首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The preservation of vascular endothelial cell (EC) barrier integrity is critical to normal vessel homeostasis, with barrier dysfunction being a feature of inflammation, tumor angiogenesis, atherosclerosis, and acute lung injury. Therefore, agents that preserve or restore vascular integrity have important therapeutic implications. In this study, we explored the regulation of hepatocyte growth factor (HGF)-mediated enhancement of EC barrier function via CD44 isoforms. We observed that HGF promoted c-Met association with CD44v10 and recruitment of c-Met into caveolin-enriched microdomains (CEM) containing CD44s (standard form). Treatment of EC with CD44v10-blocking antibodies inhibited HGF-mediated c-Met phosphorylation and c-Met recruitment to CEM. Silencing CD44 expression (small interfering RNA) attenuated HGF-induced recruitment of c-Met, Tiam1 (a Rac1 exchange factor), cortactin (an actin cytoskeletal regulator), and dynamin 2 (a vesicular regulator) to CEM as well as HGF-induced trans-EC electrical resistance. In addition, silencing Tiam1 or dynamin 2 reduced HGF-induced Rac1 activation, cortactin recruitment to CEM, and EC barrier regulation. We observed that both HGF- and high molecular weight hyaluronan (CD44 ligand)-mediated protection from lipopolysaccharide-induced pulmonary vascular hyperpermeability was significantly reduced in CD44 knock-out mice, thus validating these in vitro findings in an in vivo murine model of inflammatory lung injury. Taken together, these results suggest that CD44 is an important regulator of HGF/c-Met-mediated in vitro and in vivo barrier enhancement, a process with essential involvement of Tiam1, Rac1, dynamin 2, and cortactin.  相似文献   

2.
Engulfment and cell motility 1/dedicator of cytokinesis 180 (Elmo1/Dock180) is a bipartite guanine nucleotide exchange factor for the monomeric GTPase Ras-related C3 botulinum toxin substrate 1 (Rac1). Elmo1/Dock180 regulates Rac1 activity in a specific spatiotemporal manner in endothelial cells (ECs) during zebrafish development and acts downstream of the Netrin-1/Unc5-homolog B (Unc5B) signaling cascade. However, mechanistic details on the pathways by which Elmo1/Dock180 regulates endothelial function and vascular development remained elusive. In this study, we aimed to analyze the vascular function of Elmo1 and Dock180 in human ECs and during vascular development in zebrafish embryos. In vitro overexpression of Elmo1 and Dock180 in ECs reduced caspase-3/7 activity and annexin V-positive cell number upon induction of apoptosis. This protective effect of Elmo1 and Dock180 is mediated by activation of Rac1, p21-activated kinase (PAK) and AKT/protein kinase B (AKT) signaling. In zebrafish, Elmo1 and Dock180 overexpression reduced the total apoptotic cell and apoptotic EC number and promoted the formation of blood vessels during embryogenesis. In conclusion, Elmo1 and Dock180 protect ECs from apoptosis by the activation of the Rac1/PAK/AKT signaling cascade in vitro and in vivo. Thus, Elmo1 and Dock180 facilitate blood vessel formation by stabilization of the endothelium during angiogenesis.  相似文献   

