首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To differentiate whether the primary volume signal in dog red cells arises from a change in cell configuration or the concentration and dilution of cell contents, we prepared resealed ghosts that had the same surface area and hemoglobin concentration as intact cells but less than 1/3 their volume. Shrinkage of both intact cells and resealed ghosts triggered Na/H exchange. Activation of this transporter in the two preparations correlated closely with cytosolic protein concentration but not at all with volume. The Na/H exchanger was more sensitive to shrinkage in albumin-loaded resealed ghosts than in intact cells or ghosts containing only hemoglobin. Similar results were obtained for the swelling-induced [K-Cl] cotransporter. We believe perception of cell volume originates with changes in cytoplasmic protein concentration. We think the kinases and phosphatases that control the activation of membrane transporters in response to cell swelling or shrinkage are regulated by the mechanism of macromolecular crowding.  相似文献   

2.
Two steps were required for ATP-dependent endocytosis in resealed erythrocyte ghosts. The first step required incubation with Mg-ATP at 37 °C, while the second step required primaquine and occurred at 0 or at 37 °C. These two steps were apparently also required for ATP-dependent endocytosis in erythrocytes. Endocytosis in white ghosts was similar to that in resealed ghosts and erythrocytes; the main difference was that the requirement of primaquine for the second step was less strict in white ghosts; in them, appreciable endocytosis took place with no added primaquine. Nonetheless, endocytosis in all three types of cells was stimulated by primaquine. The fluidity of the membranes as sensed by spin-labeled phosphatidylcholine was measured with and without primaquine. The fluidity of erythrocytes was increased by addition of primaquine or by conversion of the erythrocytes to white ghosts; the effect primaquine had on the fluidity of white ghosts was not detectable by the spin label. This suggested that a fluidizing or loosening of the membrane structure was required for the second step of ATP-dependent endocytosis, and that this loosening could be accomplished either by primaquine or by the process of preparing white ghosts.  相似文献   

3.
Summary A method of preparing hemoglobin-depleted resealed ghosts with an extremely low hemoglobin content is described. The membrane morphology, the crossed immunoelectrophoresis pattern of the membrane proteins, and the transport function of these ghosts have been examined.Electron microscopic examination of the ghosts on hydrophilic as well as hydrophobic grid surfaces revealed a faint filamentous network (spectrin) associated with the membrane. The ghosts were found to have permeabilities towards small polar molecules (water and mannitol) and ions (chloride, sodium, and potassium) which are quantitatively very close to those of intact red cells.It is concluded that white ghosts prepared by the present method are well suited for simultaneous studies of morphology, membrane biochemistry, and membrane transport functions.  相似文献   

4.
Summary Using the flow EPR technique, we investigated the resealed ghost deformability in shear flow and the effects of the altered state of cytoskeletal network induced by hypotonic incubation of ghosts. Isotonically resealed ghosts in the presence of Mg-ATP, in which alteration of cytoskeletal network is not effected, have smooth biconcave discoid shapes, and show a flow orientation and deformation behavior similar to that of erythrocytes, except that higher viscosities are required to induce the same degrees of deformation and orientation as in erythrocytes. The flow behavior of resealed ghosts is Mg-ATP dependent, and the shape of the ghosts resealed without Mg-ATP is echinocytic. In contrast, the ghosts resealed by hypotonic incubation show a markedly reduced deformability even with Mg-ATP present. Nonreducing, nondenaturing polyacrylamide gel electrophoresis (PAGE) of the low ionic strength extracts from hypotonically resealed ghosts reveals a shift of the spectrin tetramer-dimer equilibrium toward the dimers. In the maleimide spin-labeled ghosts, the ratios of the weakly immobilized to the strongly immobilized EPR intensities are larger in hypotonically resealed ghosts than in the isotonically resealed ghosts, indicating an enhanced mobility in the spectrin structure in the former. Photomicrographs of hypotonically resealed ghosts show slightly stomatocytic transformations. These data suggest that the shape and the deformability loss in hypotonically resealed ghosts are related to an alteration of the spectrin tetramer-dimer equilibrium in the membrane. Thus, the shift of the equilibrium is likely to affect the regulation of the membrane deformability both in normal and pathological cells such as hereditary elliptocytes.  相似文献   

