generate null models for ectotherms of all sizes.  相似文献   

10.
Understanding avian nest predation: why ornithologists should study snakes   总被引:2,自引:0,他引:2  
Despite the overriding importance of nest predation for most birds, our understanding of the relationship between birds and their nest predators has been developed largely without reliable information on the identity of the predators. Miniature video cameras placed at nests are changing that situation and in six of eight recent studies of New World passerine birds, snakes were the most important nest predators. Several areas of research stand to gain important insights from understanding more about the snakes that prey on birds' nests. Birds nesting in fragmented habitats often experience increased nest predation. Snakes could be attracted to habitat edges because they are thermally superior habitats, coincidentally increasing predation, or snakes could be attracted directly by greater prey abundance in edges. Birds might reduce predation risk from snakes by nesting in locations inaccessible to snakes or in locations that are thermally inhospitable to snakes, although potentially at some cost to themselves or their young. Nesting birds should also modify their behavior to reduce exposure to visually orienting snakes. Ornithologists incorporating snakes into their ecological or conservation research need to be aware of practical considerations, including sampling difficulties and logistical challenges associated with quantifying snake habitat use.  相似文献   

11.
The ability for effective, accurate and precise thermoregulation is of paramount importance for ectotherms. Sympatric lizards often partition their niche and select different microhabitats. These microhabitats, however, usually differ in their thermal conditions and lizards have to adapt their thermoregulation behavior accordingly. Here, we evaluated the impact of habitat partitioning on the thermal biology of three syntopic, congeneric lacertids (Podarcis peloponnesiacus, P. tauricus and P. muralis) from central Peloponnese, Greece. We assessed thermoregulation effectiveness (E) using the three standard thermal parameters: body (Tb), operative (Te) and preferred (Tpref) temperatures. We hypothesized that the microhabitats used by each species would differ in thermal quality. We also predicted that all species would effectively thermoregulate, as they inhabit a thermally challenging mountain habitat. As expected, the partition of the habitat had an effect on the thermoregulation of lizards since microhabitats had different thermal qualities. All three species were effective and accurate thermoregulators but one of them achieved smaller E values as a result of the lower Tb in the field. This discrepancy could be attributed to the cooler (but more benign) thermal microhabitats that this species occupies.  相似文献   

12.
During spring and summer, we studied the thermal ecology of two populations of the Balearic lizard, Podarcis lilfordi, from two coastal islets of Menorca (Balearic Islands, Spain): Aire and Colom. We calculated the accuracy of thermoregulation, that is, the extent to which body temperatures are close to species' thermal optima, the thermal quality of the habitat as the proximity of operative temperatures to thermal optima and effectiveness of thermoregulation, as the extent to which accuracy is higher than thermal quality of the habitat. We found that seasonality affects thermoregulation differently, depending on the lizard population. Those effects are consistent for all thermal parameters under study. The effects of seasonality were significantly stronger in Aire than in Colom islet. Many factors may be responsible for this different effect of seasonality, from differences on physiological traits to differences in the environmental conditions of the two islets, as their resource availability, predator pressure or habitat structure. Identifying the factors that boost or inhibit those seasonal changes would be important to understand thermoregulation in lizards. Slight changes on two similar populations can lead to great differences in thermal ecology of conspecific ectotherms.  相似文献   

13.
Most reptiles maintain their body temperatures within normal functional ranges through behavioral thermoregulation. Under some circumstances, thermoregulation may be a time-consuming activity, and thermoregulatory needs may impose significant constraints on the activities of ectotherms. A necessary (but not sufficient) condition for demonstrating thermoregulation is a difference between observed body temperature distributions and available operative temperature distributions. We examined operative and body temperature distributions of the timber rattlesnake (Crotalus horridus) for evidence of thermoregulation. Specifically, we compared the distribution of available operative temperatures in the environment to snake body temperatures during August and September. Operative temperatures were measured using 48 physical models that were randomly deployed in the environment and connected to a Campbell CR-21X data logger. Body temperatures (n=1,803) were recorded from 12 radiotagged snakes using temperature-sensitive telemetry. Separate randomization tests were conducted for each hour of day within each month. Actual body temperature distributions differed significantly from operative temperature distributions at most time points considered. Thus, C. horridus exhibits a necessary (but not sufficient) condition for demonstrating thermoregulation. However, unlike some desert ectotherms, we found no compelling evidence for thermal constraints on surface activity. Randomization may prove to be a powerful technique for drawing inferences about thermoregulation without reliance on studies of laboratory thermal preference.  相似文献   