3.
Increased endothelial cell (EC) permeability is central to the pathophysiology of inflammatory syndromes such as sepsis and acute lung injury (ALI). Activated protein C (APC), a serine protease critically involved in the regulation of coagulation and inflammatory processes, improves sepsis survival through an unknown mechanism. We hypothesized a direct effect of APC to both prevent increased EC permeability and to restore vascular integrity after edemagenic agonists. We measured changes in transendothelial electrical resistance (TER) and observed that APC produced concentration-dependent attenuation of TER reductions evoked by thrombin. We next explored known EC barrier-protective signaling pathways and observed dose-dependent APC-mediated increases in cortical myosin light chain (MLC) phosphorylation in concert with cortically distributed actin polymerization, findings highly suggestive of Rac GTPase involvement. We next determined that APC directly increases Rac1 activity, with inhibition of Rac1 activity significantly attenuating APC-mediated barrier protection to thrombin challenge. Finally, as these signaling events were similar to those evoked by the potent EC barrier-enhancing agonist, sphingosine 1-phosphate (S1P), we explored potential cross-talk between endothelial protein C receptor (EPCR) and S1P1, the receptors for APC and S1P, respectively. EPCR-blocking antibody (RCR-252) significantly attenuated both APC-mediated barrier protection and increased MLC phosphorylation. We next observed rapid, EPCR and PI 3-kinase-dependent, APC-mediated phosphorylation of S1P1 on threonine residues consistent with S1P1 receptor activation. Co-immunoprecipitation studies demonstrate an interaction between EPCR and S1P1 upon APC treatment. Targeted silencing of S1P1 expression using siRNA significantly reduced APC-mediated barrier protection against thrombin. These data suggest that novel EPCR ligation and S1P1 transactivation results in EC cytoskeletal rearrangement and barrier protection, components potentially critical to the improved survival of APC-treated patients with severe sepsis.  相似文献   

4.
Novel therapeutic strategies are needed to reverse the loss of endothelial cell (EC) barrier integrity that occurs during inflammatory disease states such as acute lung injury. We previously demonstrated potent EC barrier augmentation in vivo and in vitro by the platelet-derived phospholipid, sphingosine 1-phosphate (S1P) via ligation of the S1P1 receptor. The S1P analogue, FTY720, similarly exerts barrier-protective vascular effects via presumed S1P1 receptor ligation. We examined the role of the S1P1 receptor in sphingolipid-mediated human lung EC barrier enhancement. Both S1P and FTY-induced sustained, dose-dependent barrier enhancement, reflected by increases in transendothelial electrical resistance (TER), which was abolished by pertussis toxin indicating Gi-coupled receptor activation. FTY-mediated increases in TER exhibited significantly delayed onset and intensity relative to the S1P response. Reduction of S1P1R expression (via siRNA) attenuated S1P-induced TER elevations whereas the TER response to FTY was unaffected. Both S1P and FTY rapidly (within 5 min) induced S1P1R accumulation in membrane lipid rafts, but only S1P stimulated S1P1R phosphorylation on threonine residues. Inhibition of PI3 kinase activity attenuated S1P-mediated TER increases but failed to alter FTY-induced TER elevation. Finally, S1P, but not FTY, induced significant myosin light chain phosphorylation and dramatic actin cytoskeletal rearrangement whereas reduced expression of the cytoskeletal effectors, Rac1 and cortactin (via siRNA), attenuated S1P-, but not FTY-induced TER elevations. These results mechanistically characterize pulmonary vascular barrier regulation by FTY720, suggesting a novel barrier-enhancing pathway for modulating vascular permeability.  相似文献   

5.
Cell motility requires extensions of the plasma membrane driven by reorganization of the actin cytoskeleton. Small GTPases, particularly the Rho family, are key regulators of this process. A second class of GTPases, the ADP-ribosylation factors (ARFs), have also been implicated in the regulation of the actin cytoskeleton and motility. ARF6 is intimately involved in the regulation of Rac activity; however, the mechanisms by which ARF activation leads to activation of Rac remain poorly understood. We have previously shown that expression of the ARF-GEF ARNO in MDCK cells induces robust activation of Rac, the formation of large lamellipodia, and the onset of motility. We report here that ARNO-dependent activation of Rac is mediated by a bipartite Rac GEF, the Dock180/Elmo complex. Both DOCK180 and Elmo colocalize extensively with ARNO in migrating MDCK cells. Importantly, both a catalytically inactive Dock180 mutant and an Elmo mutant that fails to couple to Dock180 block ARNO-induced Rac activation and motility. In contrast, a similar mutant of the Rac GEF beta-PIX fails to inhibit ARNO-induced Rac activation or motility. Together, these data suggest that ARNO and ARF6 coordinate with the Dock180/Elmo complex to promote Rac activation at the leading edge of migrating cells.  相似文献   

