首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A probability approach was used to describe mitochondrial respiration in the presence of substrates, ATP, ADP, Cr and PCr. Respiring mitochondria were considered as a three-component system, including: 1) oxidative phosphorylation reactions which provide stable ATP and ADP concentrations in the mitochondrial matrix; 2) adenine nucleotide translocase provides exchange transfer of matrix adenine nucleotides for those from outside, supplied from medium and by creatine kinase; 3) creatine kinase, starting these reactions when activated by the substrates from medium. The specific feature of this system is close proximity of creatine kinase and translocase molecules. This results in high probability of direct activations of translocase by creatine kinase-derived ADP or ATP without their leak into the medium. In turn, the activated translocase with the same high probability directly provides creatine kinase with matrix-derived ATP or ADP. The catalytic complexes of creatine kinase formed with ATP from matrix together with those formed from medium ATP provide activation of the forward creatine kinase reaction coupled to translocase activation. Simultaneously the catalytic complexes of creatine kinase formed with ADP from matrix together with those formed from medium ADP provide activation of the reverse creatine kinase reaction coupled to translocase activation. The considered probabilities were arranged into a mathermatical model. The model satisfactorily simulates the available experimental data by several groups of investigators. The results allow to consider the observed kinetic and thermodynamic iriegularities in behavior of structurally bound creatine kinase as a direct consequence of its tight coupling to translocase.  相似文献   

2.
The route of movement of ADP produced in the mitochondrial creatine kinase reaction was investigated by recording the rate of ADP-dependent oxygen consumption in the presence of phosphoenolpyruvate and pyruvate kinase. This pyruvate kinase system completely abolished activation of respiration by ADP added or by ADP produced in the hexokinase reaction in the medium, but was not able to inhibit the creatine kinase activated respiration when creatine kinase was bound to the inner mitochondrial membrane. These different responses of oxidative phosphorylation were observed at equal ATPADP ratios in the medium. The data obtained evidence direct channeling of ADP from heart mitochondrial creatine kinase to the adenine nucleotide translocase without its prompt release into the medium.  相似文献   

3.
Mitochondrial creatine kinase was purified from rat hearts and used to produce antibodies in chicken and rabbits. Antibodies were purified to a high degree of homogeneity by an affinity chromatography method. Chicken antibodies against mitochondrial creatine kinase inhibited this enzyme in rat-heart mitochondrial inner membrane and matrix preparation, and simultaneously blocked oxidative phosphorylation. Under these conditions respiratory chain activities remained unchanged, but adenine nucleotide translocase was inhibited. Removal of mitochondrial creatine kinase from the membrane by pretreatment with 0.15 M KCl and 20 mM ADP completely abolished the effect of antibodies against mitochondrial creatine kinase on oxidative phosphorylation. Noninhibitory antibodies from rabbit with high affinity to rat mitochondrial creatine kinase inhibited neither creatine kinase activity nor oxidative phosphorylation. These data show close and specific spatial arrangement of mitochondrial creatine kinase and adenine nucleotide translocase in mitochondria. It is supposed that there is a fixed orientation of these proteins in the cardiolipin domain in the membrane and that their interaction may occur by a frequent collision due to their lateral movement.  相似文献   

4.
To define more clearly the interactions between mitochondrial creatine kinase and the adenine nucleotide translocase, the outer membrane of rat heart mitochondria was removed by digitonin, producing an inner membrane-matrix (mitoplast) preparation. This mitoplast fracton was well-coupled and contained a high specific activity of mitochondrial creatine kinase. Outer membrane permeabilization was documented by the loss of adenylate kinase, a soluble intermembrane enzyme, and by direct antibody inhibition of mitochondrial creatine kinase activity. With this preparation, we documented four important aspects of functional coupling. Kinetic studies showed that oxidative phosphorylation decreased the value of the ternary enzyme-substrate complex dissociation constant for MgATP from 140 to 16 microM. Two approaches were used to document the adenine nucleotide translocase specificity for ADP generated by mitochondrial creatine kinase. Exogenous pyruvate kinase (20 IU/ml) could not readily phosphorylate ADP produced by creatine kinase, since added pyruvate kinase did not markedly inhibit creatine + ATP-stimulated respiration. Additionally, when ADP was produced by mitochondrial creatine kinase, the inhibition of the translocase required 2 nmol of atractyloside/mg of mitoplast protein, while only 1 nmol/mg was necessary when exogenous ADP was added. Finally, the mass action ratio of the mitochondrial creatine kinase reaction exceeded the apparent equilibrium constant when ATP was supplied to the creatine kinase reaction by oxidative phosphorylation. Overall, these results are consistent with much data from intact rat heart mitochondria, and suggest that the outer membrane plays a minor role in the compartmentation of adenine nucleotides. Furthermore, since the removal of the outer membrane does not alter the unique coupling between oxidative phosphorylation and mitochondrial creatine kinase, we suggest that this cooperation is the result of protein-protein proximity at the inner membrane surface.  相似文献   