5.
Chloride-dependent K transport ([K-Cl] cotransport) in dog red cells is activated by cell swelling. Whether the volume signal is generated by a change in cell configuration or by the dilution of some cytosolic constituent is not known. To differentiate between these two alternatives we prepared resealed ghosts that, compared with intact red cells, had the same surface area and similar hemoglobin concentration, but a greatly diminished volume. Swelling-induced [K-Cl] cotransport was activated in the ghosts at a volume (20 fl) well below the activation volume for intact cells (70 fl), but at a similar hemoglobin concentration (30-35 g dry solids per 100 g wet weight). Ghosts made to contain 40% albumin and 60% hemoglobin showed activation of [K-Cl] cotransport at a concentration of cell solids similar to intact cells or ghosts containing only hemoglobin. [K-Cl] cotransport in the resealed ghosts became quiescent at a dry solid concentration close to that at which shrinkage-induced Na/H exchange became activated. These results support the notion that the primary volume sensor in dog red cells is cytosolic protein concentration. We speculate that macromolecular crowding is the mechanism by which cells initiate responses to volume perturbation.  相似文献   

6.
The intact, amphipatic form of cytochrome b5 could bind to unsealed ghosts, but not to resealed ghosts, suggesting that the cytochrome could bind only to the inner (cytoplasmic) surface of the ghost membrane. This was further confirmed by the finding that the cytochrome could bind to closed, inside-out vesicles prepared from the ghosts. This asymmetric binding was not due to the exclusive localization of sialic acid and sugar chains on the outer surface of the ghosts membrane, because the cytochrome could not bind to ghosts even after enzymatic removal of these components. Although liposomes consisting of phosphatidylcholine or both phosphatidylcholine and sphingomyelin could effectively bind the cytochrome, this binding capacity was progressively decreased as increasing amount of cholesterol was included in the composition of phosphatidylcholine liposomes. Removal of cholesterol from resealed ghosts by incubation with egg phosphatidylcholine liposomes resulted in the binding of cytochrome b5 to the outer surface of the treated ghosts. The possibility is discussed that the asymmetric binding is due to preferential localization of cholesterol in the outer leaflet of the lipid bilayer that constitutes the ghost membrane.  相似文献   

7.
We prepared resealed erythrocyte ghosts loaded with SPQ and chloride. We demonstrated that these membranes were still functional, as they were capable of exchanging anions, most probably through the band-3 protein. When cytolytic toxins (Escherichia coli hemolysin and Staphylococcus aureus alpha-toxin) were offered to the resealed ghosts, the internal SPQ was released. This could be attributed to the formation of toxin-induced ion channels into the ghost membrane that were so large that SPQ could escape through them. This release was actually independent of the anion-exchanging protein, since DIDS had no inhibitory effect on it. Due to their simplicity, and because they do not lyse, erythrocyte ghosts may serve as useful models to study the action of cytolytic pore-forming toxins. To assess the validity of these model membranes we compared results obtained using RBC and resealed erythrocyte ghosts as targets for the toxin, finding complete consistency. Pre-assembled toxin channels could also be studied on the ghosts. Applying different proteolytic enzymes to the external compartment after channel formation, we found that performed E. coli hemolysin pores were at least partially destroyed by enzymatic digestion.  相似文献   

8.
Spectrin-depleted inside-out vesicles (IOV's) prepared from human erythrocyte membranes were characterized in terms of size, ground permeability to hydrophilic nonelectrolytes and their sensitivity to modification by SH reagents, DIDS and trypsin. IOV's proved to have the same permeability of their lipid domain to erythritol as native erythrocytes, in contrast to resealed ghosts (Klonk, S. and Deuticke, B. (1992) Biochim. Biophys. Acta 1106, 126-136 (Part I in this series)), which have a residual leak. On the other hand, IOV's have a slightly elevated permeability for mannitol and sucrose, nonelectrolytes which are almost (mannitol) or fully (sucrose) impermeant in the native membrane. These increased fluxes, which have a high activation energy and can be stimulated by phloretin, are, however, also much smaller than the corresponding leak fluxes observed in resealed ghosts. In view of these differences, formation of IOV's can be concluded to go along with partial annealing of barrier defects persisting in the erythrocyte membrane after preparation of resealed ghosts. Oxidation of SH groups of the IOV membrane by diamide produces an enhancement of permeability for hydrophilic nonelectrolytes which is much less pronounced than that induced by a similar treatment of erythrocytes or ghosts (Klonk, S. and Deuticke, B. (1992) Biochim. Biophys. Acta 1106, 126-136 (Part I in this series)). Moreover, proteolytic treatment of the vesicle membrane, although leading to a marked digestion of integral membrane proteins, only induces a minor, saturating increase of permeability, much lower than that in trypsinized resealed ghosts (Klonk, S. and Deuticke, B. (1992) Biochim. Biophys. Acta 1106, 137-142 (Part II of this series)). Since absence of the cytoskeletal proteins, spectrin and actin, is the major difference between IOV's and resealed ghosts, these results may be taken as further evidence for a dependence of the barrier properties of the erythrocyte membrane bilayer domain on its interaction with cytoskeletal elements. In contrast, these barrier properties seem to be rather insensitive to perturbations of integral proteins.  相似文献   