14.
1. The thermal adaptation hypothesis proposes that because thermoregulation involves a high metabolic cost, thermal limits of organisms must be locally adapted to temperatures experienced in their environments. There is evidence that tolerance to high temperatures decreases in insects inhabiting colder habitats and microclimates. However, it is not clear if thermal limits of ectotherms with contrasting temporal regimes, such as diurnal and nocturnal insects, are also adapted to temperatures associated with their circadian activities. 2. This study explores differences in heat tolerance among diurnal and nocturnal ant species in four ecosystems in Mexico: tropical montane, tropical rainforest, subtropical dry forests, and high‐elevation semi‐desert. 3. The critical thermal maximum (CTmax), i.e. the temperature at which ants lost motor control, was estimated for diurnal and nocturnal species. CTmax for 19 diurnal and 12 nocturnal ant species distributed among 45 populations was also estimated. 4. Semi‐desert and subtropical dry forest ants displayed higher tolerances to high temperatures than did ants in tropical rainforest. The lowest tolerance to high temperatures was recorded in tropical montane forest ants. In general, among all habitats, the CTmax of nocturnal ants was lower than that of diurnal ants. 5. An increase in nocturnal temperatures, combined with lower tolerance to high temperatures, may represent a substantial challenge for nocturnal ectotherms in a warming world.  相似文献   

15.
  1. Most studies on how rising temperatures will impact terrestrial ectotherms have focused on single populations or multiple sympatric species. Addressing the thermal and energetic implications of climatic variation on multiple allopatric populations of a species will help us better understand how a species may be impacted by altered climates.
  2. We used eight years of thermal and behavioral data collected from four populations of Pacific rattlesnakes (Crotalus oreganus) living in climatically distinct habitat types (inland and coastal) to determine the field‐active and laboratory‐preferred body temperatures, thermoregulatory metrics, and maintenance energetic requirements of snakes from each population.
  3. Physical models showed that thermal quality was best at coastal sites, but inland snakes thermoregulated more accurately despite being in more thermally constrained environments. Projected increases of 1 and 2°C in ambient temperature result in an increase in overall thermal quality at both coastal and inland sites.
  4. Population differences in modeled standard metabolic rate estimates were driven by body size and not field‐active body temperature, with inland snakes requiring 1.6× more food annually than coastal snakes.
  5. All snakes thermoregulated with high accuracy, suggesting that small increases in ambient temperature are unlikely to impact the maintenance energetic requirements of individual snakes and that some species of large‐bodied reptiles may be robust to modest thermal perturbations under conservative climate change predictions.
​  相似文献   

16.
Predicting the effects of global climate change on species interactions has remained difficult because there is a spatiotemporal mismatch between regional climate models and microclimates experienced by organisms. We evaluated resource selection in a predominant ectothermic predator using a modeling approach that permitted us to assess the importance of habitat structure and local real‐time air temperatures within the same modeling framework. We radio‐tracked 53 western ratsnakes (Pantherophis obsoletus) from 2010 to 2013 in central Missouri, USA, at study sites where this species has previously been linked to prey population demographics. We used Bayesian discrete choice models within an information theoretic framework to evaluate the seasonal effects of fine‐scale vegetation structure and thermal conditions on ratsnake resource selection. Ratsnake resource selection was influenced most by canopy cover, canopy cover heterogeneity, understory cover, and air temperature heterogeneity. Ratsnakes generally preferred habitats with greater canopy heterogeneity early in the active season, and greater temperature heterogeneity later in the season. This seasonal shift potentially reflects differences in resource requirements and thermoregulation behavior. Predicted patterns of space use indicate that ratsnakes preferentially selected open habitats in spring and early summer and forest–field edges throughout the active season. Our results show that downscaled temperature models can be used to enhance our understanding of animal resource selection at scales that can be addressed by managers. We suggest that conservation of snakes or their prey in a changing climate will require consideration of fine‐scale interactions between local air temperatures and habitat structure.  相似文献   

