首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Synthesis of DNA in permeabilized cells of Kluyveromyces lactis.   总被引:1,自引:0,他引:1       下载免费PDF全文
Kluyveromyces lactis cells permeabilized with nystatin, though no longer viable, were able to incorporate 3H-dATP into DNA. Maximum rate of synthesis was obtained when all four deoxyribonucleoside triphosphates were present. For prolonged incorporation of 3H-dATP into DNA rATP or phosphoenolpyruvate were of absolute requirement. DNA synthesis was inhibited by p-chloromercuribenzoate, N-ethylmaleimide, nalidixate, ethidium bromide and distamycin A. The density of DNA synthesized in permeabilized cells grown on non-fermentable and fermentable carbon sources was analyzed on CsCl gradients in the presence or absence of distamycin A. The DNA synthesized by permeabilized cells previously grown on glycerol was essentially mitochondrial DNA; nuclear DNA (30% of total) was also synthesized by cells previously grown on glucose.  相似文献   

2.
Recent studies have proposed that post-translational degradation of apolipoprotein B100 (apoB) involves the cytosolic ubiquitin-proteasome pathway. In this study, immunocytochemistry indicated that endoplasmic reticulum (ER)-associated proteasome molecules were concentrated in perinuclear regions of digitonin-permeabilized HepG2 cells. Signals produced by antibodies that recognize both alpha- and beta-subunits of the proteasome co-localized in the ER with specific domains of apoB. The mechanism of apoB degradation in the ER by the ubiquitin-proteasome pathway was studied using pulse-chase labeling and digitonin-permeabilized cells. ApoB in permeabilized cells incubated at 37 degrees C in buffer alone was relatively stable. When permeabilized cells were incubated with both exogenous ATP and rabbit reticulocyte lysate (RRL) as a source of ubiquitin-proteasome factors, >50% of [3H]apoB was degraded in 30 min. The degradation of apoB in the intact ER of permeabilized cells was much more rapid than that of extracted [3H]apoB incubated with RRL and ATP in vitro. The degradation of apoB was reduced by clasto-lactacystin beta-lactone, a potent proteasome inhibitor, and by ubiquitin K48R mutant protein, an inhibitor of polyubiquitination. ApoB in HepG2 cells was ubiquitinated, and polyubiquitination of apoB was stimulated by incubation of permeabilized cells with RRL. These results suggest that newly synthesized apoB in the ER is accessible to the cytoplasmic ubiquitin-proteasome pathway and that factors in RRL stimulate polyubiquitination of apoB, leading to rapid degradation of apoB in permeabilized cells.  相似文献   

3.
1. Catecholamine secretion from digitonin-treated chromaffin cells is stimulated directly by micromolar Ca2+ in the medium. The permeabilized cells are leaky to proteins. 2. In this study trypsin (30-50 micrograms/ml) added to cells after digitonin treatment completely inhibited subsequent Ca2+-dependent catecholamine secretion. The same concentrations of trypsin did not inhibit secretion from permeabilized cells if trypsin was present only prior to cell permeabilization. 3. The data indicate that trypsin entered digitonin-treated chromaffin cells which were capable of undergoing secretion and that an intracellular, trypsin-sensitive protein is involved in secretion. Chymotrypsin was less potent but had effects similar to those of trypsin. 4. The enhancement of Ca2+-dependent secretion from permeabilized chromaffin cells induced by the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA) was inhibited by trypsin added simultaneously with Ca2+ to permeabilized cells at concentrations (3-10 micrograms/ml) which had little or no effect on Ca2+-dependent secretion from cells untreated with TPA. Ca2+-dependent secretion in TPA-treated cells was reduced by trypsin only to the level that would have occurred in cells not treated with TPA. Trypsin reduced the large TPA-induced increment of membrane-bound protein kinase C.  相似文献   

