首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
《Genomics》2020,112(6):4254-4267
Bacillus cereus is thought to be a beneficial bacterium for plants in several aspects, such as promoting plant growth and inducing plant disease resistance. However, there is no detailed report on the effect of Bacillus cereus acting on Nicotiana tabacum. In the present study, RNA-based sequencing (RNA-seq) was used to identify the molecular mechanisms of the interaction between B. cereus CGMCC 5977 and N. tabacum. A total of 7345 and 5604 differentially expressed genes (DEGs) were identified from leaves inoculated with Bacillus cereus at 6 and 24 hpi, respectively. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses revealed that the most DEGs could be significantly enriched in hormone signal transduction, the MAPK signaling pathway, photosynthesis, oxidative stress, and amino sugar, and nucleotide sugar metabolism. Furthermore, glycolysis/gluconeogenesis was severely affected by inoculation with Bacillus cereus. In the hormone signal pathway, multiple DEGs were involved in plant defense-related major hormones, including activation of jasmonic acid (JA), salicylic acid (SA), and ethylene (Eth). Further analyses showed that other hormone-related genes involved in abscisic acid (ABA), gibberellin (GA), auxin (AUX), and cytokinin (CK) also showed changes. Notably, a large number of genes associated with glycolysis/gluconeogenesis, catabolism of starch and oxidative stress were induced. In addition, the majority of DEGs related to nucleic acid sugar metabolism were also significantly upregulated. Biochemical assays showed that the starch content of B. cereus-treated leaves was reduced to 2.51 mg/g and 2.38 mg/g at 6 and 24 hpi, respectively, while that of the control sample was 5.42 mg/g. Overall, our results demonstrated that multiple hormone signal transduction and carbohydrate metabolic pathways are involved in the interaction of tobacco and B. cereus.  相似文献   

12.
13.
Auxin and nitric oxide (NO) play fundamental roles throughout plant life. NO is a second messenger in auxin signal transduction leading to root developmental processes. The mechanisms triggered by auxin and NO that direct adventitious root (AR) formation are beginning to be unraveled. The goal of this work was to study phospholipid (PL) signaling during the auxin- and NO-induced AR formation in cucumber (Cucumis sativus) explants. Explants were labeled with 32P-inorganic phosphate and treated with the auxins indole-3-acetic acid or 1-naphthylacetic acid, or the NO donor S-nitroso N-acetyl penicillamine, in the presence or absence of the specific NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide. PLs were separated by thin-layer chromatography and quantified. We report that the signaling PLs phosphatidic acid (PA), phosphatidylinositol phosphate, and phosphatidylinositol bisphosphate accumulated within 1 min after auxin or NO treatment. Both auxin and NO evoked similar and transient time course responses, since signaling PLs returned to control levels after 20 or 30 min of treatment. The results indicate that auxin relies on NO in inducing PA, phosphatidylinositol phosphate, and phosphatidylinositol bisphosphate accumulation. Furthermore, we demonstrate that auxin and NO trigger PA formation via phospholipase D (PLD) activity. Explants treated for 10 min with auxin or NO displayed a 200% increase in AR number compared with control explants. In addition, PLD activity was required for the auxin- and NO-induced AR formation. Finally, exogenously applied PA increased up to 300% the number of ARs. Altogether, our data support the idea that PLD-derived PA is an early signaling event during AR formation induced by auxin and NO in cucumber explants.  相似文献   

14.
15.
赵龙  王舰  王芳 《西北植物学报》2020,40(3):403-412
该研究以‘青薯9号’马铃薯无菌苗为材料,采用转录组测序技术分析模拟干旱胁迫下马铃薯茎段的差异表达,探究茎段在干旱胁迫下的分子机制。结果表明:(1)不同程度干旱胁迫下,马铃薯叶片脯氨酸、可溶性糖以及可溶性蛋白含量明显增加;马铃薯茎段差异表达基因下调的数量均多于上调,其中3种处理条件下共有的差异表达基因有657个。(2)GO富集分析表明,马铃薯茎段差异表达基因主要集中在氧化还原过程、激素响应、氧化还原酶活性以及糖基水解酶活性;Pathway富集分析表明,马铃薯茎段差异表达基因主要集中在植物激素信号转导、苯丙酸生物合成、玉米素生物合成、苯丙氨酸代谢、淀粉和蔗糖代谢以及次生代谢产物的生物合成。(3)实时荧光定量PCR验证结果表明,6个差异表达基因在不同程度干旱胁迫中的差异表达与转录组分析的结果基本一致,证明转录组数据的可靠性。该结果对进一步研究马铃薯干旱胁迫响应机制有一定参考价值,也丰富了马铃薯抗旱育种的基因资源。  相似文献   

16.
17.
Although phosphatidylinositol transfer proteins (PITPs) are known to serve critical functions in regulating a varied array of signal transduction processes in animals and yeast, the discovery of a similar class of proteins in plants occurred only recently. Here, we report the participation of Ssh1p, a soybean PITP-like protein, in the early events of osmosensory signal transduction in plants, a function not attributed previously to animal or yeast PITPs. Exposure of plant tissues to hyperosmotic stress led to the rapid phosphorylation of Ssh1p, a modification that decreased its ability to associate with membranes. An osmotic stress-activated Ssh1p kinase activity was detected in several plant species by presenting recombinant Ssh1p as a substrate in in-gel kinase assays. Elements of a similar osmosensory signaling pathway also were conserved in yeast, an observation that facilitated the identification of soybean protein kinases SPK1 and SPK2 as stress-activated Ssh1p kinases. This study reveals the activation of SPK1 and/or SPK2 and the subsequent phosphorylation of Ssh1p as two early successive events in a hyperosmotic stress-induced signaling cascade in plants. Furthermore, Ssh1p is shown to enhance the activities of a plant phosphatidylinositol 3-kinase and phosphatidylinositol 4-kinase, an observation that suggests that the ultimate function of Ssh1p in cellular signaling is to alter the plant's capacity to synthesize phosphoinositides during periods of hyperosmotic stress.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号