首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
gamma-Secretase is a multimeric membrane protein complex comprised of presenilin (PS), nicastrin (Nct), Aph-1, and Pen-2. It is a member of an atypical class of aspartic proteases that hydrolyzes peptide bonds within the membrane. During the biosynthetic process of the gamma-secretase complex, Nct and Aph-1 form a heterodimeric intermediate complex and bind to the C-terminal region of PS, serving as a stabilizing scaffold for the complex. Pen-2 is then recruited into this trimeric complex and triggers endoproteolysis of PS, conferring gamma-secretase activity. Although the Pen-2 accumulation depends on PS, the binding partner of Pen-2 within the gamma-secretase complex remains unknown. We reconstituted PS1 in Psen1/Psen2 deficient cells by expressing a series of PS1 mutants in which one of the N-terminal six transmembrane domains (TMDs) was swapped with those of CD4 (a type I transmembrane protein) or CLAC-P (a type II transmembrane protein). We report that the proximal two-thirds of TMD4 of PS1, including the conserved Trp-Asn-Phe sequence, are required for its interaction with Pen-2. Using a chimeric CD4 molecule harboring PS1 TMD4, we further demonstrate that the PS1 TMD4 bears a direct binding motif to Pen-2. Pen-2 may contribute to the activation of the gamma-secretase complex by directly binding to the TMD4 of PS1.  相似文献   

2.
Nicastrin (NCT) is a type I integral membrane protein that is one of the four essential components of the gamma-secretase complex, a protein assembly that catalyzes the intramembranous cleavage of the amyloid precursor protein and Notch. Other gamma-secretase components include presenilin-1 (PS1), APH-1, and PEN-2, all of which span the membrane multiple times. The mechanism by which NCT associates with the gamma-secretase complex and regulates its activity is unclear. To avoid the misfolding phenotype often associated with introducing deletions or mutations into heavily glycosylated and disulfide-bonded proteins such as NCT, we produced chimeras between human (hNCT) and Caenorhabditis elegans NCT (ceNCT). Although ceNCT did not associate with human gamma-secretase components, all of the ceNCT/hNCT chimeras interacted with gamma-secretase components from human, C. elegans, or both, indicating that they folded correctly. A region at the C-terminal end of hNCT, encompassing the last 50 residues of its ectodomain, the transmembrane domain, and the cytoplasmic domain was important for mediating interactions with human PS1, APH-1, and PEN-2. This finding is consistent with the fact that the bulk of the gamma-secretase complex proteins resides within the membrane, with relatively small extramembranous domains. Finally, hNCT associated with hAPH-1 in the absence of PS, consistent with NCT and APH-1 forming a subcomplex prior to association with PS1 and PEN-2 and indicating that the interactions between NCT with PS1 may be indirect or stabilized by the presence of APH-1.  相似文献   

3.
Gamma-secretase cleaves type I transmembrane proteins, including beta-amyloid precursor protein and Notch, and requires the formation of a protein complex comprised of presenilin, nicastrin, Aph-1, and Pen-2 for its activity. Aph-1 is implicated in the stabilization of this complex, although its precise mechanistic role remains unknown. Substitution of the first glycine within the transmembrane GXXXG motif of Aph-1 causes a loss-of-function phenotype in Caenorhabditis elegans. Here, using an untranslated region-targeted RNA interference/rescue strategy in Drosophila Schneider 2 cells, we show that Aph-1 contributes to the assembly of the gamma-secretase complex by multiple mechanisms involving intermolecular and intramolecular interactions depending on or independent of the conserved glycines. Aph-1 binds to nicastrin forming an early subcomplex independent of the conserved glycines within the endoplasmic reticulum. Certain mutations in the conserved GXXXG motif affect the interaction of the Aph-1.nicastrin subcomplex with presenilin that mediates trafficking of the presenilin.Aph-1.nicastrin tripartite complex to the Golgi. The same mutations decrease the stability of Aph-1 polypeptides themselves, possibly by affecting intramolecular associations through the transmembrane domains. Our data suggest that the proper assembly of the Aph-1.nicastrin subcomplex with presenilin is the prerequisite for the trafficking as well as the enzymatic activity of the gamma-secretase complex and that Aph-1 functions as a stabilizing scaffold in the assembly of this complex.  相似文献   