5.
The concept that creatine phosphokinase is bound to the outer surface of the heart mitochondrial inner membrane originated from observations that the enzyme is retained by water-swollen heart mitochondria and by digitonintreated heart mitochondria suspended in isotonic sucrose. The present study establishes that digitonin-treated mitochondria release creatine phosphokinase in isotonic KCl, and other investigators have reported an identical response for the water-swollen organelles. These observations suggest that mitochondrial creatine phosphokinase is not bound to the outer surface of the inner membrane at a site adjacent to the adenine nucleotide translocase under physiologic conditions.  相似文献   

6.
Mitochondria from transgenic mice, expressing enzymatically active mitochondrial creatine kinase in liver, were analyzed for opening of the permeability transition pore in the absence and presence of creatine kinase substrates but with no external adenine nucleotides added. In mitochondria from these transgenic mice, cyclosporin A-inhibited pore opening was delayed by creatine or cyclocreatine but not by beta-guanidinopropionic acid. This observation correlated with the ability of these substrates to stimulate state 3 respiration in the presence of extramitochondrial ATP. The dependence of transition pore opening on calcium and magnesium concentration was studied in the presence and absence of creatine. If mitochondrial creatine kinase activity decreased (i.e. by omitting magnesium from the medium), protection of permeability transition pore opening by creatine or cyclocreatine was no longer seen. Likewise, when creatine kinase was added externally to liver mitochondria from wild-type mice that do not express mitochondrial creatine kinase in liver, no protective effect on pore opening by creatine and its analog was observed. All these findings indicate that mitochondrial creatine kinase activity located within the intermembrane and intercristae space, in conjunction with its tight functional coupling to oxidative phosphorylation, via the adenine nucleotide translocase, can modulate mitochondrial permeability transition in the presence of creatine. These results are of relevance for the design of creatine analogs for cell protection as potential adjuvant therapeutic tools against neurodegenerative diseases.  相似文献   

7.
The aim of this study was to measure energy fluxes from mitochondria in isolated permeabilized cardiomyocytes. Respiration of permeabilized cardiomyocytes and mitochondrial membrane potential were measured in presence of MgATP, pyruvate kinase – phosphoenolpyruvate and creatine. ATP and phosphocreatine concentrations in medium surrounding cardiomyocytes were determined. While ATP concentration did not change in time, mitochondria effectively produced phosphocreatine (PCr) with PCr/O2 ratio equal to 5.68 ± 0.14. Addition of heterodimeric tubulin to isolated mitochondria was found to increase apparent Km for exogenous ADP from 11 ± 2 μM to 330 ± 47 μM, but creatine again decreased it to 23 ± 6 μM. These results show directly that under physiological conditions the major energy carrier from mitochondria into cytoplasm is PCr, produced by mitochondrial creatine kinase (MtCK), which functional coupling to adenine nucleotide translocase is enhanced by selective limitation of permeability of mitochondrial outer membrane within supercomplex ATP Synthasome-MtCK-VDAC-tubulin, Mitochondrial Interactosome.  相似文献   