6.
Prostaglandin E(2) (PGE(2)) and prostacyclin are lipid mediators produced by cyclooxygenase and implicated in the regulation of vascular function, wound repair, inflammatory processes, and acute lung injury. Although protective effects of these prostaglandins (PGs) are associated with stimulation of intracellular cAMP production, the crosstalk between cAMP-activated signal pathways in the regulation of endothelial cell (EC) permeability is not well understood. We studied involvement of cAMP-dependent kinase (PKA), cAMP-Epac-Rap1 pathway, and small GTPase Rac in the PGs-induced EC barrier protective effects and cytoskeletal remodeling. PGE(2) and PGI(2) synthetic analog beraprost increased transendothelial electrical resistance and decreased dextran permeability, enhanced peripheral F-actin rim and increased intercellular adherens junction areas reflecting EC barrier-protective response. Furthermore, beraprost dramatically attenuated thrombin-induced Rho activation, MLC phosphorylation and EC barrier dysfunction. In vivo, beraprost attenuated lung barrier dysfunction induced by high tidal volume mechanical ventilation. Both PGs caused cAMP-mediated activation of PKA-, Epac/Rap1- and Tiam1/Vav2-dependent pathways of Rac1 activation and EC barrier regulation. Knockdown of Epac, Rap1, Rac-specific exchange factors Tiam1 and Vav2 using siRNA approach, or inhibition of PKA activity decreased Rac1 activation and PG-induced EC barrier enhancement. Thus, our results show that barrier-protective effects of PGE(2) and prostacyclin on pulmonary EC are mediated by PKA and Epac/Rap pathways, which converge on Rac activation and lead to enhancement of peripheral actin cytoskeleton and adherens junctions. These mechanisms may mediate protective effects of PGs against agonist-induced lung vascular barrier dysfunction in vitro and against mechanical stress-induced lung injury in vivo.  相似文献   

7.
Acute lung injury, sepsis, lung inflammation, and ventilator-induced lung injury are life-threatening conditions associated with lung vascular barrier dysfunction, which may lead to pulmonary edema. Increased levels of atrial natriuretic peptide (ANP) in lung circulation reported in these pathologies suggest its potential role in the modulation of lung injury. Besides well recognized physiological effects on vascular tone, plasma volume, and renal function, ANP may exhibit protective effects in models of lung vascular endothelial cell (EC) barrier dysfunction. However, the molecular mechanisms of ANP protective effects are not well understood. The recently described cAMP-dependent guanine nucleotide exchange factor (GEF) Epac activates small GTPase Rap1, which results in activation of small GTPase Rac-specific GEFs Tiam1 and Vav2 and Rac-mediated EC barrier protective responses. Our results show that ANP stimulated protein kinase A and the Epac/Rap1/Tiam/Vav/Rac cascade dramatically attenuated thrombin-induced pulmonary EC permeability and the disruption of EC monolayer integrity. Using pharmacological and molecular activation and inhibition of cAMP-and cGMP-dependent protein kinases (PKA and PKG), Epac, Rap1, Tiam1, Vav2, and Rac we linked ANP-mediated protective effects to the activation of Epac/Rap and PKA signaling cascades, which dramatically inhibited the Rho pathway of thrombin-induced EC hyper-permeability. These results suggest a novel mechanism of ANP protective effects against agonist-induced pulmonary EC barrier dysfunction via inhibition of Rho signaling by Epac/Rap1-Rac and PKA signaling cascades.  相似文献   