9.
We have studied beta-adrenergic stimulation of cyclic AMP formation in fragmented membranes and in unsealed or resealed ghosts prepared from rat reticulocytes. The maximal rate of isoprenaline-stimulated cyclic AMP formation with saturating MgATP concentrations and in the presence of the phosphodiesterase inhibitor isobutylmethylxanthine was 5-8 nmol/min per ml ghosts and remained constant for at least 15 min. Transition from resealed ghosts to fragmented membranes was associated with a shift of the activation constant (Ka) for (+/-)-isoprenaline from 0.1 to 0.6 microM. THe apparent dissociation constant for propranolol (0.01 microM) remained unchanged. The Ka values for isoprenaline in native reticulocytes and in resealed ghosts were identical. The stimulating effect of NaF on cyclic AMP formation in resealed ghosts reached 15% of maximal beta-adrenergic stimulation. Cyclic AMP formation, both in fragmented membranes and in ghosts, was half-maximally inhibited with Ca2+ concentrations ranging between 0.1 and 1 microM. GTP stimulated isoprenaline-dependent cyclic AMP formation in unsealed ghosts and in fragmented reticulocyte membranes by a factor of 3-5 but did not change the Ka value for isoprenaline. Ka values for the guanylnucleotides in different experiments varied between 0.3 and 2 microM. Ca2+ concentrations up to 4.6 microM reduced the maximal activation by GTP and Gpp(NH)p but did not affect their Ka values. Compared to GTP, maximal activation by Gpp(NH)p was higher in fragmented membranes, but much lower in ghosts. Our results suggest that the native beta-receptor adenylate cyclase system of reticulocytes is more closely approximated in the ghost model than in fragmented membrane preparations. Membrane properties seem to modulate the actions of guanylnucleotides on isoprenaline-dependent cyclic AMP formation in ghosts. Some of these effects are not observed in isolated membranes.  相似文献   

10.
Transmembrane distribution of sterol in the human erythrocyte   总被引:2,自引:0,他引:2  
The transbilayer cholesterol distribution of human erythrocytes was examined by two independent techniques, quenching of dehydroergosterol fluorescence and fluorescence photobleaching of NBD-cholesterol. Dehydroergosterol in conjunction with leaflet selective quenching showed that, at equilibrium, 75% of the sterol was localized to the inner leaflet of resealed erythrocyte ghosts. NBD-cholesterol and fluorescence photobleaching displayed two diffusion values in both resealed ghosts and intact erythrocytes. The fractional contribution of the fast and slow diffusion constants of NBD-labelled cholesterol represent its inner and outer leaflet distribution. At room temperature the plasma membrane inner leaflet of erythrocyte ghosts as well as intact erythrocytes cells contained 78% of the plasma membrane sterol. The erythrocyte membrane transbilayer distribution of sterol was independent of temperature. In conclusion, dehydroergosterol and NBD-cholesterol data are consistent with an enrichment of cholesterol in the inner leaflet of the human erythrocyte.  相似文献   