8.
Rat heart myofibrils were isolated and purified in three different media: sucrose medium; EGTA medium; EGTA+ATP medium. All preparations were characterized by similar Ca2+-sensitive ATPase activities and were practically free of mitochondrial and sarcolemmal contaminations. However, they contained different amounts of creatine kinase. In preparations which showed the most intact ultrastructure, the activity of creatine kinase was 0.99 +/- 0.12 IU/mg. It was found that creatine kinase can be bound to myofibrils in a reversible manner with Kd = 0.16 mg/ml = 1.8 X 10(-6) M; the creatine kinase/myosin ratio was estimated to be approximately 1:10. The localization of creatine kinase was found to be a basis for the high turnover rate of ATP in the coupled creatine kinase and ATPase reactions occurring in cardiac myofibrils.  相似文献   

9.
Bovine heart mitochondria suspended in 0.25 M sucrose were treated with 0.3% glutaraldehyde (GA). The membranes were disintegrated by ultrasonication in 0.25 M KCl and precipitated by centrifugation. The supernatant was assayed for creatine kinase (CKm) oligomeric forms by ultracentrifugation in a sucrose density gradient. A kinetic analysis of membrane-bound CKm was performed before and after ultrasonication. The data obtained suggest that the CKm octamer is the only form of CKm bound to mitochondrial membranes during GA treatment. This finding was confirmed by an analysis of extracts from untreated mitochondria using high resolution gel filtration.  相似文献   

10.
The synthesis of creatine phosphate (CP) by mitochondrial creatine kinase during oxidative phosphorylation was terminated when the mass action ratio of the creatine kinase reaction = [ADP]·[CP][ATP]·[Cr] became equal to the apparent equilibrium constant (K eq app) of this reaction. Subsequent excess of over the K eq app was due to an increase in the ADP concentration in the medium. A comparable increase in the ADP concentration also occurred in the absence of creatine (Cr) in the incubation medium. Increase in the ADP concentration was shown to be associated with a decrease in the rate of oxidative phosphorylation and with a relative increase in the ATPase activity of mitochondria during the incubation. A low concentration of ADP (<30 M) and relatively high concentrations (1-6 mM) of other components of the creatine kinase reaction prevented the detection of the reverse reaction within 10 min after exceeded the K eq app, but the reverse reaction became evident on more prolonged incubation. The reverse reaction was accompanied by a further increase in . Low ADP concentration in the medium was also responsible for the lack of an immediate conversion of the excess creatine phosphate added although > K eq app. The findings are concluded to be in contradiction with the concept of microcompartment formation between mitochondrial creatine kinase and adenine nucleotide translocase.  相似文献   

11.
The influence of osmolytes, including dimethysulfoxide, glycine, proline and sucrose, on the refolding and reactivation courses of guanidine-denatured creatine kinase was studied by fluorescence emission spectra, circular dichroism spectra, recovery of enzymatic activity and aggregation. The results showed that low concentrations of dimethysulfoxide (<20%), glycine (<0.5 M), proline (<1 M) and sucrose (<0.75 M) improved the refolding yields of creatine kinase, but high osmolyte concentrations decreased its recovery. Sucrose favored the secondary structural formation of creatine kinase. Proline and sucrose facilitated refolding of the protein to its original conformation, while dimethysulfoxide and proline accelerated the hydrophobic collapse of creatine kinase to a packed protein. During the aggregation of creatine kinase, dimethysulfoxide and sucrose inhibited aggregation of creatine kinase, as did proline, but glycine was unable to inhibit aggregation. These systematic observations further support the suggestion that osmolytes, including low concentrations of dimethysulfoxide, proline or sucrose, possibly play a chaperone role in the refolding of creatine kinase. The results also indicate that sucrose and free amino acids are not only energy substrates and organic components in vivo, but also help correct protein folding.  相似文献   

12.
The dependence of the rate of creatine phosphate synthesis in the mitochondrial creatine phosphokinase reaction upon the rate of oxidative phosphorylation and ATP translocation from the matrix to outside of the mitochondria has been studied. It has been experimentally shown that mitochondrial creatine phosphokinase reacts slowly with ATP in the medium but is very active in utilization of ATP synthesized by the oxidative phosphorylation process. From these data, it is postulated, therefore, that the ATP-ADP translocase transports ATP molecules directly to the active site of creatine phosphokinase localized on the outer site of the inner membrane. This results in an increase in the effective concentration of ATP in the vinicity of the active sites of creatine kinase and in acceleration of the forward reaction (creatine phosphate synthesis). The kinetic theory based on this assumption allows a quantitative explanation of the observed dependences. These data indicate the tight functional coupling between ATP-ADP translocase and creatine phosphokinase in heart mitochondria. It is concluded that in heart cells energy can be transported by creatine phosphate molecules only.  相似文献   