4.
5.
The presenilin/gamma-secretase complex, an unusual intramembrane aspartyl protease, plays an essential role in cellular signaling and membrane protein turnover. Its ability to liberate numerous intracellular signaling proteins from the membrane and also mediate the secretion of amyloid-beta protein (Abeta) has made modulation of gamma-secretase activity a therapeutic goal for cancer and Alzheimer disease. Although the proteolysis of the prototypical substrates Notch and beta-amyloid precursor protein (APP) has been intensely studied, the full spectrum of substrates and the determinants that make a transmembrane protein a substrate remain unclear. Using an unbiased approach to substrate identification, we surveyed the proteome of a human cell line for targets of gamma-secretase and found a relatively small population of new substrates, all of which are type I transmembrane proteins but have diverse biological roles. By comparing these substrates to type I proteins not regulated by gamma-secretase, we determined that besides a short ectodomain, gamma-secretase requires permissive transmembrane and cytoplasmic domains to bind and cleave its substrates. In addition, we provide evidence for at least two mechanisms that can target a substrate for gamma cleavage: one in which a substrate with a short ectodomain is directly cleaved independent of sheddase association, and a second where a substrate requires ectodomain shedding to instruct subsequent gamma-secretase processing. These findings expand our understanding of the mechanisms of substrate selection as well as the diverse cellular processes to which gamma-secretase contributes.  相似文献   

6.
Gamma-secretase is a multiprotein complex responsible for the intramembranous cleavage of the amyloid precursor protein and other type I transmembrane proteins. Mutations in Presenilin, the catalytic core of this complex, cause Alzheimer disease. Little is known about the structure of the protein and even less about the catalytic mechanism, which involves proteolytic cleavage in the hydrophobic environment of the cell membrane. It is basically unclear how water, needed to perform hydrolysis, is provided to this reaction. Presenilin transmembrane domains 6 and 7 seem critical in this regard, as each bears a critical aspartate contributing to catalytic activity. Current models imply that both aspartyl groups should closely oppose each other and have access to water. This is, however, still to be experimentally verified. Here, we have performed cysteine-scanning mutagenesis of both domains and have demonstrated that several of the introduced residues are exposed to water, providing experimental evidence for the existence of a water-filled cavity in the catalytic core of Presenilin. In addition, we have demonstrated that the two aspartates reside within this cavity and are opposed to each other in the native complex. We have also identified the conserved tyrosine 389 as a critical partner in the catalytic mechanism. Several additional amino acid substitutions affect differentially the processing of gamma-secretase substrates, implying that they contribute to enzyme specificity. Our data suggest the possibility that more selective gamma-secretase inhibitors could be designed.  相似文献   

7.
The gamma-secretase complex, consisting of presenilins (PS), nicastrin (NCT), APH-1, and PEN-2, catalyzes the intramembranous proteolysis of truncated beta-amyloid precursor protein (APP) and Notch derivatives to generate the APP intracellular domain (AICD) and Notch intracellular domain (NICD), respectively. To examine the intracellular sites in which active gamma-secretase resides, we expressed NCT variants harboring either an endoplasmic reticulum (ER) retention signal (NCT-ER) or a trans-Golgi network (TGN) targeting motif (NCT-TGN) along with PS1, APH-1, and PEN-2 and examined gamma-secretase activity in these settings. In cells expressing NCT-ER and the other components, PS1 fragments hyperaccumulated, but AICD levels were not elevated. On the other hand, upon coexpression of an ER-retained APP variant or a constitutionally active Notch mutant, NDeltaE, we observed enhanced production of AICD or NICD, respectively, in cells expressing NCT-ER. Moreover, we show that membranes from cells expressing NCT-ER, NCT-TGN, or NCT-WT contain identical levels of PS1 derivatives that can be photoaffinity cross-linked to a biotinylated, benzophenone-derivatized gamma-secretase inhibitor. Finally, our cell-free gamma-secretase assays revealed nearly equivalent gamma-secretase activities in cells expressing PS1, APH-1, PEN-2, and either NCT-WT or NCT-ER. Taken together, we interpret these findings as suggesting that active gamma-secretase complex is generated in the early compartments of the secretory pathway but that these complexes are transported to late compartments in which substrates are encountered and subsequently processed within respective transmembrane segments.  相似文献   