11.
We have studied β-adrenergic stimulation of cyclic AMP formation in fragmented membranes and in unsealed or resealed ghosts prepared from rat reticulocytes. The maximal rate of isoprenaline-stimulated cyclic AMP formation with saturating MgATP concentrations and in the presence of the phosphodiesterase inhibitor isobutylmethylxanthine was 5–8 nmol/min per ml ghosts are remained constant for at least 15 min. Transition from resealed ghosts to fragmented membranes was associated with a shift of the activation constant (Ka) for (±)-isoprenaline from 0.1 to 0.6 μM. The apparent dissociation constant for propranolol (0.01 μM) remained unchanged. The Ka values for isoprenaline in native reticulocytes and in resealed ghosts were identi The stimulating effect of NaF on cyclic AMP formation in resealed ghosts reached 15% of maximal β-adrenergic stimulation. Cyclic AMP formation, both in fragmented membranes and in ghosts, was half-maximally inhibited with Ca2+ concentrations ranging between 0.1 and 1 μM. GTP stimulated iosprenaline-dependent cyclic AMP formation in unsealed ghosts and in fragmented reticulocyte membranes by a factor of 3–5 but did not change the Ka value for isoprenaline. Ka values for the guanylnucleotides in different experiments varied between 0.3 and 2 μM. Ca2+ concentrations up to 4.6 μM reduced the maximal activation by GTP and Gpp(NH)p but did not affect their Ka values. Compared to GTP, maximal activation by Gpp(NH)p was higher in fragmented membranes, but much lower in ghosts. Our results suggest that the native β-receptor adenylate cyclase system of reticulocytes is more closely approximated in the ghost model than in fragmented membrane preparations. Membrane properties seem to modulate the actions of guanylnucleotides on isoprenaline-dependent cyclic AMP formation in ghosts. Some of these effects are not observed in isolated membranes.  相似文献   

12.
Reduction of extracellular ferricyanide by intact cells reflects the activity of an as yet unidentified trans-plasma membrane oxidoreductase. In human erythrocytes, this activity was found to be limited by the ability of the cells to recycle intracellular ascorbic acid, its primary trans-membrane electron donor. Ascorbate-dependent ferricyanide reduction by erythrocytes was partially inhibited by reaction of one or more cell-surface sulfhydryls with p-chloromercuribenzene sulfonic acid, an effect that persisted in resealed ghosts prepared from such treated cells. However, treatment of intact cells with the sulfhydryl reagent had no effect on NADH-dependent ferricyanide or ferricytochrome c reductase activities of open ghosts prepared from treated cells. When cytosol-free ghosts were resealed to contain trypsin or pronase, ascorbate-dependent reduction of extravesicular ferricyanide was doubled, whereas NADH-dependent ferricyanide and ferricytochrome c reduction were decreased by proteolytic digestion. The trans-membrane ascorbate-dependent activity was also found to be inhibited by reaction of sulfhydryls on its cytoplasmic face. These results show that the trans-membrane ferricyanide oxidoreductase is limited by the ability of erythrocytes to recycle intracellular ascorbate, that it does not involve the endofacial NADH-dependent cytochrome b(5) reductase system, and that it is a trans-membrane protein that contains sensitive sulfhydryl groups on both membrane faces.  相似文献   

13.
Cholesterol oxidase (EC 1.1.3.6, Brevibacterium sp.), which catalyzes the reaction: cholesterol + O2Δ4-cholestenone + H2O2, has no effect on the cholesterol of intact (human) erythrocytes and of “resealed” ghosts, when it is present only outside these ghosts. The cholesterol of “leaky” ghosts, of “resealed” ghosts with enzyme trapped within, and of “inside-out” vesicles, was completely oxidized. This pattern indicates that the inner (cytoplasmic) membrane surface must be exposed to the enzyme for the reaction to occur, and that outer surface cholesterol only becomes reactive after the membrane has been degraded by the oxidation of inner surface cholesterol. The enzymatic oxidations followed monotonic first-order kinetics, and hence gave no evidence to support the two states of cholesterol in the membrane that had been postulated earlier from studies on the plasma lipoprotein extraction of cholesterol from the membrane.  相似文献   

