首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Summary Staurosporine is an antibiotic that specifically inhibits protein kinase C. Fourteen staurosporine- and temperature-sensitive (stt) mutants of Saccharomyces cerevisiae were isolated and characterized. These mutants were divided into ten complementation groups, and characterized for their cross-sensitivity to K-252a, neomycin, or CaCl2, The STT1 gene was cloned and sequenced. The nucleotide sequence of the STT1 gene revealed that STT1 is the same gene as PKC1. The STT1 gene conferred resistance to staurosporine on wild-type cells, when present on a high copy number plasmid. STT1/stt1::HIS3 diploid cells were more sensitive to staurosporine than STT1/STT1 diploid cells. Analysis of temperature-sensitive stt1 mutants showed that the STT1 gene product functioned in S or G2/M phase. These results suggest that a protein kinase (the STT1 gene product) is one of the essential targets of staurosporine in yeast cells.  相似文献   

4.
The Arabidopsis gene Terminal Flower 1 (TFL1) controls inflorescence meristem identity. A terminal flower (tfl1) mutant, which develops a terminal flower at the apex of the inflorescence, was induced by transformation with T-DNA. Using a plant DNA fragment flanking the integrated T-DNA as a probe, a clone was selected from a wild-type genomic library. Comparative sequence analysis of this clone with an EST clone (129D7T7) suggested the existence of a gene encoding a protein similar to that encoded by the cen gene which controls inflorescence meristem identity in Antirrhinum. Nucleotide sequences of the region homologous to this putative TFL1 gene were compared between five chemically induced tfl1 mutants and their parental wild-type ecotypes. Every mutant was found to have a nucleotide substitution which could be responsible for the tfl1 phenotype. This result confirmed that the cloned gene is TFL1 itself. In our tfl1 mutant, no nucleotide substitution was found in the transcribed region of the gene, and the T-DNA-insertion site was located at 458 bp downstream of the putative polyadenylation signal, suggesting that an element important for expression of the TFL1 gene exists in this area. Received: 14 November 1996 / Accepted: 29 November 1996  相似文献   

5.
6.
朱俊子  黎萍  邱泽澜  李晓刚  钟杰 《微生物学报》2022,62(10):3801-3812
【目的】蛋白-O-岩藻糖基转移酶1 (protein O-fucosyltransferase 1,POFUT1)是催化蛋白质O-岩藻糖基化的关键酶,在动物和人体内被证明调控一系列的生理病理过程,然而POFUT1基因在果生炭疽菌乃至真菌中还未见报道。本研究旨在克隆果生炭疽菌中CfPOFUT1基因,并分析其生物学功能。【方法】利用RT-PCR技术扩增CfPOFUT1的基因并进行生物信息学分析,构建了CfPOFUT1基因的沉默和过表达载体,通过PEG介导法将载体导入原生质体中获得CfPOFUT1基因的沉默和过表达突变体。测定了野生型菌株、CfPOFUT1沉默菌株和过表达菌株在PDA上的菌丝生长、分生孢子产生、萌发与附着胞形成、胁迫应答和致病力、杀菌剂敏感性等生物学表型。【结果】与野生型菌株相比,基因过表达突变体产孢量显著增加,致病力增强,对嘧菌酯敏感性降低,但对多菌灵和咪鲜胺敏感性增强。基因沉默突变体产孢量减少,细胞壁完整性、内质网应激敏感性提高,致病力减弱,对嘧菌酯敏感性提高,但对多菌灵和咪鲜胺敏感性降低。【结论】CfPOFUT1基因参与调控果生炭疽菌分生孢子产量,细胞壁完整性、内质网对应激和药剂敏感性,并对其致病性也具有一定的影响。  相似文献   