4.
We have examined nucleotide excision repair synthesis in confluent human diploid fibroblasts permeabilized with lysolecithin. Following a UV dose of 12 J/m2, maximal incorporation of [alpha 35S]dNTPs occurred at a lysolecithin concentration (approximately 80 micrograms/ml) where slightly more than 90% of the cells were initially permeable to trypan blue. However, autoradiography of cells, permeabilized at this lysolecithin concentration, demonstrated that only about 20% of the total cell population incorporated significant levels of 35S into DNA. This result presumably reflected the fact that approximately 20% of the total cell population remained permeable for much longer periods of time (up to 2 h) than the remaining cell population (less than 20 min). The incorporation of dNTPs by UV-irradiated, permeabilized cells appeared to be bona fide excision repair synthesis since: (1) Incorporation was completely absent in unirradiated, permeabilized cells and in irradiated, permeabilized repair-deficient cells. (2) Nucleotides incorporated in the presence of BrdUTP were associated with normal density DNA. (3) The apparent Km for all 4 dNTPs was 50-100 nM, in agreement with past reports on human fibroblasts irreversibly permeabilized by cell lysis. (4) DNA associated with the newly incorporated dNTPs underwent ligation and rearrangements in chromatin structure analogous to what is observed in intact human cells. Repair incorporation of dNTPs was rapid and linear during the first 2 h after UV irradiation and permeabilization. After this time, incorporation ceased or continued at a much slower rate. Cell viability experiments and autoradiography demonstrated that the cells permeabilized to [3H]dNTPs were capable of carrying out DNA replication and cell division. Thus, confluent human diploid fibroblasts can be reversibly permeabilized to labeled dNTPs by lysolecithin for the study of excision repair following physiologic doses of UV radiation. However, under these conditions, only a fraction of the cells remain permeable for an extended period of time.  相似文献   

5.
We have shown that there is an inositol (Ins) lipid pool in cloned rat pituitary tumor (GH3) cells that is hydrolyzed in response to thyrotropin-releasing hormone (TRH) and an unresponsive pool. Because others have suggested that incorporation of [3H]Ins by base exchange may not occur uniformly into Ins lipids in other cell types, we established conditions using permeabilized cells under which labeling occurs by Ins-phosphatidylinositol (PI) exchange in the absence of de novo PI synthesis to further characterize these pools in GH3 cells. In permeabilized cells incubated in buffer containing 10 mM Mg2+ and 0.1 mM CMP, [3H]Ins incorporation into lipids occurred by base exchange only. This was so because: 1) [3H]Ins incorporation into lipids displayed properties similar to that for release of 3H-labeled Ins by unlabeled Ins from PI in cells prelabeled in situ prior to permeabilization; and 2) there was no change in PI mass under these conditions. In permeabilized cells incubated in buffer with 0.1 mM [3H]Ins for 60 min, incorporation was 0.61 +/- 0.05 nmol of [3H]Ins/10(6) permeabilized cells, which amounted to 35% of PI, while the level of PI, measured as nonradioactive phosphorus, was 94 +/- 8.0% of control. Permeabilized GH3 cells were responsive to TRH. In cells prelabeled in situ and then permeabilized, TRH stimulated an increase in 3H-labeled Ins phosphates (IPs) in 20 min which was 10% of 3H radioactivity initially present in lipids. This increase in 3H-labeled IPs was 6.3 times the 3H radioactivity present in phosphatidylinositol 4,5-bisphosphate prior to stimulation. When prelabeled cells were exchanged with unlabeled Ins after permeabilization there was only a 10-16% decrease in 3H-labeled IP accumulation stimulated by TRH even though 3H-labeled lipids decreased to 52% of control. TRH did not affect labeling by [3H]Ins-PI exchange. In cells labeled by base exchange after permeabilization TRH stimulated a very small increase in 3H-labeled IPs of only 0.21 +/- 0.02% of 3H-labeled lipids in 20 min or only 7% of the 3H radioactivity in phosphatidylinositol 4,5-bisphosphate. These data show that in permeabilized GH3 cells base exchange can occur in the absence of de novo PI synthesis and that lipids that are preferentially labeled by base exchange comprise a pool that is less responsive to TRH than total Ins lipids.  相似文献   