8.
Nicastrin functions as a gamma-secretase-substrate receptor   总被引:17,自引:0,他引:17  
Shah S  Lee SF  Tabuchi K  Hao YH  Yu C  LaPlant Q  Ball H  Dann CE  Südhof T  Yu G 《Cell》2005,122(3):435-447
gamma-secretase catalyzes the intramembrane cleavage of amyloid precursor protein (APP) and Notch after their extracellular domains are shed by site-specific proteolysis. Nicastrin is an essential glycoprotein component of the gamma-secretase complex but has no known function. We now show that the ectodomain of nicastrin binds the new amino terminus that is generated upon proteolysis of the extracellular APP and Notch domains, thereby recruiting the APP and Notch substrates into the gamma-secretase complex. Chemical- or antibody-mediated blocking of the free amino terminus, addition of purified nicastrin ectodomain, or mutations in the ectodomain markedly reduce the binding and cleavage of substrate by gamma-secretase. These results indicate that nicastrin is a receptor for the amino-terminal stubs that are generated by ectodomain shedding of type I transmembrane proteins. Our data are consistent with a model where nicastrin presents these substrates to gamma-secretase and thereby facilitates their cleavage via intramembrane proteolysis.  相似文献   

9.
Gamma-secretase mediates the final step, which generates Alzheimer's disease Abeta amyloid protein, by cleaving the transmembrane domain of the amyloid-beta protein precursor. Four gene products, presenilin, nicastrin, APH-1, and PEN-2, are required for gamma-secretase activity that is contained within a high molecular mass complex. To further characterize gamma-secretase, we probed membranes from human neuroblastoma SH-SY5Y cells with gamma-secretase inhibitor biotin derivatives of L-685,458, pepstatin A, and the difluoro alcohol 1-Bt. These inhibitor derivatives bound and precipitated PS1 fragments from membrane CHAPSO extracts. Analysis of PS1 complexes by blue native gel electrophoresis and western blotting indicated that the CHAPSO extracts contained complexes of approximately 900, 500, and 400 kDa. With this technique, derivatives of the three inhibitors were detected only in association with the 900 kDa species. Size-exclusion chromatography showed that 13% of PS1 immunoreactivity extracted with CHAPSO was comprised within a >or=900 kDa species with the remaining eluting in fractions of 669-250 kDa but that most enzymatic activity was associated with the 900 kDa fractions. After treatment with L-685,458 inhibitor, 49% PS1 immunoreactivity was eluted in the 900 kDa fraction, supporting evidence that the inhibitor stabilized this complex. Subcellular fractionation of SH-SY5Y cells indicated that the 900 kDa complex was formed as PS1 and NCT matured through the secretory pathway and that enzymatic activity correlated with complex maturation. From these observations, we propose a model for the structure of active gamma-secretase that would consist of dimerization of 400-500 kDa subunits and be consistent with the apparent molecular mass of the complex.  相似文献   