7.
Using a two-component Ac/Ds system consisting of a stabilized Ac element (Acc1) and a non-autonomous element (DsA), 650 families of plants carrying independent germinal DsA excisions/transpositions were isolated. Progenies of 559 of these Acc1/DsA families, together with 43 families of plants selected for excision/transposition of wild-type (wt)Ac, were subjected to a broad screening program for mutants exhibiting visible alterations. This resulted in the identification of 48 mutants showing a wide variety of mutant phenotypes, including embryo lethality (24 mutants), chlorophyll defects (5 mutants), defective seedlings (2 mutants), reduced fertility (5 mutants), reduced size (3 mutants), altered leaf morphology (2 mutants), dark green, unexpanded rosette leaves (3 mutants), and aberrant flower or shoot morphology (4 mutants). To test whether these mutants were due to transposon insertions, a series of Southern blot experiments was performed on 28 families, comparing in each case several mutant plants with others showing the wild-type phenotype. A preliminary analysis revealed in 4 of the 28 families analyzed a common, novel DsA fragment in all mutant plants, which was present only in heterozygous plants with wt phenotype, as expected for DsA insertion mutations. These four mutants included two showing embryo lethality, one with dark green, unexpanded rosette leaves and stunted inflorescences, and one with curly growth of stems, leaves and siliques. Further evidence for DsA insertion mutations was obtained for one embryo lethal mutant and for the stunted mutant, while in case of the second embryo lethal mutant, the DsA insertion could be separated from the mutant locus by genetic recombination.  相似文献   

8.
Gsp1p is a small nuclear-located GTP binding protein from the yeast Saccharomyces cerevisiae. It is highly conserved among eucaryotic cells and is involved in numerous cellular processes, including nucleocytoplasmic trafficking of macromolecules. To learn more about the GSP1 structure/function, we have characterized its Candida albicans homologue. CaGsp1p is 214 amino acids long and displays 91% identity to the ScGsp1p. There is functional complementation in S. cerevisiae, and its mRNA is constitutively expressed in the diploid C. albicans grown under various physiological conditions. Disruption of both alleles was not possible, suggesting that it could be an essential gene, but heterozygous mutants exhibited genomic instability.  相似文献   

9.
10.
Four Nicotiana plumbaginifolia mutants exhibiting long hypocotyls and chlorotic cotyledons under white light, have been isolated from M2 seeds following mutagenesis with ethyl methane sulphonate. In each of these mutants, this partly etiolated in white light (pew) phenotype is due to a recessive nuclear mutation at a single locus. Complementation analysis indicates that three mutants, dap5, ems28 and ems3-6-34, belong to a single complementation group called pew1, while dap1 defines the pew2 locus. The mutants at pew1 contain normal levels of immunochemically detectable apoprotein of the phytochrome that is relatively abundant in etiolated seedlings, but are deficient in spectrophotometrically detectable phytochrome, whether seedlings are grown in darkness or light. Moreover, biliverdin, a precursor of the phytochrome chromophore, restores light-regulated responses in pew1 mutants and increases their level of photoreversible phytochrome when grown in darkness. These results indicate that the pew1 locus may be involved in chromophore biosynthesis. The mutant at the pew2 locus displays no photoreversible phytochrome in etiolated seedlings, but does contain normal levels of photoreversible phytochrome when grown in the light. Biliverdin had little effect on light-regulated responses in this mutant. In addition, biliverdin did not alter the level of phytochrome in etiolated seedlings. These observations lead us to propose that this mutant could be affected in the phyA gene itself. We have also obtained the homozygous double mutant at the pew1 and pew2 loci. This double mutant is lethal at an early stage of development, consistent with a critical role for phytochrome in early development of higher plants.  相似文献   