6.
Cultured pituitary cells prelabeled with myo-[2-3H] inositol were permeabilized by ATP4-, exposed to guanine nucleotides and resealed by Mg2+. Addition of guanosine 5'-0-(3-thio triphosphate) (GTP gamma S) to permeabilized cells, or gonadotropin releasing hormone (GnRH) to resealed cells, resulted in enhanced phospholipase C activity as determined by [3H] inositol phosphate (Ins-P) production. The effect was not additive, but the combined effect was partially inhibited by guanosine 5'-0-(2-thiodiphosphate) (GDP beta S) or by neomycin. Surprisingly, addition of GDP beta S (100-600 microM) on its own resulted in a dose-related increase in [3H]Ins-P accumulation. Several nucleoside triphosphates stimulated phospholipase C activity in permeabilized pituitary cells with the following order: UTP greater than GTP gamma S greater than ATP greater than CTP. The stimulatory effect of UTP, ATP and CTP, but not GTP gamma S or GDP beta S, could also be demonstrated in normal pituitary cells suggesting a receptor-activated mechanism. GTP and GTP gamma S decreased the affinity of GnRH binding to pituitary membranes and stimulated LH secretion in permeabilized cells. These results suggest the existence of at least two G-proteins (stimulatory and inhibitory) which are involved in phospholipase C activation and GnRH action in pituitary cells.  相似文献   

7.
Further Characterization of Dopamine Release by Permeabilized PC 12 Cells   总被引:3,自引:2,他引:1  
Rat pheochromocytoma cells (PC12) permeabilized with staphylococcal alpha-toxin release [3H]dopamine after addition of micromolar Ca2+. This does not require additional Mg2+-ATP (in contrast to bovine adrenal medullary chromaffin cells). We also observed Ca2+-dependent [3H]-dopamine release from digitonin-permeabilized PC12 cells. Permeabilization with alpha-toxin or digitonin and stimulation of the cells were done consecutively to wash out endogenous Mg2+-ATP. During permeabilization, ATP was removed effectively from the cytoplasm by both agents but the cells released [3H]dopamine in response to micromolar Ca2+ alone. Replacement by chloride of glutamate, which could sustain mitochondrial ATP production in permeabilized cells, does not significantly alter catecholamine release induced by Ca2+. However, Mg2+ without ATP augments the Ca2+-induced release. The release was unaltered by thiol-, hydroxyl-, or calmodulin-interfering substances. Thus Mg2+-ATP, calmodulin, or proteins containing -SH or -OH groups are not necessary for exocytosis in permeabilized PC12 cells.  相似文献   

8.
Smooth muscle cells were isolated from the circular muscle layer of guinea pig stomach and permeabilized by brief exposure to saponin. Both permeabilized and intact muscle cells contracted in response to cholecystokinin octapeptide (CCK-8) and acetylcholine, but only permeabilized muscle cells contracted in response to inositol 1,4,5-trisphosphate (InsP3). The contractile response to InsP3 was prompt (peak less than 5 s), concentration-dependent (EC50-0.3 microM), and insensitive to antimycin or oligomycin. Contraction induced by either InsP3 or CCK-8 was accompanied by a concentration-dependent increase in free Ca2+ that was directly correlated with the magnitude of contraction. Both InsP3 and CCK-8 caused rapid net efflux of Ca2+ from cells preloaded with 45Ca2+. Contraction, increase in free Ca2+ concentration, and net 45Ca2+ efflux elicited by a combination of maximal concentrations of InsP3 and CCK-8 were not significantly different from those elicited by maximal concentrations of either agent alone. Repeated stimulation of single muscle cells with either InsP3 or CCK-8 in Ca2+-free medium caused eventual loss of the contractile response to all agents. The response to all agents was restored upon re-exposure of the cell to a cytosol-like concentration of Ca2+, implying equal access of InsP3 and receptor-linked agonists to the same intracellular Ca2+ store. The results demonstrate that InsP3 mimics the effects of receptor-linked agonists on contraction and mobilization of intracellular Ca2+ in permeabilized smooth muscle cells that retain the functional properties of intact smooth muscle cells and support a role for InsP3 as membrane-derived messenger responsible for mobilization of intracellular Ca2+ in smooth muscle cells.  相似文献   