10.
Alzheimer's disease-associated beta-amyloid peptides (Abeta) are generated by the sequential proteolytic processing of amyloid precursor protein (APP) by beta- and gamma-secretases. There is growing evidence that cholesterol- and sphingolipid-rich membrane microdomains are involved in regulating trafficking and processing of APP. BACE1, the major beta-secretase in neurons is a palmitoylated transmembrane protein that resides in lipid rafts. A subset of APP is subject to amyloidogenic processing by BACE1 in lipid rafts, and this process depends on the integrity of lipid rafts. Here we describe the association of all four components of the gamma-secretase complex, namely presenilin 1 (PS1)-derived fragments, mature nicastrin, APH-1, and PEN-2, with cholesterol-rich detergent insoluble membrane (DIM) domains of non-neuronal cells and neurons that fulfill the criteria of lipid rafts. In PS1(-/-)/PS2(-/-) and NCT(-/-) fibroblasts, gamma-secretase components that still remain fail to become detergent-resistant, suggesting that raft association requires gamma-secretase complex assembly. Biochemical evidence shows that subunits of the gamma-secretase complex and three TGN/endosome-resident SNAREs cofractionate in sucrose density gradients, and show similar solubility or insolubility characteristics in distinct non-ionic and zwitterionic detergents, indicative of their co-residence in membrane microdomains with similar protein-lipid composition. This notion is confirmed using magnetic immunoisolation of PS1- or syntaxin 6-positive membrane patches from a mixture of membranes with similar buoyant densities following Lubrol WX extraction or sonication, and gradient centrifugation. These findings are consistent with the localization of gamma-secretase in lipid raft microdomains of post-Golgi and endosomes, organelles previously implicated in amyloidogenic processing of APP.  相似文献   

11.
Presenilins are the catalytic components of gamma-secretase, an intramembrane-cleaving protease whose substrates include beta-amyloid precursor protein (betaAPP) and the Notch receptors. These type I transmembrane proteins undergo two distinct presenilin-dependent cleavages within the transmembrane region, which result in the production of Abeta and APP intracellular domain (from betaAPP) and the Notch intracellular domain signaling peptide. Most cases of familial Alzheimer's disease are caused by presenilin mutations, which are scattered throughout the coding sequence. Although the underlying molecular mechanism is not yet known, the familial Alzheimer's disease mutations produce a shift in the ratio of the long and short forms of the Abeta peptide generated by the gamma-secretase. We and others have previously shown that presenilin homodimerizes and suggested that a presenilin dimer is at the catalytic core of gamma-secretase. Here, we demonstrate that presenilin transmembrane domains contribute to the formation of the dimer. In-frame substitution of the hydrophilic loop 1, located between transmembranes I and II, which modulates the interactions within the N-terminal fragment/N-terminal fragment dimer, abolishes both presenilinase and gamma-secretase activities. In addition, by reconstituting gamma-secretase activity from two catalytically inactive presenilin aspartic mutants, we provide evidence of an active diaspartyl group assembled at the interface between two presenilin monomers. Under our conditions, this catalytic group mediates the generation of APP intracellular domain and Abeta but not Notch intracellular domain, therefore suggesting that specific diaspartyl groups within the presenilin catalytic core of gamma-secretase mediate the cleavage of different substrates.  相似文献   

12.
The amyloid-beta protein (Abeta) is strongly implicated in the pathogenesis of Alzheimer's disease. The final step in the production of Abeta from the amyloid precursor protein (APP) is proteolysis by the unidentified gamma-secretases. This cleavage event is unusual in that it apparently occurs within the transmembrane region of the substrate. Studies with substrate-based inhibitors together with molecular modeling and mutagenesis of the gamma-secretase cleavage site of APP suggest that gamma-secretases are aspartyl proteases that catalyze a novel intramembranous proteolysis. This proteolysis requires the presenilins, proteins with eight transmembrane domains that are mutated in most cases of autosomal dominant familial Alzheimer's disease. Two conserved transmembrane aspartates in presenilins are essential for gamma-secretase activity, suggesting that presenilins themselves are gamma-secretases. Moreover, presenilins also mediate the apparently intramembranous cleavage of the Notch receptor, an event critical for Notch signaling and embryonic development. Thus, if presenilins are gamma-secretases, then they are also likely the proteases that cleave Notch within its transmembrane domain. Another protease, S2P, involved in the processing of the sterol regulatory element binding protein, is also a multipass integral membrane protein which cleaves within or very close to the transmembrane region of its substrate. Thus, presenilins and S2P appear to be members of a new type of polytopic protease with an intramembranous active site.  相似文献   