11.
12.
Arabidopsis abi3 and fus3 mutants are defective in late embryo development and their embryos show precocious growth. To understand the function and role of ABI3 and FUS3, we analyzed expression patterns of genes which were normally activated during late embryo development and germination in these mutants. Using the differential display method, both upregulated and downregulated genes were observed in immature siliques of the abi3 fus3 double mutant. Four clones having more abundant expression in the abi3 fus3 double mutant than in wild type were isolated. These genes were activated during wild-type germination, suggesting that some genes that are activated during wild-type germination are precociously activated in the abi3 fus3 mutant during late embryo development. Also, genes that were activated during wild-type germination were isolated and their expression patterns during late embryo development in the wild type and in abi3, fus3, and abi3 fus3 mutants were analyzed. Sixteen such clones were found, and 11 of these showed derepression or precocious activation of gene expression in the mutants. These results indicate that ABI3 and FUS3 negatively regulate a particular set of genes during late embryo development. We also showed that immature fus3 siliques accumulated one-third of the wild-type level of abscisic acid (ABA), but mature fus3 siliques accumulated ABA at a level comparable to that in the wild type. The possible mechanisms of controlling developmental timing in late embryo development as well as collaborative and distinct roles of ABI3 and FUS3 are discussed.  相似文献   

13.
彭凤  路承凯  梁岗 《广西植物》2023,43(6):1097-1104
铁(Fe)是植物生长发育所必需的营养元素而镉(Cd)是对植物有害的元素且对植物Fe和Cd的吸收存在拮抗作用。OsIMA是一类正调控水稻Fe吸收的一类小肽,其过表达可以促进Fe的积累。为探究OsIMA是否参与水稻对Cd胁迫的适应性,该研究以水稻为研究材料,利用荧光定量PCR分析了OsIMA基因的表达水平,通过遗传转化和CRISPR/Cas9基因编辑技术构建了OsIMA1过表达植物和ima1突变体植物,评估了OsIMA1过表达和突变体植物在Cd逆境条件下的株高,并利用电联耦合等离子体质谱法测量了根和地上部的Fe和Cd含量。结果表明:(1)Cd处理后,OsIMA1和OsIMA2的转录水平上调。(2)OsIMA1过表达植物比野生型植物对Cd胁迫更耐受。(3)ima1功能缺失突变体比野生型植物对Cd胁迫更敏感。(4)OsIMA1过表达植株根系的Cd含量较高,而ima1突变体植株地上部的Cd含量较高。综上所述,OsIMA1通过限制Cd从根向地上部的转运以增强水稻对Cd逆境的适应能力,该研究结果为定向培育耐Cd作物提供了理论参考。  相似文献   

14.
Mutant plants defective in the assimilation of nitrate can be selected by their resistance to the herbicide chlorate. In Arabidopsis thaliana, mutations at any one of nine distinct loci confer chlorate resistance. Only one of the CHL genes, CHL3, has been shown genetically to be a nitrate reductase (NR) structural gene (NIA2) even though two NR genes (NIA1 and NIA2) have been cloned from the Arabidopsis genome. Plants in which the NIA2 gene has been deleted retain only 10% of the wildtype shoot NR activity and grow normally with nitrate as the sole nitrogen source. Using mutagenized seeds from the NIA2 deletion mutant and a modified chlorate selection protocol, we have identified the first mutation in the NIA1 NR structural gene. nia1, nia2 double mutants have only 0.5% of wild-type shoot NR activity and display very poor growth on media with nitrate as the only form of nitrogen. The nial-1 mutation is a single nucleotide substitution that converts an alanine to a threonine in a highly conserved region of the molybdenum cofactor-binding domain of the NR protein. These results show that the NIA1 gene encodes a functional NR protein that contributes to the assimilation of nitrate in Arabidopsis.  相似文献   

15.
Summary The au w mutant allele of the aurea locus in tomato has previously been shown to cause deficiency for the phytochrome polypeptide (Parks et al. 1987). We have begun to characterize the molecular basis and consequences of this deficiency. Genomic Southern blot analysis indicates that there are at least two and probably more phytochrome polypeptide structural genes in tomato. RNA blot analysis shows that the au w mutant contains normal levels of phytochrome mRNA and in vitro translation of au w poly(A)+ RNA yields a phytochrome apoprotein that is quantitatively and qualitatively indistinguishable on SDS-polyacrylamide gels from that synthesized from wild-type RNA. These results indicate that the phytochrome deficiency in aurea is not the result of lack of expression of phytochrome genes but is more likely due to instability of the phytochrome polypeptide in planta. Possible reasons for such instability are discussed. Analysis of the molecular phenotype of aurea indicates that the phytochrome-mediated increase in the abundance of the mRNA encoding chlorophyll a/b binding protein (cab) is severely restricted in the mutant as compared with wild-type tomato. Thus, the au w strain exhibits defective photoregulation of gene expression consistent with its very reduced level of the phytochrome photoreceptor.  相似文献   