17.
Komodo dragons from hatchlings (≈0.1 kg) to adults (≤80 kg) express the full magnitude of varanid species size distributions. We found that all size groups of dragons regulated a similar preferred body temperature by exploiting a heterogeneous thermal environment within savanna, forest and mangrove habitats. All dragons studied, regardless of size, were able to regulate a daytime active body temperature within the range 34–35.6 °C for 5.1–5.6 h/day. The index of effectiveness of thermoregulation (a numerical rating of thermoregulatory activity) was not different among size groups of dragons. However, the index of closeness of thermoregulation, which rates the variability of body temperature, suggests a greater precision for regulating a preferred body temperature for medium compared to small and large dragons. Reference copper cylinders simulating small, medium and large Komodo dragons heated and cooled at the same rate, whereas actual dragons of all size groups heated faster than they cooled. Larger dragons heated and cooled more slowly than smaller ones. The mean operative environmental temperatures of copper cylinders representing medium sized dragons were 42.5, 32.0 and 29.4° C for savannah, forest and mangrove habitats, respectively. The index for average thermal quality of a habitat as measured by the absolute difference between operative environmental temperature and the dragon’s thermal range suggests the forest habitat offers the highest thermal quality to dragons and the savannah the lowest. The percent of total daytime that the operative environmental temperature was within the central 50% of the body temperatures selected by dragons in a thermal gradient (Phillips, 1984) was 45%, 15%, and 9% for forest, mangrove and savannah, respectively. Forest habitat offers the most suitable thermal environment and provides the greatest number of hours with conditions falling within the dragon’s thermal activity zone.  相似文献   

18.
East African sunbirds (Nectariniidae) vary in the degree to which they use open habitats and forest habitats. Species that use open habitats may experience more extreme temperatures and greater exposure to solar radiation than those in forest habitats. Basal rates of metabolism, body temperature and thermal conductance were compared for open habitat- and forest-associated sunbirds from Kibale National Park, Uganda. Variation in basal rate of metabolism was associated with body mass, but there was no difference between forest and open habitat species. Variation in body temperature was not associated with body mass or habitat. Variation in thermal conductance was associated with body mass and habitat; open habitat species were characterized by significantly lower thermal conductances than forest species. Because reduced thermal conductance may decrease energy expenditure at low ambient temperatures and reduce exogenous heat gain at high ambient temperatures, this difference may optimize energy expenditure when temperatures are highly variable. This suggests a mechanism by which physiological characteristics may influence energetic consequences of habitat selection.  相似文献   

19.
Understanding the factors that may affect behavioural thermoregulation of endangered reptiles is important for their conservation because thermoregulation determines body temperatures and in turn physiological functions of these ectotherms. Here we measured seasonal variation in operative environmental temperature (Te), body temperature (Tb), and microhabitat use of endangered crocodile lizards (Shinisaurus crocodilurus) from a captive population, within open and shaded enclosures, to understand how they respond to thermally challenging environments. Te was higher in open enclosures than in shaded enclosures. The Tb of lizards differed between the open and shaded enclosures in summer and autumn, but not in spring. In summer, crocodile lizards stayed in the water to avoid overheating, whereas in autumn, crocodile lizards perched on branches seeking optimal thermal environments. Crocodile lizards showed higher thermoregulatory effectiveness in open enclosures (with low thermal quality) than in shaded enclosures. Our study suggests that the crocodile lizard is capable of behavioural thermoregulation via microhabitat selection, although overall, it is not an effective thermoregulator. Therefore, maintaining diverse thermal environments in natural habitats for behavioural thermoregulation is an essential measure to conserve this endangered species both in the field and captivity.  相似文献   

20.
The classic cost-benefit model of ectothermic thermoregulation compares energetic costs and benefits, providing a critical framework for understanding this process (Huey and Slatkin 1976 ). It considers the case where environmental temperature (T(e)) is less than the selected temperature of the organism (T(sel)), and it predicts that, to minimize increasing energetic costs of thermoregulation as habitat thermal quality declines, thermoregulatory effort should decrease until the lizard thermoconforms. We extended this model to include the case where T(e) exceeds T(sel), and we redefine costs and benefits in terms of fitness to include effects of body temperature (T(b)) on performance and survival. Our extended model predicts that lizards will increase thermoregulatory effort as habitat thermal quality declines, gaining the fitness benefits of optimal T(b) and maximizing the net benefit of activity. Further, to offset the disproportionately high fitness costs of high T(e) compared with low T(e), we predicted that lizards would thermoregulate more effectively at high values of T(e) than at low ones. We tested our predictions on three sympatric skink species (Carlia rostralis, Carlia rubrigularis, and Carlia storri) in hot savanna woodlands and found that thermoregulatory effort increased as thermal quality declined and that lizards thermoregulated most effectively at high values of T(e).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号