13.
In skinned rat cardiac fibres, mitochondrial affinity for endogenous ADP generated by creatine kinase and Ca2+-activated ATPases is higher than for exogenous ADP added to the surrounding medium, suggesting that mitochondria are functionally coupled to creatine kinase and ATPases. Such a coupling may be weaker or absent in ectothermic vertebrate cardiac cells, because they typically have less elaborate intracellular membrane structures, higher glycolytic capacity and lower working temperature. Therefore, we examined skinned cardiac fibres from rainbow trout at 10 °C. The apparent mitochondrial affinity for endogenous ADP was obtained by stimulation with ATP and recording of the release of ADP into the surrounding medium. The apparent affinity for endogenous ADP was much higher than for exogenous ADP suggesting a functional coupling between mitochondria and ATPases. The apparent affinity for exogenous ADP and ATP was increased by creatine or an increase in Ca2+-activity, which should increase intrafibrillar turnover of ATP to ADP. In conclusion, ADP seems to be channelled from creatine kinase and ATPases to mitochondria without being released to the surrounding medium. Thus, despite difference in structure, temperature and metabolic capacity, trout myocardium resembles that of rat with regard to the regulation of mitochondrial respiration.Abbreviations ACR acceptor control ratio - ANT adenine nucleotide translocase - KM ADP apparent mitochondrial affinity for ADP - KM ATP apparent mitochondrial affinity for ATP - LDH lactate dehydrogenase - VADP ADP-stimulated respiration rate - VADP max maximal ADP-stimulated respiration rate - VATP ATP-stimulated respiration rate - VATP max maximal ATP-stimulated respiration rate - V0 basal respiration rate in the absence of ADPCommunicated by G. Heldmaier  相似文献   

14.
This paper demonstrates that the mitochondrial isoenzyme of creatine kinase (CKm) can be solubilized from rabbit heart mitochondria, the outer membrane of which has been removed or at least broken by a digitonin treatment or a short hypotonic exposure, but which has retained an important part of the capacity to phosphorylate ADP. Phosphate, ADP, or ATP, at concentrations which are used to study oxidative phosphorylation and creatine phosphate synthesis, solubilize CKm; the same is true with MgCl2 and KCl. The effect of adenine nucleotides does not seem to be due to their interaction with the adenine nucleotide translocase. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis shows that CKm is the main protein released in the described conditions; however, it does not amount to more than 1% of the total protein content of the mitoplasts. When the apparent Km for ATP of CKm was estimated by measuring creatine phosphate synthesis, the values obtained using water-treated mitochondria (0.21 mM) were slightly higher than those of intact mitochondria (0.12 mM) but the difference was not significant. In the former preparation 77% of CKm was in a soluble state. If we can extrapolate these results to intact mitochondria and suppose that in this case a fraction of CKm is also soluble in the intermembrane space, this does not support the theory of functional association between CKm and the adenine nucleotide translocase.  相似文献   

15.
Previous studies have suggested that MM creatine kinase is a muscle-specific protein and is not present in adult brain tissue. We have isolated a protein from human brain with an apparent molecular weight of 43,000 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis which is identical to the muscle M creatine kinase isoenzyme subunit at all 30 sequenced amino acid residues and possesses creatine kinase enzymatic activity following nondenaturing agarose-gel electrophoresis. Immunohistochemistry localizes M creatine kinase to discrete areas of adult human brain. Northern blot analysis of both total and poly(A)-selected RNA isolated from brain did not detect M creatine kinase mRNA. However, polymerase chain reaction amplification of cDNA synthesized from human placenta, heart, and brain mRNA detected M creatine kinase message in both heart and brain but not placenta which contains no detectable M creatine kinase protein. N1E115 and NS20Y, mouse neuroblastoma cell lines which have been used as models of neural cell differentiation, were found also to express MM creatine kinase. Moreover, a transiently transfected reporter gene with 4,800 base pairs of M creatine kinase upstream region fused to chloramphenicol acetyltransferase was expressed during differentiation of these neural cell lines. In summary, MM creatine kinase is present in human brain and we suggest the M creatine kinase upstream region is sufficient to modulate M creatine kinase expression in certain neuronal cells and may be regulated independently from other muscle genes.  相似文献   