9.
Permeabilized Micrococcus QS412 cells were used to produce trehalose from starch through catalysis of maltooligosyl trehalose synthase and maltooligosyl trehalose trehalohydrolase in the cells. The permeabilized cells could omit the enzyme purification and simplify the immobilization of intracellular enzymes. The reagent, reagent dosage and time of cell permeabilization treatment were determined. The maximum trehalose biosynthesis activity was obtained after the cells were treated with 5% (w/v) of toluene at 30 °C for 40 min. Reaction conditions of trehalose synthesis of permeabilized cells were optimized. The yield of trehalose was up to 188 mg/g wet permeabilized cells in pH 8.0, 100 mmol/l phosphate buffer at 30 °C after 12 h reaction. Batch reactions showed that the permeabilized cells could be reused for 16 cycles in the biosynthesis reaction. The total trehalose yield was up to 2.5 g/g wet permeabilized cells. Development of permeabilized cells provide a new cheaply alternative technology for trehalose production.  相似文献   

10.
myo-[3H]Inositol-labelled SH-SY5Y cells were permeabilized with electrical discharges. 3H-Inositol phosphate formation in cells shown to be fully permeable was stimulated by the muscarinic agonist carbachol, by guanosine 5'-(gamma-thio)triphosphate [GTP(S)], and by guanosine 5'-(beta gamma-imido)diphosphate (GppNHp). Synergism was observed on coincubation of these GTP analogues with carbachol. GTP was also stimulatory and guanosine 5'-(beta-thio)diphosphate was inhibitory in the presence of agonist. Atropine blocked the effects of carbachol. Stimulation by GTP(S) (0.1 mM) occurred after a 1-2-min lag, whereas Ca2+ (0.5 mM), carbachol (1 mM), and carbachol plus GTP(S) stimulated without delay. The effects of carbachol plus GTP(S) but not those of Ca2+ were inhibited by spermine (4 mM). Accumulation of 3H-inositol phosphates was enhanced by Li+ (4 mM) only in intact cells. In intact or permeabilized cells, the "partial" agonist arecoline was maximally 40-50% as efficacious as carbachol. In permeabilized cells, the maximal effects of carbachol and arecoline were enhanced 2.8- and 5.3-fold, respectively, by 0.1 mM GTP(S), but only the EC50 for carbachol was substantially reduced. The binding affinity of carbachol but not that of arecoline in permeabilized cells was significantly reduced by 0.1 mM GppNHp. These data indicate that a guanine nucleotide-binding regulatory protein is involved in coupling muscarinic receptors to phosphoinositidase C in SH-SY5Y cells and that the activity of this protein influences the relationship between receptor occupation and phosphoinositide response.  相似文献   

11.
Electrically permeabilized cells of rat parotid gland, prelabelled with [3H]-inositol, synthesized [3H]-inositol phosphates (IP3 and IP2) when stimulated with alpha 1-adrenergic, muscarinic-cholinergic, and substance P receptor-agonists. Non-hydrolyzable analogues of GTP (GTP gamma S and GppNHp) also stimulated [3H]-IP3 formation by permeabilized cells and they potentiated the stimulation by receptor-agonists. These effects of guanine nucleotides occurred only with GTP analogues and only in permeabilized cells indicating an intracellular site of action. NaF stimulated [3H]-IP3 accumulation, an effect that was not entirely attributable to the ability of F- to inhibit (1,4,5)IP3 degradation. These results suggest that a guanine nucleotide-dependent regulatory protein couples Ca2+-mobilizing receptors to phospholipase C in parotid gland.  相似文献   