8.
We previously identified the marked upregulation of integrin β4 in human lung endothelial cells (EC) treated with simvastatin, an HMG coA‐reductase inhibitor with vascular‐protective and anti‐inflammatory properties in murine models of acute lung injury (ALI). We now investigate the role of integrin β4 as a novel mediator of vascular inflammatory responses with a focus on mitogen‐activated protein kinases (MAPK) signaling and the downstream expression of the inflammatory cytokines (IL‐6 and IL‐8) essential for the full elaboration of inflammatory lung injury. Silencing of integrin β4 (siITGB4) in human lung EC resulted in significant increases in both basal and LPS‐induced phosphorylation of ERK 1/2, JNK, and p38 MAPK, consistent with robust integrin β4 regulation of MAPK activation. In addition, siITB4 increased both basal and LPS‐induced expression of IL‐6 and IL‐8 mRNA and protein secretion into the media. We next observed that integrin β4 silencing increased basal and LPS‐induced phosphorylation of SHP‐2, a protein tyrosine phosphatase known to modulate MAPK signaling. In contrast, inhibition of SHP‐2 enzymatic activity (sodium stibogluconate) abrogated the increased ERK phosphorylation associated with integrin β4 silencing in LPS‐treated EC and attenuated the increases in levels of IL‐6 and IL‐8 in integrin‐β4‐silenced EC. These findings highlight a novel negative regulatory role for integrin β4 in EC inflammatory responses involving SHP‐2‐mediated MAPK signaling. Upregulation of integrin β4 may represent an important element of the anti‐inflammatory and vascular‐protective properties of statins and provides a novel strategy to limit inflammatory vascular syndromes. J. Cell. Biochem. 110: 718–724, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

9.
Vascular endothelial cell (EC) barrier integrity is critical to vessel homeostasis whereas barrier dysfunction is a key feature of inflammatory disorders and tumor angiogenesis. We previously reported that hepatocyte growth factor (HGF)-mediated increases in EC barrier integrity are signaled through a dynamic complex present in lipid rafts involving its receptor, c-Met (1). We extended these observations to confirm that S1PR1 (sphingosine 1-phosphate receptor 1) and integrin β4 (ITGB4) are essential participants in HGF-induced EC barrier enhancement. Immunoprecipitation experiments demonstrated HGF-mediated recruitment of c-Met, ITGB4 and S1PR1 to caveolin-enriched lipid rafts in human lung EC with direct interactions of c-Met with both S1PR1 and ITGB4 accompanied by c-Met-dependent S1PR1 and ITGB4 transactivation. Reduced S1PR1 expression (siRNA) attenuated both ITGB4 and Rac1 activation as well as c-Met/ITGB4 interaction and resulted in decreased transendothelial electrical resistance. Furthermore, reduced ITGB4 expression attenuated HGF-induced c-Met activation, c-Met/S1PR1 interaction, and effected decreases in S1P- and HGF-induced EC barrier enhancement. Finally, the c-Met inhibitor, XL880, suppressed HGF-induced c-Met activation as well as S1PR1 and ITGB4 transactivation. These results support a critical role for S1PR1 and ITGB4 transactivation as rate-limiting events in the transduction of HGF signals via a dynamic c-Met complex resulting in enhanced EC barrier integrity.  相似文献   

10.
Inflammation is the major cause of endothelial barrier hyper‐permeability, associated with acute lung injury and acute respiratory distress syndrome. This study reports that p53 “orchestrates” the defence of vascular endothelium against LPS, by mediating the opposing actions of Rac1 and RhoA in pulmonary tissues. Human lung microvascular endothelial cells treated with HSP90 inhibitors activated both Rac1‐ and P21‐activated kinase, which is an essential element of vascular barrier function. 17AAG increased the phosphorylation of both LIMK and cofilin, in contrast to LPS which counteracted those effects. Mouse lung microvascular endothelial cells exposed to LPS exhibited decreased expression of phospho‐cofilin. 17AAG treatment resulted in reduced levels of active cofilin. Silencing of cofilin pyridoxal phosphate phosphatase (PDXP) blocked the LPS‐induced hyper‐permeability, and P53 inhibition reversed the 17AAG‐induced PDXP down‐regulation. P190RHOGAP suppression enhanced the LPS‐triggered barrier dysfunction in endothelial monolayers. 17AAG treatment resulted in P190RHOGAP induction and blocked the LPS‐induced pMLC2 up‐regulation in wild‐type mice. Pulmonary endothelial cells from “super p53” mice, which carry additional p53‐tg alleles, exhibited a lower response to LPS than the controls. Collectively, our findings help elucidate the mechanisms by which p53 operates to enhance barrier function.  相似文献   