16.
The influence of mitochondrial creatine kinase on subcellular high energy systems has been investigated using isolated rat heart mitochondria, mitoplasts and intact heart and skeletal muscle tissue.In isolated mitochondria, the creatine kinase is functionally coupled to oxidative phosphorylation at active respiratory chain, so that it catalyses the formation of creatine phosphate against its thermodynamic equilibrium. Therefore the mass action ratio is shifted from the equilibrium ratio to lower values. At inhibited respiration, it is close to the equilibrium value, irrespective of the mechanism of the inhibition. The same results were obtained for mitoplasts under conditions where the mitochondrial creatine kinase is still associated with the inner membrane.In intact tissue increasing amounts of creatine phosphate are found in the mitochondrial compartment when respiration and/or muscle work are increased. It is suggested that at high rates of oxidative phosphorylation creatine phosphate is accumulated in the intermembrane space due to the high activity of mitochondrial creatine kinase and the restricted permeability of reactants into the extramitochondrial space. A certain amount of this creatine phosphate leaks into the mitochondrial matrix.This leak is confirmed in isolated rat heart mitochondria where creatine phosphate is taken up when it is generated by the mitochondrial creatine kinase reaction. At inhibited creatine kinase, external creatine phosphate is not taken up. Likewise, mitoplasts only take up creatine phosphate when creatine kinase is still associated with the inner membrane. Both findings indicate that uptake is dependent on the functional active creatine kinase coupled to oxidative phosphorylation.Creatine phosphate uptake into mitochondria is inhibited with carboxyatractyloside. This suggests a possible role of the mitochondrial adenine nucleotide translocase in creatine phosphate uptake.Taken together, our findings are in agreement with the proposal that creatine kinase operates in the intermembrane space as a functional unit with the adenine nucleotide translocase in the inner membrane for optimal transfer of energy from the electron transport chain to extramitochondrial ATP-consuming reactions.  相似文献   

17.
The interaction of mitochondrial creatine kinase and ATP-ADP translocase with 2.3-dialdehyde derivatives of ADP and ATP (oADP and oATP) has been studied. It was shown that these compounds are irreversible and specific inhibitors of creatine kinase (KioADP = 0.6mM, KioATP = 1.12 mM) and ATP-ADP translocase (KioADP = 0.065mM, KioATP = 0.14 mM). The substrates protect both enzymes from inactivation by these compounds. The maximal pseudo-first order rate constants for the 2,3-dialdehyde nucleotide derivative interaction with creatine kinase are 0.2 min-1 for oADP (pH 6.5) and 0.11 min-1 for oATP (pH 7.0). A decrease in the creatine kinase activity correlates with the incorporation of the reagent into the protein. The completely inactivated, isolated and purified enzyme contains 1 mol of oADP per mole of active sites. A procedure for simultaneous determination of the creatine kinase and translocase content in mitochondria and mitoplasts has been developed, which is based on the application of [3H]oADP in combination with specific treatment of mitochondria (or mitoplasts) with carboxyatractyloside 2,4-dinitrofluorobenzene and a mixture of creatine kinase substrates (MgADP + phosphocreatine). It has been found that for heart mitochondria from different animals the content of creatine kinase and translocase is 2.1-2.6 and 2.4-2.9 mol per mol of cytochrome c oxidase, respectively. Thus, the stoiochiometric ratio of creatine kinase and ATP-ADP translocase is close to 1.0 for all mitochondrial preparations under study (i.e. rat, dog, rabbit and chicken).  相似文献   