12.
The incorporation of [methyl-14C]CDP-choline into phosphatidylcholine was measured in HeLa cells permeabilized with 0.125 mg digitonin/mL. The rate of phosphatidylcholine formation was influenced by the concentration of CDP-choline in the medium. The CDP-choline:1,2-diacylglycerol cholinephosphotransferase in permeabilized cells showed a Km of 88 microM for CDP-choline. A similar Km value of 104 microM was found for cholinephosphotransferase in microsomes isolated from HeLa cells when assayed in the presence of 2.4 mM dioleoylglycerol. In the absence of added diacylglycerol, the Km for CDP-choline for the microsomal cholinephosphotransferase was only 38 microM. The incorporation of [methyl-14C]CDP-choline into phosphatidylcholine was stimulated by the supply of diacylglycerol in both HeLa cells and isolated microsomes. A 2.4 mM dioleoylglycerol suspension increased cholinephosphotransferase activity fourfold in microsomes. The digitonin-treated cells were impermeable to the dioleoylglycerol suspension. Incubation of permeabilized cells with 150 microM acyl-CoA and 0.8 mM glycero-3-phosphate tripled cellular diacylglycerol levels, causing a doubling in the rate of phosphatidylcholine synthesis. A similar incubation of microsomes with acyl-CoA stimulated phosphatidylcholine synthesis twofold. Furthermore, incubation of microsomes with [3H]diacylglycerol and [14C]CDP-choline showed that both of the substrates were incorporated into phosphatidylcholine at the same rate. This result suggests that the stimulatory effects on cholinephosphotransferase arise from increases in the availability of substrates rather than activation of the enzyme. These results suggest that both in the permeabilized cells and in isolated membranes, the biosynthesis of phosphatidylcholine can be limited by both CDP-choline and diacylglycerol.  相似文献   

13.
The aim of this study was to investigate the mechanism of cellular regulation of mitochondrial respiration in permeabilized cardiac cells with clearly different structural organization: (i) in isolated rat cardiomyocytes with very regular mitochondrial arrangement, (ii) in HL-1 cells from mouse heart, and (iii) in non-beating (NB HL-1 cells) without sarcomeres with irregular and dynamic filamentous mitochondrial network. We found striking differences in the kinetics of respiration regulation by exogenous ADP between these cells: the apparent Km for exogenous ADP was by more than order of magnitude (14 times) lower in the permeabilized non-beating NB HL-1 cells without sarcomeres (25+/-4 microM) and seven times lower in normally cultured HL-1 cells (47+/-15 microM) than in permeabilized primary cardiomyocytes (360+/-51 microM). In the latter cells, treatment with trypsin resulted in dramatic changes in intracellular structure that were associated with 3-fold decrease in apparent Km for ADP in regulation of respiration. In contrast to permeabilized cardiomyocytes, in NB HL-1 cells creatine kinase activity was low and the endogenous ADP fluxes from MgATPases recorded spectrophotometrically by the coupled enzyme assay were not reduced after activation of mitochondrial oxidative phosphorylation by the addition of mitochondrial substrates, showing the absence of ADP channelling in the NB HL-1 cells. While in the permeabilized cardiomyocytes creatine strongly activated mitochondrial respiration even in the presence of powerful competing pyruvate kinase-phosphoenolpyruvate system, in the NB HL-1 cells the stimulatory effect of creatine was not significant. The results of this study show that in normal adult cardiomyocytes and HL-1 cells intracellular local restrictions of diffusion of adenine nucleotides and metabolic feedback regulation of respiration via phosphotransfer networks are different, most probably related to differences in structural organization of these cells.  相似文献   