11.
Vascular integrity and the maintenance of blood vessel continuity are fundamental features of the circulatory system maintained through endothelial cell–cell junctions. Defects in the endothelial barrier become an initiating factor in several pathologies, including ischemia/reperfusion, tumor angiogenesis, pulmonary edema, sepsis, and acute lung injury. Better understanding of mechanisms stimulating endothelial barrier enhancement may provide novel therapeutic strategies. We previously reported that oxidized phospholipids (oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine [OxPAPC]) promote endothelial cell (EC) barrier enhancement both in vitro and in vivo. This study examines the initiating mechanistic events triggered by OxPAPC to increase vascular integrity. Our data demonstrate that OxPAPC directly binds the cell membrane–localized chaperone protein, GRP78, associated with its cofactor, HTJ-1. OxPAPC binding to plasma membrane–localized GRP78 leads to GRP78 trafficking to caveolin-enriched microdomains (CEMs) on the cell surface and consequent activation of sphingosine 1-phosphate receptor 1, Src and Fyn tyrosine kinases, and Rac1 GTPase, processes essential for cytoskeletal reorganization and EC barrier enhancement. Using animal models of acute lung injury with vascular hyperpermeability, we observed that HTJ-1 knockdown blocked OxPAPC protection from interleukin-6 and ventilator-induced lung injury. Our data indicate for the first time an essential role of GRP78 and HTJ-1 in OxPAPC-mediated CEM dynamics and enhancement of vascular integrity.  相似文献   

12.
Afadin is a novel regulator of epithelial cell junctions assembly. However, its role in the formation of endothelial cell junctions and the regulation of vascular permeability remains obscure. We previously described protective effects of oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine (OxPAPC) in the in vitro and in vivo models of lung endothelial barrier dysfunction and acute lung injury, which were mediated by Rac GTPase. This study examined a role of afadin in the OxPAPC-induced enhancement of interactions between adherens junctions and tight junctions as a novel mechanism of endothelial cell (EC) barrier preservation. OxPAPC induced Rap1-dependent afadin accumulation at the cell periphery and Rap1-dependent afadin interaction with adherens junction and tight junction proteins p120-catenin and ZO-1, respectively. Afadin knockdown using siRNA or ectopic expression of afadin mutant lacking Rap1 GTPase binding domain suppressed OxPAPC-induced EC barrier enhancement and abolished barrier protective effects of OxPAPC against thrombin-induced EC permeability. Afadin knockdown also abolished protective effects of OxPAPC against ventilator-induced lung injury in vivo. These results demonstrate for the first time a critical role of afadin in the regulation of vascular barrier function in vitro and in vivo via coordination of adherens junction-tight junction interactions.  相似文献   

13.
Microtubules (MT) play a vital role in many cellular functions, but their role in peripheral actin cytoskeletal dynamics which is essential for control of endothelial barrier and monolayer integrity is less understood. We have previously described the enhancement of lung endothelial cell (EC) barrier by hepatocyte growth factor (HGF) which was associated with Rac1-mediated remodeling of actin cytoskeleton. This study investigated involvement of MT-dependent mechanisms in the HGF-induced enhancement of EC barrier. HGF-induced Rac1 activation was accompanied by phosphorylation of stathmin, a regulator of MT dynamics. HGF also stimulated MT peripheral growth monitored by time lapse imaging and tracking analysis of EB-1-decorated MT growing tips, and increased the pool of acetylated tubulin. These effects were abolished by EC pretreatment with HGF receptor inhibitor, downregulation of Rac1 pathway, or by expression of a stathmin-S63A phosphorylation deficient mutant. Expression of stathmin-S63A abolished the HGF protective effects against thrombin-induced activation of RhoA cascade, permeability increase, and EC barrier dysfunction. These results demonstrate a novel MT-dependent mechanism of HGF-induced EC barrier regulation via Rac1/PAK1/stathmin-dependent control of MT dynamics.  相似文献   