13.
The beta-amyloid precursor protein (beta-APP), which is involved in the pathogenesis of Alzheimer's disease, and the Notch receptor, which is responsible for critical signalling events during development, both undergo unusual proteolysis within their transmembrane domains by unknown gamma-secretases. Here we show that an affinity reagent designed to interact with the active site of gamma-secretase binds directly and specifically to heterodimeric forms of presenilins, polytopic proteins that are mutated in hereditary Alzheimer's and are known mediators of gamma-secretase cleavage of both beta-APP and Notch. These results provide evidence that heterodimeric presenilins contain the active site of gamma-secretase, and validate presenilins as principal targets for the design of drugs to treat and prevent Alzheimer's disease.  相似文献   

14.
The enzyme gamma-secretase has long been considered a potential pharmaceutical target for Alzheimer disease. Presenilin (the catalytic subunit of gamma-secretase) and signal peptide peptidase (SPP) are related transmembrane aspartyl proteases that cleave transmembrane substrates. SPP and gamma-secretase are pharmacologically similar in that they are targeted by many of the same small molecules, including transition state analogs, non-transition state inhibitors, and amyloid beta-peptide modulators. One difference between presenilin and SPP is that the proteolytic activity of presenilin functions only within a multisubunit complex, whereas SPP requires no additional protein cofactors for activity. In this study, gamma-secretase inhibitor radioligands were used to evaluate SPP and gamma-secretase inhibitor binding pharmacology. We found that the SPP enzyme exhibited distinct binding sites for transition state analogs, non-transition state inhibitors, and the nonsteroidal anti-inflammatory drug sulindac sulfide, analogous to those reported previously for gamma-secretase. In the course of this study, cultured cells were found to contain an abundance of SPP binding activity, most likely contributed by several of the SPP family proteins. The number of SPP binding sites was in excess of gamma-secretase binding sites, making it essential to use selective radioligands for evaluation of gamma-secretase binding under these conditions. This study provides further support for the idea that SPP is a useful model of inhibitory mechanisms and structure in the SPP/presenilin protein family.  相似文献   

15.
The cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel is a membrane-integral protein that belongs to an ATP-binding cassette superfamily. Mutations in the CFTR gene cause cystic fibrosis in which salt, water, and protein transports are defective in various tissues. Here we expressed wild-type human CFTR as a FLAG-fused protein in HEK293 cells heterologously and purified it in three steps: anti-FLAG and wheat germ agglutinin affinity chromatographies and size exclusion chromatography. The stoichiometry of the protein was analyzed using various biochemical approaches, including chemical cross-linking, blue-native PAGE, size exclusion chromatography, and electron microscopy (EM) observation of antibody-decorated CFTR. All these data support a dimeric assembly of CFTR. Using 5,039 automatically selected particles from negatively stained EM images, the three-dimensional structure of CFTR was reconstructed at 2-nm resolution assuming a 2-fold symmetry. CFTR, presumably in a closed state, was shown to be an ellipsoidal particle with dimensions of 120 x 106 x 162 A. It comprises a small dome-shaped extracellular and membrane-spanning domain and a large cytoplasmic domain with orifices beneath the putative transmembrane domain. EM observation of CFTR.anti-regulatory domain antibody complex confirmed that two regulatory domains are located around the bottom end of the larger oval cytoplasmic domain.  相似文献   

16.
Presenilin-1 (PS1) is a multipass transmembrane domain protein, which is believed to be the catalytic component of the gamma-secretase complex. The complex is comprised of four major components: PS1, nicastrin, Aph-1, and Pen-2. The exact stoichiometric relationship between the four components remains unclear. It has been shown that gamma-secretase exists as high molecular weight complexes, suggesting the possibility of dimer/multimer formation. We combined a biochemical approach with a novel morphological microscopy assay to analyze PS1 dimer formation and subcellular distribution in situ, in intact mammalian cells. Both coimmunoprecipitation and fluorescent lifetime imaging microscopy approaches showed that wildtype PS1 molecules form dimers. Moreover, PS1 holoproteins containing the D257A mutation also come into close enough proximity to form a dimer, suggesting that cleavage within the loop is not necessary for dimer formation. Taken together these data suggest that PS1 dimerization occurs during normal PS1 function.  相似文献   