14.
For study of the regulation of DNA replication in sea urchin embryos during the early stages of development, an embryonic cell system that was permeable to exogenously supplied nucleotides was established. Embryos were permeabilized by incubating them in hypotonic buffer containing 0.3 M glucose. The permeabilized embryonic cells maintained their morphological integrity, and synthesized DNA when supplied with exogenous dNTPs.
DNA synthesis in these permeabilized embryonic cells required the presence of ATP and three other deoxyribonucleoside triphosphates in addition to labeled dTTP. DNA synthesis was almost completely inhibited by N-ethylmaleimide, and proceeded in a discontinuous fashion. Only cells permeabilized during the S phase could incorporate nucleoside triphosphates into DNA: cells permeabilized during other phases did not synthesize DNA. During a 60 min-incubation period, over 10% of the genomic DNA was replicated under the experimental conditions used.  相似文献   

15.
Poly(ADP ribosyl)ation, a post-translational modification of nuclear proteins catalyzed by poly (ADP ribose) polymerase, is an immediate response of most eukaryotic cells to DNA strand breaks and has been implicated in DNA repair and other cellular phenomena associated with DNA strand breakage. Poly(ADP ribose) polymerase activity levels have been frequently assayed by incubating permeabilized cells with radioactively labeled NAD+ as substrate. In such assays enzyme activation has routinely been achieved indirectly by prior exposure of living cells to carcinogens or by adding DNase I to permeabilized cells, thereby introducing strand breaks in chromosomal DNA. Here we show that, as an alternative method, the direct activation of purified poly(ADP ribose) polymerase by double-stranded oligonucleotides (N. A. Berger and S. I. Petzold, 1985, Biochemistry 24, 4352-4355) can be adopted for permeabilized cell systems. The inclusion of a palindromic decameric deoxynucleotide in the reaction buffer stimulated the enzyme activity in permeabilized Molt-3 human lymphoma cells up to 30-fold (at 50 micrograms/ml [corrected] oligonucleotide concentration) in a concentration-dependent manner. The activating effect of oligonucleotides was also evident when ethanol-fixed HeLa cells were postincubated with NAD+ to allow poly(ADP ribose) synthesis to occur in situ, which was detected as specific anti-poly (ADP ribose) immunofluorescence. We conclude that double-stranded oligonucleotides can be conveniently used as chemically and stoichiometrically well-defined poly (ADP ribose) polymerase activators in permeabilized or ethanol-fixed mammalian cells.  相似文献   

16.
ATP-dependent regulation of phospholipase C in permeabilized 3T3 cells   总被引:1,自引:0,他引:1  
K Higashi  H Ogawara 《FEBS letters》1990,267(1):51-54
Regulation of phospholipase C (PLC) coupled with a G-protein was studied with Swiss 3T3 cells permeabilized by digitonin. In permeabilized cells, activation of phospholipase C required millimolar concentrations of ATP in addition to a G-protein activator, AlF4- or nonhydrolysable GTP analogues. To determine the mechanism of the action of ATP, we examined the effects of ATP analogues. ATP gamma S directly activated phospholipase C in the presence or absence of AlF4-. On the other hand, neither beta,gamma-methylene ATP nor adenyl-5'-yl imidodiphosphate nor ADP beta S could support the AlF4(-)-dependent activation of phospholipase C. The action of ATP gamma S was not through the substrate supply for phospholipase C, because ATP gamma S did not augment the levels of PIP2 or PIP in permeabilized cells. These results suggested the significance of the gamma-phosphate group of ATP and/or phosphorylation by ATP in the activation of phospholipase C by a putative G-protein.  相似文献   