14.
Toll-like receptor (TLR) 4 has been identified as the primary receptor for enteric LPS, whereas TLR2 has been implicated as the receptor for Gram-positive and fungal cell wall components and for bacterial, mycobacterial, and spirochetal lipoproteins. Vascular endothelial cell (EC) activation or injury by microbial cell wall components such as LPS is of critical importance in the development of sepsis and septic shock. We have previously shown that EC express predominantly TLR4, and have very little TLR2. These cells respond vigorously to LPS via TLR4, but are unresponsive to lipoproteins and other TLR2 ligands. Here we show that LPS, TNF-alpha, or IFN-gamma induce TLR2 expression in both human dermal microvessel EC and HUVEC. Furthermore, LPS and IFN-gamma act synergistically to induce TLR2 expression in EC, and LPS-induced TLR2 expression is NF-kappaB dependent. LPS and IFN-gamma also up-regulate TLR4 mRNA expression in EC. These data indicate that TLR2 and TLR4 expression in ECs is regulated by inflammatory molecules such as LPS, TNF-alpha, or IFN-gamma. TLR2 and TLR4 molecules may render EC responsive to TLR2 ligands and may help to explain the synergy between LPS and lipoproteins, and between LPS and IFN-gamma, in inducing shock associated with Gram-negative sepsis.  相似文献   

15.
Acute lung injury (ALI) is accompanied by decreased lung compliance. However, a role of tissue mechanics in modulation of inflammation remains unclear. We hypothesized that bacterial lipopolysacharide (LPS) stimulates extracellular matrix (ECM) production and vascular stiffening leading to stiffness-dependent exacerbation of endothelial cell (EC) inflammatory activation and lung barrier dysfunction. Expression of GEF-H1, ICAM-1, VCAM-1, ECM proteins fibronectin and collagen, lysyl oxidase (LOX) activity, interleukin-8 and activation of Rho signaling were analyzed in lung samples and pulmonary EC grown on soft (1.5 or 2.8 kPa) and stiff (40 kPa) substrates. LPS induced EC inflammatory activation accompanied by expression of ECM proteins, increase in LOX activity, and activation of Rho signaling. These effects were augmented in EC grown on stiff substrate. Stiffness-dependent enhancement of inflammation was associated with increased expression of Rho activator, GEF-H1. Inhibition of ECM crosslinking and stiffening by LOX suppression reduced EC inflammatory activation and GEF-H1 expression in response to LPS. In vivo, LOX inhibition attenuated LPS-induced expression of GEF-H1 and lung dysfunction. These findings present a novel mechanism of stiffness-dependent exacerbation of vascular inflammation and escalation of ALI via stimulation of GEF-H1 - Rho pathway. This pathway represents a fundamental mechanism of positive feedback regulation of inflammation.  相似文献   

16.
Uncontrolled TLR4 signaling may induce excessive production of proinflammatory cytokines and lead to harmful inflammation; therefore, negative regulation of TLR4 signaling attracts much attention now. PECAM-1, a member of Ig-ITIM family, can mediate inhibitory signals in T cells and B cells. However, the role and the mechanisms of PECAM-1 in the regulation of TLR4-mediated LPS response in macrophages remain unclear. In this study, we demonstrate that PECAM-1 ligation with CD38-Fc fusion protein negatively regulates LPS-induced proinflammatory cytokine TNF-alpha, IL-6, and IFN-beta production by inhibiting JNK, NF-kappaB, and IFN regulatory factor 3 activation in macrophages. In addition, PECAM-1 ligation-recruited Src homology region 2 domain-containing phosphatase 1 (SHP-1) and Src homology region 2 domain-containing phosphatase 2 (SHP-2) may be involved in the inhibitory effect of PECAM-1 on TLR4 signaling. Consistently, silencing of PECAM-1 enhances the macrophage response to LPS stimulation. Taken together with the data that PECAM-1 is constitutively expressed in macrophages and its expression is up-regulated by LPS stimulation, PECAM-1 might function as a feedback negative regulator of LPS inflammatory response in macrophages. This study may provide a potential target for intervention of inflammatory diseases.  相似文献   