17.
APH-1, presenilin, nicastrin, and Pen-2 are proteins with varying membrane topologies that compose the gamma-secretase complex, which is responsible for the intramembrane proteolysis of several substrates including the amyloid precursor protein. APH-1 is known to be necessary for gamma-secretase activity, but its precise function in the complex is not fully understood, and its membrane topology has not been described, although it is predicted to traverse the membrane seven times. To investigate this, we used selective permeabilization of the plasma membrane and immunofluorescence microscopy to show that the C terminus of the APH-1 resides in the cytosolic space. Insertion of N-linked glycosylation sites into each of the hydrophilic loop domains and the N terminus of APH-1 showed that the N-terminal domain as well as loops 2, 4, and 6 could be glycosylated, whereas loops 1, 3, and 5 were not. Thus, APH-1 topologically resembles a seven-transmembrane domain receptor with the N terminus and even-numbered loops facing the endoplasmic reticulum lumen, and the C terminus and odd-numbered loops reside in the cytosolic space. By using these glycosylation mutants, we provide evidence that the association between nicastrin and APH-1 may occur very soon after APH-1 synthesis and that the interaction between these two proteins may rely more heavily on the transmembrane domains of APH-1 than on the loop domains. Furthermore, we found that APH-1 can be processed by several endoproteolytic events. One of these cleavages is strongly up-regulated by co-expression of nicastrin and generates a stable C-terminal fragment that associates with nicastrin.  相似文献   

18.
One of the most prominent drug targets for the treatment of Alzheimer disease is gamma-secretase, a multi-protein complex responsible for the generation of the amyloid-beta peptide. The catalytic core of the complex lies on presenilin, a multi-spanning membrane protease, the activity of which depends on two aspartate residues located in transmembrane domains 6 and 7. We have recently shown by cysteine-scanning mutagenesis that these aspartates are facing a water-filled cavity in the lipid bilayer, demonstrating how proteolytic cleavage of the substrates can be taking place within the membrane. Here, we demonstrate that transmembrane domain 9 and hydrophobic domain VII in the large cytoplasmic loop of presenilin are dynamic structural parts of this cavity. Hydrophobic domain VII is associated with transmembrane domain 7 in the membrane, probably facilitating the entrance of water molecules in the catalytic site. Transmembrane domain 9, on the other hand, exhibits a highly flexible structure, potentially involved in the transport of substrates to the catalytic site, as well as in the binding of gamma-secretase inhibitors. The conserved proline-alanine-leucine motif at the cytoplasmic part of this domain is extremely close to the catalytic Asp257 and is crucial for conformational changes leading to the activation of the catalytic site. We, also, identify a unique mutant in this domain (I437C) that specifically blocks amyloid-beta peptide production without affecting the processing of the physiologically indispensable Notch substrate. Our data are finally combined to propose a model for the architectural organization and activation of the catalytic site of presenilin.  相似文献   

19.
20.
Several type I integral membrane proteins, such as the Notch receptor or the amyloid precursor protein, are cleaved in their intramembrane domain by a gamma-secretase enzyme, which is carried within a multiprotein complex. These cleavages generate molecules that are involved in intracellular or extracellular signaling. At least four transmembrane proteins belong to the gamma-secretase complex: presenilin, nicastrin, Aph-1, and Pen-2. It is still unclear whether these proteins are the only components of the complex and whether a unique complex is involved in the different gamma-secretase cleavage events. We have set up a genetic screen based on the permanent acquisition or loss of an antibiotic resistance depending on the presence of an active gamma-secretase able to cleave a Notch-derived substrate. We selected clones deficient in gamma-secretase activity using this screen on mammalian cells after random mutagenesis. We further analyzed two of these clones and identified previously undescribed mutations in the nicastrin gene. The first mutation abolishes nicastrin production, and the second mutation, a point mutation in the ectodomain, abolishes nicastrin maturation. In both cases, gamma-secretase activity on Notch and APP is impaired.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号