17.
Effects of Ca2+ on phosphoinositide breakdown in exocrine pancreas.   总被引:4,自引:3,他引:1       下载免费PDF全文
Recent studies have established that inositol 1,4,5-trisphosphate [I(1,4,5)P3] provides the link between receptor-regulated polyphosphoinositide hydrolysis and mobilization of intracellular Ca2+. Here, we report the effects of Ca2+ on inositol trisphosphate (IP3) formation from phosphatidylinositol bisphosphate (PIP2) catalysed by phospholipase C in intact and electrically permeabilized rat pancreatic acinar cells. In permeabilized cells, the Ca2+-mobilizing agonist caerulein stimulated [3H]IP3 formation when the free [Ca2+] was buffered at 140 nM, the cytosolic free [Ca2+] of unstimulated pancreatic acinar cells. When the free [Ca2+] was reduced to less than 10 nM, caerulein did not stimulate [3H]IP3 formation. Ca2+ in the physiological range stimulated [3H]IP3 formation and reduced the amount of [3H]PIP2 in permeabilized cells. The effects of Ca2+ and the receptor agonist caerulein were additive, but we have not established whether this reflects independent effects on the same or different enzymes. The effect of Ca2+ on [3H]IP3 formation by permeabilized cells was unaffected by inhibitors of the cyclo-oxygenase and lipoxygenase pathways of arachidonic acid metabolism; nor were the effects of Ca2+ mimicked by addition of arachidonic acid. These results suggest that the effects of Ca2+ on phospholipase C activity are not a secondary consequence of Ca2+ activation of phospholipase A2. Changes in free [Ca2+] (less than 10 nM-1.2 mM) did not affect the metabolism of exogenous [3H]I(1,4,5)P3 by permeabilized cells. In permeabilized cells, breakdown of exogenous [3H]IP3 to [3H]IP2 (inositol bisphosphate), and formation of [3H]IP3 in response to receptor agonists were equally inhibited by 2,3-bisphosphoglyceric acid. This suggests that the [3H]IP2 formed in response to receptor agonists is entirely derived from [3H]IP3. In intact cells, [3H]IP3 formation was stimulated when ionomycin was used to increase the cytosolic free [Ca2+]. However, a maximal concentration of caerulein elicited ten times as much IP3 formation as did the highest physiologically relevant [Ca2+]. We conclude that the major effect of receptor agonists on IP3 formation does not require an elevation of cytosolic free [Ca2+], although the increase in free [Ca2+] that normally follows IP3 formation may itself have a small stimulatory effect on phospholipase C.  相似文献   

18.
19.
Abstract: Using guanine nucleotides, pertussis toxin, and specific antisera against the COOH-terminals of the α-subunits of Gi1/2, Gi3, and Go, the binding and biological response of the Y2 receptor (Y2R) for peptide YY (PYY) was probed in SMS-KAN neuroblastoma cells. The specific binding of radiolabeled PYY exhibited a single apparent dissociation constant, K D = 76 p M for intact cells and K D = 906 p M for permeabilized cells. However, other data suggested existence of multiple receptor affinity states. A shift in K D and a decrease in apparent number of binding sites ( B max) was observed in permeabilized cells when incubated with guanine nucleotides. By contrast, in membrane preparations guanine nucleotides induced only a decrease in B max. In intact cells, agonist exposure inhibited the intracellular accumulation of forskolin-stimulated cyclic AMP by 80% (IC50 = 420 n M ) compared with 94% inhibition (IC50 = 380 n M ) in permeabilized cells. In permeabilized cells, preincubation with antisera against αi1/2 and αi3 blocked the functional response of PYY, with anti-αi3 being the most potent; whereas anti-αo failed to affect the cyclic AMP levels. These results suggest that permeabilized SMS-KAN cells serve as a good model system for analysis of Y2R binding kinetics and functional response and that the Y2R interacts directly with several different Gis (but not Go).  相似文献   

20.
Flocculent yeast Saccharomyces cerevisiae YF234 (MATa ura3–52 trp1Δ2 his ade 2–1 can1–100 sta1 FLO8) cells overexpressing glyoxalase I and having strong flocculation ability were permeabilized with isopropyl alcohol and ethanol under various conditions. The treatment with 40% isopropyl alcohol significantly improves the initial reaction rates of recombinant flocculent yeast cells. Moreover, the reactivity of permeabilized flocculent yeast cells was similar to that of dispersed cells with EDTA. On the other hand, the flocculation ability of yeast cells was not affected by the treatment with alcohol solutions of various concentrations and treatment time length. Therefore, the recombinant flocculent yeast cells permeabilized with alcohol are very effective whole cell biocatalysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号