16.
17.
A reverse genetic system for studying excision of the transposable elementDs1 in maize plants has been established previously. In this system, theDs1 element, as part of the genome of maize streak virus (MSV), is introduced into maize plants via agroinfection. In the presence of theAc element, excision ofDs1 from the MSV genome results in the appearance of viral symptoms on the maize plants. Here, we used this system to study DNA sequences requiredin cis for excision ofDs1. TheDs1 element contains theAc transposase binding motif AAACGG in only one of its subterminal regions (defined here as the 5′ subterminal region). We showed that mutation of these motifs abolished completely the excision capacity ofDs1. This is the first direct demonstration that the transposase binding motifs are essential for excision. Mutagenesis with oligonucleotide insertions in the other (3′) subterminal region resulted in elements with either a reduced or an increased excision efficiency, indicating that this subterminal region also has an important function.  相似文献   

18.
A mutant allele of RAS1 that dominantly interferes with the wild-type Ras function in the yeast Saccharomyces cerevisiae was discovered during screening of mutants that suppress an ira2 disruption mutation. A single amino acid substitution, serine for glycine at position 22, was found to cause the mutant phenotype. The inhibitory effect of the RAS1 Ser22 gene could be overcome either by overexpression of CDC25 or by the ira2 disruption mutation. These results suggest that the RAS1Ser22 gene product interferes with the normal interaction of Ras with Cdc25 by forming a dead-end complex between Ras1Ser22 and Cdc25 proteins.  相似文献   

19.
Two new allelic mutants of Nicotiana plumbaginifolia have been isolated which display a hypocotyl which is long (hlg) when seedlings are grown in continuous white light (W). This can be accounted for by the decreased response to red light (R) of the hypocotyl elongation rate in these mutants. Responses to other wavelengths are unaffected in the mutants. When grown in white light, mature hlg mutants are not elongated with respect to the wild-type; they also bolt and flower later. The shade-avoidance responses to red/far red ratio (R:FR) are intact in these mutants. Both mutants are deficient in a phyB-like polypeptide that is immunodetectable in the wild-type; both have wild-type levels of a phyA-like polypeptide. These alleles are inherited in a partially dominant manner, and correspond to single-base missense mutations in a gene highly homologous to N. tabacum PHYB, which codes for a phytochrome B-type photoreceptor. One allele, hlg-1, has an introduced amino acid substitution; this may define a residue essential for phytochrome protein stability. The other allele, hlg-2, has a stop codon introduced C-terminal to the chromophore binding domain. As these phyB mutants are unaffected in shade-avoidance responses, but deficient in perception of R, it is concluded that the phyB absent in these mutants is responsible for R perception in the N. plumbaginifolia seedling, but is not a R:FR sensor in light-grown plants.  相似文献   

20.
ThePLC1 gene of the yeastSaccharomyces cerevisiae has been discovered to encode a homolog of mammalian phosphoinositide-specific phospholipase C (PLC). Five temperature-sensitiveplc1 mutants were isolated by in vitro mutagenesis with subsequent plasmid shuffling. All of the amino acid substitutions that caused a temperature-sensitive growth phenotype were located in the X or the Y region, both of which are conserved among PLC isoenzymes. The PLC activity of all products of mutantplc1 genes was dramatically lower than that of the wild-type product, indicating that PLC activity itself is important for cell growth. At the restrictive temperature,plc1 mutant cells ceased growth at random times during the cell cycle, a result that suggests thatPLC1 is required at several or all stages of the cell cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号