14.
We have studied β-adrenergic stimulation of cyclic AMP formation in fragmented membranes and in unsealed or resealed ghosts prepared from rat reticulocytes. The maximal rate of isoprenaline-stimulated cyclic AMP formation with saturating MgATP concentrations and in the presence of the phosphodiesterase inhibitor isobutylmethylxanthine was 5–8 nmol/min per ml ghosts are remained constant for at least 15 min. Transition from resealed ghosts to fragmented membranes was associated with a shift of the activation constant (Ka) for (±)-isoprenaline from 0.1 to 0.6 μM. The apparent dissociation constant for propranolol (0.01 μM) remained unchanged. The Ka values for isoprenaline in native reticulocytes and in resealed ghosts were identi The stimulating effect of NaF on cyclic AMP formation in resealed ghosts reached 15% of maximal β-adrenergic stimulation. Cyclic AMP formation, both in fragmented membranes and in ghosts, was half-maximally inhibited with Ca2+ concentrations ranging between 0.1 and 1 μM. GTP stimulated iosprenaline-dependent cyclic AMP formation in unsealed ghosts and in fragmented reticulocyte membranes by a factor of 3–5 but did not change the Ka value for isoprenaline. Ka values for the guanylnucleotides in different experiments varied between 0.3 and 2 μM. Ca2+ concentrations up to 4.6 μM reduced the maximal activation by GTP and Gpp(NH)p but did not affect their Ka values. Compared to GTP, maximal activation by Gpp(NH)p was higher in fragmented membranes, but much lower in ghosts. Our results suggest that the native β-receptor adenylate cyclase system of reticulocytes is more closely approximated in the ghost model than in fragmented membrane preparations. Membrane properties seem to modulate the actions of guanylnucleotides on isoprenaline-dependent cyclic AMP formation in ghosts. Some of these effects are not observed in isolated membranes.  相似文献   

15.
Resealed erythrocyte ghosts were prepared under different experimental conditions and were tested in vitro for susceptibility to infection with the human malarial parasite, Plasmodium falciparum. Resealed ghosts, prepared by dialyzing erythrocytes in narrow membrane tubing against low ionic strength buffer that was supplemented with magnesium ATP, were as susceptible to parasite infection as were normal erythrocytes. There was a direct correlation between intraerythrocytic ATP content and susceptibility to parasite infection. Neither MgCl2 nor sodium ATP could be substituted for magnesium ATP in maintaining high intraerythrocytic ATP concentration. When resealed ghosts were loaded with antispectrin IgG, malaria merozoite invasion was inhibited. At an average intracellular antispectrin IgG concentration of 3.5 micrograms/10(8) cells, there was a 35% inhibition of parasite invasion. This inhibition was due to spectrin crosslinking within the resealed ghosts, since the monovalent, Fab' fragments of antispectrin IgG had no inhibitory effect on invasion. These results indicate that the cytoskeleton plays a role in the complex process of merozoite entry into the host erythrocyte.  相似文献   

16.
The effects of systematic variations in the preparative procedures on the membrane viscoelastic properties of resealed human red blood cell ghosts have been investigated. Ghosts, prepared by hypotonic lysis at 0 degrees C and resealing at 37 degrees C, were subjected to: measurement of the time constant for extensional recovery (tc); measurement of the membrane shear elastic modulus (mu) via three separate techniques; determination of the membrane viscosity (eta m) via a cone-plate Rheoscope. Membrane viscosity was also determined as eta m = mu X tc. Compared to intact cells, ghosts had shorter tc, regardless of their residual hemoglobin concentration (up to 21.6 g/dl). However, prolonged exposure to hypotonic media did increase their recovery time toward the intact cell value. The shear elastic modulus, as judged by micropipette aspiration of membrane tongues (mu p), was similar for all ghosts and intact cells. This result, taken with the tc data, indicates that ghosts have reduced membrane viscosity. Rheoscopic analysis also showed that eta m was reduced for ghosts, with the degree of reduction (approx. 50%) agreeing well with that estimated by the product mu p X tc. However, flow channel and pipette elongation estimates indicated that the ghost membrane elastic modulus was somewhat elevated compared to intact cells. We conclude that: ghosts have reduced membrane viscosity; ghosts have membrane rigidities close to intact cells, except possibly when the membrane is subjected to very large strains; the reduction in eta m is not directly related to the loss of hemoglobin; prolonged exposure of ghosts to low-ionic strength media increases the membrane viscosity toward its initial cellular level. These data indicate that the mechanical characteristics of ghost membranes can be varied by changing the methods of preparation and thus have potential application to further studies of the structural determinants of red cell membrane viscoelasticity.  相似文献   