17.
《Cellular signalling》2014,26(5):1082-1088
Dock4 is a member of the Dock180 family of proteins that mediates cancer cell migration through activation of Rac. However, the regulatory mechanism of Dock4 remains unclear. In this study, we show that the C-terminal proline-rich region of Dock4 is essential for the Dock4 mediated promotion of cell migration in MDA-MB-231 breast cancer cells. We found that a phosphoinositide-binding protein SH3YL1 interacted with the C-terminal proline-rich region of Dock4. Interaction of SH3YL1 with Dock4 promoted Dock4-mediated Rac1 activation and cell migration. Mutations in the phosphoinositide-binding domain disrupted the ability of SH3YL1 to promote Dock4-mediated cell migration. In addition, depletion of SH3YL1 in MDA-MB-231 cells suppressed cell migration. Taken together, these results provide evidence for a novel and functionally important interaction between Dock4 and SH3YL1 to promote cancer cell migration by regulating Rac1 activity.  相似文献   

18.
Excessive mechanical ventilation exerts pathologic mechanical strain on lung vascular endothelium and promotes endothelial cell (EC) inflammatory activation; however, the specific mechanisms underlying EC inflammatory response caused by mechanical ventilation related cyclic stretch (CS) remain unclear. This study investigated the effects of chronic exposure to CS at physiologic (5%) and pathologic (18%) magnitude on pulmonary EC inflammatory status in control conditions and bacterial lipopolysacharide (LPS)-stimulated conditions. EC exposure to high or low CS magnitudes for 28–72 hrs had distinct effects on EC inflammatory activation. 18% CS increased surface expression of endothelial adhesion molecule ICAM1 and release of its soluble form (sICAM1) and inflammatory cytokine IL-8 by CS-stimulated pulmonary endothelial cells (EC). EC inflammatory activation was not observed in EC exposed to 5% CS. Chronic exposure to 18% CS, but not to 5% CS, augmented ICAM1 and IL-8 production and EC monolayer barrier disruption induced by LPS. 18% CS, but not 5% CS, stimulated expression of RhoA GTPase-specific guanine nucleotide exchange factor GEF-H1. GEF-H1 knockdown using gene-specific siRNA abolished 18% CS-induced ICAM1 expression and sICAM1 and IL-8 release by EC. GEF-H1 knockdown also prevented disruption of EC monolayer integrity and attenuated sICAM1 and IL-8 release in the two-hit model of EC barrier dysfunction caused by combined stimulation with 18% CS and LPS. These data demonstrate that exacerbation of inflammatory response by pulmonary endothelium exposed to excessive mechanical stretch is mediated by CS-induced induction of Rho activating protein GEF-H1.  相似文献   

19.
Cell–cell contact formation is a dynamic process requiring the coordination of cadherin-based cell–cell adhesion and integrin-based cell migration. A genome-wide RNA interference screen for proteins required specifically for cadherin-dependent cell–cell adhesion identified an Elmo–Dock complex. This was unexpected as Elmo–Dock complexes act downstream of integrin signaling as Rac guanine-nucleotide exchange factors. In this paper, we show that Elmo2 recruits Dock1 to initial cell–cell contacts in Madin–Darby canine kidney cells. At cell–cell contacts, both Elmo2 and Dock1 are essential for the rapid recruitment and spreading of E-cadherin, actin reorganization, localized Rac and Rho GTPase activities, and the development of strong cell–cell adhesion. Upon completion of cell–cell adhesion, Elmo2 and Dock1 no longer localize to cell–cell contacts and are not required subsequently for the maintenance of cell–cell adhesion. These studies show that Elmo–Dock complexes are involved in both integrin- and cadherin-based adhesions, which may help to coordinate the transition of cells from migration to strong cell–cell adhesion.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号