18.
In physiological salt solution (PSS) which mimicks the cardiac cells cytoplasm and contains 120 mM K-MES, 10 mM NaCl, 20 mM imidazole, pH 7.2, 20 mM taurine, 15 mM creatine, 15 mM Na2phosphocreatine, 5 mM Na2ATP, 8 mM MgCl2, 5 mM K2HPO4, 3 mM glutamate, 3 mM malate, 0.5 mM dithiothreitol and 10 mg/ml of bovine serum albumine both isolated mitochondria and intracellular structures in skinned fibers stay intact. In PSS mitochondrial creatine kinase remains firmly attached to the inner membrane surface. CKmi-mi is extracted from cardiac mitoplasts in 0.125 M KCl solution, but addition of 10 mM sodium borate to this KCl solution completely inhibits dissociation of CKmi-mi. Therefore, not ionic strength but ion composition is important for association of CKmi-mi with mitochondrial membrane. Functional and structural studies using antibodies against CKmi-mi showed that in PSS CKmi-mi is bound to the inner mitochondrial membrane in spatially close relationship to adenine nucleotide translocase (ANT). Thus, under physiological conditions CKmi-mi is structurally and functionally coupled to ANT in cardiac mitochondria and functions to catalyze almost complete utilization of mitochondrial ATP for aerobic phosphocreatine synthesis.  相似文献   

19.
The effect of temperature on the apparent equilibrium constant of creatine kinase (ATP:creatine N-phosphotransferase (EC 2.7.3.2)) was determined. At equilibrium the apparent K' for the biochemical reaction was defined as [formula: see text] The symbol sigma denotes the sum of all the ionic and metal complex species of the reactant components in M. The K' at pH 7.0, 1.0 mM free Mg2+, and ionic strength of 0.25 M at experimental conditions was 177 +/- 7.0, 217 +/- 11, 255 +/- 10, and 307 +/- 13 (n = 8) at 38, 25, 15, and 5 degrees C, respectively. The standard apparent enthalpy or heat of the reaction at the specified conditions (delta H' degree) was calculated from a van't Hoff plot of log10K' versus 1/T, and found to be -11.93 kJ mol-1 (-2852 cal mol-1) in the direction of ATP formation. The corresponding standard apparent entropy of the reaction (delta S' degree) was +4.70 J K-1 mol-1. The linear function (r2 = 0.99) between log10 K' and 1/K demonstrates that both delta H' degree and delta S' degree are independent of temperature for the creatine kinase reaction, and that delta Cp' degree, the standard apparent heat capacity of products minus reactants in their standard states, is negligible between 5 and 38 degrees C. We further show from our data that the sign and magnitude of the standard apparent Gibbs energy (delta G' degree) of the creatine kinase reaction was comprised mostly of the enthalpy of the reaction, with 11% coming from the entropy T delta S' degree term. The thermodynamic quantities for the following two reference reactions of creatine kinase were also determined. [formula: see text] The delta H degree for Reaction 2 was -16.73 kJ mol-1 (-3998 cal mol-1) and for Reaction 3 was -23.23 kJ mol-1 (-5552 cal mol-1) over the temperature range 5-38 degrees C. The corresponding delta S degree values for the reactions were +110.43 and +83.49 J K-1 mol-1, respectively. Using the delta H' degree of -11.93 kJ mol-1, and one K' value at one temperature, a second K' at a second temperature can be calculated, thus permitting bioenergetic investigations of organs and tissues using the creatine kinase equilibria over the entire physiological temperature range.  相似文献   

20.
Isolated pig heart mitochondria were found to form phosphocreatine continuously at the rate of 12.5 +/- 1.8 nmol per min per mg of the mitochondrial protein in the respiration medium without externally added adenine nucleotides, and its formation rate showed a concentration dependency with respect to creatine and phosphate. The synthesis of phosphocreatine was completely inhibited by antimycin, FCCP (carbonyl cyanide-p-trifluoromethoxyphenylhydrazone), and atractyloside. However, oligomycin had no effect on the rate of phosphocreatine formation. These results are discussed in terms of a model that heart mitochondrial creatine kinase is functionally coupled to the oxidative phosphorylating system via the action of the adenine nucleotide translocase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号