17.
In this study we examined the effect of carnitine and acetylcarnitine on the human erythrocyte membrane stability and membrane deformability. Since erythrocyte membranes are impermeable to these compounds, we resealed erythrocyte ghosts in the presence of different concentrations of carnitine or acetylcarnitine. Resealed ghosts can be adequately studied in their cellular deformability and membrane stability properties by means of ektacytometry. Both carnitine and acetylcarnitine alter the membrane stability but not membrane deformability of the red cell membrane. Resealed ghosts containing 20, 50, 150, and 300 microM carnitine had 1.1, 1.6, 0.9, and 0.7 times the normal stability. While resealed ghosts containing 20, 50, 150, and 300 microM acetylcarnitine had 1.1, 1.5, 1.3, and 1.2 times the normal stability. Such changes were found to be reversible. We also conducted SDS PAGE of cytoskeletal membrane proteins from membrane fragments and residual membranes produced during membrane stability analysis, and unsheared resealed membranes in those samples where we observed an increase or a decrease of membrane stability. No changes in the cytoskeletal membrane proteins were noticed, even when the samples, prior SDS PAGE analysis, were treated with or without dithiothreitol. In addition, fluorescence steady state anisotropy of DPH in the erythrocyte membrane treated with carnitine or acetylcarnitine shows no modification of the lipid order parameter. Our results would suggest that both carnitine and its acetyl-ester, at physiological concentrations, may increase membrane stability in mature erythrocytes, most likely via a specific interaction with one or more cytoskeletal proteins, and that this effect would manifest when the erythrocytes are subjected to high shear stress.  相似文献   

18.
We have prepared and characterized resealed erythrocyte ghosts in which the only discernible pigment is cytochrome c. The resealed ghosts have the normal orientation and are free of 'leaky' species; they are stable and can be maintained at 4 degrees C for many days without lysis. The internal cytochrome c participates in redox reactions with both soluble and insolubilized cytochrome c present externally, and with external cytochrome b5. No reaction was observed with plastocyanin, cytochrome c oxidase or NADPH-cytochrome c reductase. A study has been made of the reaction of the internal cytochrome c with the low molecular weight reductants, ascorbate and glutathione. Complex kinetics are observed with both reagents: with ascorbate the results are best explained by assuming the existence, in the membrane, of a redox-active species able to undergo dedimerization. A protein bound disulfide bond would satisfy the requirement.  相似文献   

19.
The effects of variations in preparative procedures on the volume and content of resealed red cell ghosts have been investigated. Following hypotonic lysis at 0 degrees C, and after a variable delay time (td), concentrated buffer was added to restore isotonicity; resealing was then induced by incubation at 37 degrees C for one hour. Using this procedure, both the resealed ghost volume and the residual hemoglobin (Hb) content decreased for increasing td. If ghosts were maintained at 0 degree C (i.e., no 37 degrees C incubation), they remained nearly spherical until isotonicity was restored. Their volume then fell abruptly, but subsequently increased toward an intermediate level. The fall in volume was greater and the final level achieved was smaller for longer delay times. At 0 degree C, return to isotonicity also halted the otherwise gradual loss of residual Hb from unsealed ghosts. In addition, ghosts with internal osmolality of 40 to 300 mosmol/kg were prepared by adding different amounts of concentrated buffer before resealing for one hour at 37 degrees C. Under these conditions, the final ghost volume was inversely related to the resealing osmolality (i.e., lower osmolality yielded a larger volume). Ghost volume also increased, along with Hb content, if the quantity or concentration of the red cell suspension added to the lysing medium was increased. We conclude that resealed ghost volume is influenced by the ratio of lysate to resealing medium osmolality and by the colloid osmotic pressure of the residual ghost Hb. These data indicate methods by which ghosts with desired characteristics can be prepared, and have potential application for studies of ghost mechanical and biophysical behavior.  相似文献   

20.
Ethanol in the range of 0.76-2.40 M caused an immediate increase in the Ca permeability of the plasma membrane of resealed human red blood cell ghosts in which intracellular free Ca could be continuously monitored by means of the Ca chromophore arsenazo III. At a given concentration of ethanol, the Ca permeability increased markedly a few minutes following the mixing of the ghosts and the ethanol, and continued to increase over at least the next 30 min. Preincubating the ghosts in ethanol for 15, 60 and 120 min before measuring the rate of free Ca accumulation, progressively increased the effect of a given concentration of ethanol. These results indicate that the effect of a given concentration of ethanol is a complex function of concentration and exposure time. The effects of ethanol in this concentration range were completely reversible. The resealed ghosts used in these experiments were depleted of ATP to avoid interference from the Ca pump and all experiments were carried out with 150 mM KCl on both sides of the membrane to minimize changes in either the volume or membrane potential associated with activation of the Ca-dependent K channel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号